JPS6375694A - Nuclear reactor container - Google Patents

Nuclear reactor container

Info

Publication number
JPS6375694A
JPS6375694A JP61219469A JP21946986A JPS6375694A JP S6375694 A JPS6375694 A JP S6375694A JP 61219469 A JP61219469 A JP 61219469A JP 21946986 A JP21946986 A JP 21946986A JP S6375694 A JPS6375694 A JP S6375694A
Authority
JP
Japan
Prior art keywords
pool
containment vessel
reactor containment
water
suppression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61219469A
Other languages
Japanese (ja)
Other versions
JPH0577275B2 (en
Inventor
新野 毅
三木 実
落合 兼寛
塩沢 昭彦
内山 祐一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61219469A priority Critical patent/JPS6375694A/en
Priority to US07/098,530 priority patent/US5011652A/en
Priority to KR1019870010357A priority patent/KR950009881B1/en
Priority to CN87106445A priority patent/CN1012769B/en
Publication of JPS6375694A publication Critical patent/JPS6375694A/en
Publication of JPH0577275B2 publication Critical patent/JPH0577275B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、原子力発電所の原子炉を内包する原子炉格納
容器に係り、特に従来動的に構成されていた、サプレッ
ションチェンバ・プール水冷却システムに代り、静的冷
却システムにより固有の安全性と設備・機器の合理化に
よる経済性の向上を可能とする原子炉格納容器に関する
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a reactor containment vessel that encloses a nuclear reactor in a nuclear power plant, and particularly relates to a suppression chamber/pool water cooling system that has conventionally been dynamically configured. The present invention relates to a nuclear reactor containment vessel that provides inherent safety through a static cooling system and improves economic efficiency through the rationalization of facilities and equipment.

[従来の技術] 従来の原子炉残留熱除去系安全系システムは、冷却材喪
失事故時に、炉心の崩壊熱および水−金属反応により発
生する熱で、燃料被覆管が溶融するのを防止するため原
子炉々内にサプレッションチェンバ・プール水を窩圧注
入系または白りJ減圧系および低圧炉心スプレィ系等と
共に注水すると共に、更に上記低圧注水モードブ・■転
に引き湘いて原子炉格納容器ドライウェルおよびサプレ
ッションチェンバ内の非凝縮性ガスの冷却および蒸気凝
縮をおこない原子炉格納容器内に放出さ九たエネルギー
を除去するべく格納容器スプレィモード運転により、サ
プレッションチェンバ・プール水をドライウェルおよび
サプレッションチェンバ内に設置したスプレィヘッダよ
りスプレィするij(どなっている。このため、主蒸気
逃がし安全弁等よりサプレッション・チェンバーヘブロ
ーダウンされる蒸気による熱移動とあいまってサプレッ
ションチェンバプール水温が上昇する事となるためこれ
を防止するべくサプレッションチェンバプール水を残留
熱除去系ポンプで吸収加圧し、残留熱交換器を通して冷
却した後に再びサプレッションチェンバ・プールに戻す
事によりサプレッションチェンバプール水冷却モード系
を構成し、事故時の安全性を確保した設備構成を形づく
っているが、本従来システ11の概要を第3図に示す。
[Prior art] Conventional nuclear reactor residual heat removal safety systems are designed to prevent fuel cladding from melting due to heat generated by core decay heat and water-metal reactions in the event of a loss of coolant accident. Suppression chamber pool water is injected into the reactors along with the cavity pressure injection system, Shirari J depressurization system, low pressure core spray system, etc., and the reactor containment vessel dry well is also injected in conjunction with the above low pressure water injection mode. In order to cool the non-condensable gas in the suppression chamber and condense steam, and to remove the energy released into the reactor containment vessel, the suppression chamber pool water is pumped into the dry well and suppression chamber by the containment vessel spray mode operation. This causes the water temperature in the suppression chamber pool to rise due to the heat transfer caused by the steam blowing down from the main steam relief safety valve etc. to the suppression chamber. In order to prevent this, a suppression chamber pool water cooling mode system is constructed by absorbing and pressurizing the suppression chamber pool water with a residual heat removal system pump, cooling it through a residual heat exchanger, and returning it to the suppression chamber pool. An outline of this conventional system 11 is shown in FIG. 3, which has an equipment configuration that ensures safety.

−に記の如〈従来のサプレッションチェンバプール水冷
却システムはプール水温の上昇防止のため。
- As stated in ``Conventional suppression chamber pool water cooling systems are designed to prevent pool water temperature from rising.

前述の如くサプレッションチェンバエリアより配管を通
してポンプによりプール水を導き出し、熱交換器による
プール水除熱を行なういわゆる動的機器システムによる
設備構成となっており、非常に高度な安全系設備として
、系統分離の対策がなされ、地震等外部荷重に対しても
その設備の機能維持が保たれるような構造・機能上の設
計がなされている。
As mentioned above, the equipment is configured with a so-called dynamic equipment system, in which pool water is drawn out from the suppression chamber area by a pump through piping, and heat is removed from the pool water by a heat exchanger. Measures have been taken, and structural and functional designs are in place to maintain the functionality of the equipment even against external loads such as earthquakes.

」二足の如き動的機械設備構成によるサプレッション・
チェンバプール水冷却システムに対し、出来る限りポン
プ等の回転機器、大型の熱交換器。
” Suppression with a dynamic mechanical equipment configuration that resembles two legs.
For chamber pool water cooling systems, use rotating equipment such as pumps and large heat exchangers as much as possible.

更には大型の配管ループなど動的に機能する設備の代り
として同様の冷却機能を有するシステムとして静的な除
熱システムが考えられれば動的構造部に対する機能要求
の軽減による大[1]なシステム自体の安全性・信頼性
向」ニすると共に設備自体の合理化にともなうプラント
の経済性向上がはかられると考えられるが、このような
静的システムを用いた格納容器の冷却システムに関連す
る従来事例として例えば、特開昭55−125483に
示されるピー1〜パイプ方式による原子炉格納容器冷却
システムが挙げられる。
Furthermore, if a static heat removal system can be considered as a system with a similar cooling function as an alternative to dynamically functioning equipment such as large piping loops, it will be possible to create a large [1] system by reducing the functional demands on dynamic structures. It is thought that this will improve the economic efficiency of the plant due to the rationalization of the equipment itself, as well as improve the safety and reliability of the plant itself. For example, there is a reactor containment vessel cooling system based on the pipe-to-pipe method shown in Japanese Patent Application Laid-Open No. 55-125483.

本方式は原子炉格納容器ドライウェル鋼板外面に低沸点
液体を封入した多数の円筒状ヒートパイプをとりつけた
ものであり、格納容器ドライウェル内の気体保有熱を本
ヒートパイプを通じて静的に原子炉格納容器外へ逃がし
除熱システムである。
In this system, a large number of cylindrical heat pipes filled with low boiling point liquid are attached to the outer surface of the steel plate of the reactor containment vessel dry well. This is a heat removal system that allows heat to escape outside the containment vessel.

本概念のヒートパイプを重連した格納容器サプレッショ
ンチェンバプール水の冷却システムに作用させる事は技
術的に可能であり、前述の静的な安全冷却システムを構
成可能であるが、低沸点液体を内臓したヒートパイプを
大がかりな構造として設置するため、格納容器の外側の
生体じゃへい壁およびその外部空間に設置の設備配置に
障害物として多大な影響をおよぼすばかりでなく、安全
系に係る重要設備として耐′、!!設計上の要求等から
も犬がかりな構造体とならざるを得ない等の設備上の問
題が大きく、経済的な利点も有していない構造であり現
実性にとぼしいものとなっている。
It is technically possible to apply the heat pipes of this concept to the cooling system of containment vessel suppression chamber pool water, and it is possible to construct the above-mentioned static safety cooling system. Because the heat pipe is installed as a large-scale structure, it not only has a significant impact on the bio-blocking wall outside the containment vessel and the equipment layout installed in the external space, but also has a large impact on the equipment layout as an important safety equipment. Endurance,! ! Due to design requirements and other factors, the structure has many problems in terms of equipment, such as a complicated structure, and it has no economic advantages, making it impractical.

また同様の格納容′!l(冷却システムに関連するもう
一つの従来例として、実開昭59−116891に示さ
れる格納容器コンクリート壁とライナの間を液体で満す
ことにより、格納容器を液体で覆う方式が挙げられるが
、本方式では前記コンクリート壁とライナの間隙は2 
m m程度であり、サプレッションチェンバプール水の
冷却を静的に本該当部の液体で冷却するためには間隙正
射が小さすぎるため冷却用外部液体の循環流が発生せず
、静的冷却効率があがらず、その効果を期待する事が出
来ない非現実的なものとなっている。
Also similar storage capacity! (Another conventional example related to the cooling system is a method shown in Utility Model Application Publication No. 59-116891, in which the space between the concrete wall of the containment vessel and the liner is filled with liquid to cover the containment vessel with liquid. , in this method, the gap between the concrete wall and the liner is 2
Since the gap direct radiation is too small to statically cool the suppression chamber pool water with the liquid in this part, no circulation flow of external cooling liquid occurs, and the static cooling efficiency is low. It has become unrealistic to expect that the effects will not improve.

[発明が解決しようとする問題点コ 上記従来例は、事故時サプレッションチェンバ水の冷却
の為サプレッションチェンバエリアより、配管を通じて
ポンプによりプール水を導き出し、熱交換器によるプー
ル水の除熱を行ういわゆる動的システムによる設備構成
になっており、犬ががすな動的機器の構造機能保持の必
要があったり、静的冷却システムを構成するための冷却
効率が著しく不良で、その効果を期待する事が出来ない
等の現実性のとぼしいものであったりする欠点を有して
いた。
[Problems to be Solved by the Invention] In the above conventional example, in order to cool the suppression chamber water in the event of an accident, pool water is drawn out from the suppression chamber area by a pump through piping, and heat is removed from the pool water by a heat exchanger. The equipment is configured with a dynamic system, and there is a need to maintain the structure and function of dynamic equipment that is easily removed, and the cooling efficiency of the static cooling system is extremely poor, and we are not looking forward to its effectiveness. It had the disadvantage of being impractical, such as not being able to do anything.

本発明の目的は、原子炉格納容器サプレッションチェン
バプール水の冷却システムとして、ポンプ等の回転機器
、大型の熱交換器、更には大型の配管ループなど動的設
備の代りとして静的で熱除去効率のよい事故後の長期冷
却可能な除熱システムを有する原子炉格納容器を提供す
る事にある。
The purpose of the present invention is to provide a static and efficient heat removal system for use as a reactor containment vessel suppression chamber pool water cooling system in place of dynamic equipment such as rotating equipment such as pumps, large heat exchangers, and even large piping loops. An object of the present invention is to provide a reactor containment vessel having a heat removal system capable of long-term cooling after an accident.

[問題点を解決するための手段] −1−記目的は、原子炉格納容器ウェットウェル部とこ
の周囲をとり囲む生体じゃへい壁の間に構成される空間
部に前記ウェットウェル内サプレッションプール水深さ
:Lと原子炉格納容器および生体じゃへい壁間円筒部す
きま距離:dの比率をサプレッションプール水の静的冷
却効率をたかぬるための自然循環流が発生しやすいよう
な値にとった格納容器の外周プールエリアを設け、事故
時に本外周プールの冷却用の外周プール水を注入する注
入タンクより注入ラインを通じ非汚せん水を注入する設
備を有し、外周プール上部空間気相部と原子炉設備外部
大気部の間にヒートシンク用外周プールの放熱を目的と
するベントラインを有する事により達成される。
[Means for Solving the Problems] -1- The purpose is to increase the water depth of the suppression pool in the wet well in the space formed between the reactor containment vessel wet well part and the biological wall surrounding the wet well part. The ratio of L to the cylindrical clearance distance between the reactor containment vessel and the biological barrier wall: d is set to a value that facilitates the generation of natural circulation flow to improve the static cooling efficiency of the suppression pool water. An outer pool area is provided around the container, and equipment is installed to inject non-contaminated water through an injection line from an injection tank that injects outer pool water for cooling the main outer pool in the event of an accident. This is achieved by providing a vent line between the outside atmosphere of the furnace equipment and the purpose of dissipating heat from the peripheral pool for the heat sink.

[作用] 以下第4図を用いて従来例における問題点を解決するた
めの本発明の作用を具体的に説明する。
[Function] Hereinafter, the function of the present invention for solving the problems in the conventional example will be specifically explained using FIG.

第4(A)図には、本発明の原子炉格納容器外周囲プー
ルが模式的に示されている。本図において示された二重
円筒の内、内円筒は原子格納器、外円筒は生体じゃへい
壁であり、円筒部すきま距離:dは格納容器と生体じゃ
へい壁で囲まれた本発明の外周プールである7本発明の
外周プール水レベルは、原子炉格納容器壁面を通して熱
伝達効率をよくするためサプレッションチェンバプール
水と同等の水位を有しているが、本発明の如く、静的冷
却をおこなうためには外周プールの循環流を出来るだけ
発生させる事が効率的であり、円筒部すきま距離:dが
小さい場合には一般に上記自然循環流が発生しにくく、
本発明の冷却システムが成立しない事となる。
FIG. 4(A) schematically shows the outer peripheral pool of the reactor containment vessel of the present invention. Of the double cylinders shown in this figure, the inner cylinder is an atomic container and the outer cylinder is a biological barrier wall, and the gap distance between the cylinder parts: d is the structure of the present invention surrounded by the containment vessel and the biological barrier wall. 7 The water level of the outer peripheral pool of the present invention, which is the outer peripheral pool, has a water level equivalent to that of the suppression chamber pool water in order to improve the heat transfer efficiency through the wall surface of the reactor containment vessel. In order to do this, it is efficient to generate as much circulation flow as possible in the outer pool, and if the cylindrical part clearance distance: d is small, it is generally difficult for the above natural circulation flow to occur;
The cooling system of the present invention will not be established.

一方第4(B)図には実験的に一般論として求められた
内筒部にヒートソースを有する二重円筒すきま部の自然
循環流の発生の傾向を前記円筒部すきま距離:dとサプ
レッションプール深さ:Lとの比率:d/Lの関数とし
て表わした。ここで、Ra:レーレ−数は循環流の発生
のしやすさをあられす指数であり、その数値が低い程自
然循還流が発生しゃすく除熱効率の高くなる事を示して
いる。ここで示されるように、前記d/Lの値が0.1
5以下ではレーレ−数が大きく、自然循環流が発生しに
くい事がわかり、本発明の静的冷却システムを達成する
ためにはサプレッションプール水深さ:1、と外周ルー
プすきま距に:dによる比率d/Lの値を15 / 1
00以上とする事が有効と考えられる。このため本発明
の原子炉格納容器外周プールにおける上記すきま距離は
上記の値とする事を特徴とし、静的冷却システム有効な
形状を提供する事が可能となる。
On the other hand, Fig. 4(B) shows the tendency of natural circulation flow in the gap of a double cylinder with a heat source in the inner cylinder, which was determined experimentally in general terms, by the gap distance of the cylinder part: d and the suppression pool. Depth: Ratio to L: Expressed as a function of d/L. Here, Ra: Rayleigh number is an index that measures the ease with which a circulation flow is generated, and the lower the value, the more natural circulation flow is generated and the higher the heat removal efficiency becomes. As shown here, the value of d/L is 0.1
It has been found that when the relay number is less than 5, the natural circulation flow is difficult to occur.In order to achieve the static cooling system of the present invention, the ratio of the suppression pool water depth: 1 and the outer loop clearance distance: d is required. The value of d/L is 15 / 1
It is considered effective to set it to 00 or more. Therefore, the above-mentioned gap distance in the reactor containment vessel peripheral pool of the present invention is characterized by being set to the above-mentioned value, and it becomes possible to provide an effective shape for the static cooling system.

[実施例コ 以下上記作用原理に基づく本発明の実施例を図により説
明する。
[Embodiments] Hereinafter, embodiments of the present invention based on the above principle of operation will be explained with reference to the drawings.

第1図は、本発明による静的冷却システムを構成する外
周プールを有した原子炉格納容器を示す。
FIG. 1 shows a reactor containment vessel with a peripheral pool constituting a static cooling system according to the present invention.

本図において、原子炉圧力容器6を内包し、ベント壁4
によりドライウェルとウェットウェル部に二重され、ウ
ェットウェル部にサプレッションチェンバプール水3を
有する原子炉格納容器]と生体しやへい壁2によりとり
囲まれた格納容器外空間部5に、サプレッションプール
水深さ=Lと原子格納容器1および生体しゃへい壁2間
すきま距離:dの比率d/Lが15/100以上を有す
る格納容器外周プール7が設けられ1本格納容器外周プ
ール3には、外周プール注水タンク11より隔離弁14
を介した外周プール注水配管12が接続されている。ま
た、格納容器外空間部5からは隔離弁15を介して外周
プールベントライン13が接続され、原子炉建屋外部で
大気中に開放された構成となっている。又第2図には、
第1図のサプレッションチェンバプール水面レベルの平
面図を示す。
In this figure, a reactor pressure vessel 6 is enclosed, and a vent wall 4 is shown.
The reactor containment vessel is doubled into a dry well and a wet well part, and has a suppression chamber pool water 3 in the wet well part] and a suppression pool in the outer space part 5 of the containment vessel surrounded by the biological barrier wall 2. A containment vessel outer circumferential pool 7 having a ratio d/L of 15/100 or more between the water depth L and the gap distance: d between the containment vessel 1 and the living body shielding wall 2 is provided. Isolation valve 14 from pool water tank 11
The outer peripheral pool water injection pipe 12 is connected via. Further, an outer peripheral pool vent line 13 is connected to the containment vessel outer space 5 via an isolation valve 15, and is opened to the atmosphere outside the reactor building. Also, in Figure 2,
2 shows a plan view of the suppression chamber pool water level of FIG. 1; FIG.

次に上記構成の本発明による格納容罰静的冷却システ1
1の動作原理を以下に説明する。
Next, the storage static cooling system 1 according to the present invention having the above configuration
The operating principle of No. 1 will be explained below.

万が一1原子炉格納容器1内の原子炉−次系配管の破断
等の事故時には、格納容器内の配管破断口より蒸気及び
水の混合物が放出されるが、これらの放出物は、ベント
壁4に設けられた連結部より、サプレッションチェンバ
プール水3の中に導かれ凝縮される。一方、上記事故信
号により隔離弁14が開放され、外周プール注水タンク
11より自重落下により非汚染水が格納容器外周プール
7へ注水される。サプレッションチェンバプール水3は
−に記の凝縮作用により水温」二昇を続けるが、外周プ
ール7との温度差が大きくなるにつれ、外周プール7部
に自然循環流が発生し、サプレッションチェンバプール
水3は冷却される事となる。
In the unlikely event that the reactor-subsystem piping in the reactor containment vessel 1 ruptures, a mixture of steam and water will be released from the pipe break in the containment vessel. The water is introduced into the suppression chamber pool water 3 through a connecting portion provided in the water and is condensed therein. On the other hand, the isolation valve 14 is opened by the accident signal, and uncontaminated water is injected from the outer pool water injection tank 11 into the containment vessel outer pool 7 by falling under its own weight. The temperature of the suppression chamber pool water 3 continues to rise due to the condensation action described in -, but as the temperature difference with the outer pool 7 increases, a natural circulation flow occurs in the outer pool 7, and the suppression chamber pool water 3 will be cooled.

また、更に格納容器外周プール水温が上昇していくと格
納容器外周プール7より蒸発が始まり、蒸発熱による本
プールの除熱がなされる。本除熱効果は格納容器外空間
部5に設けられた外周プールベントライン13を通じ隔
離弁15を介し゛〔原子炉建屋建設工期へ接続されたラ
インにより、放出される事により更に大きくなり原子炉
格納容器1の事故時健全性を保持する事が出来る。
Further, as the water temperature of the outer circumferential pool of the containment vessel further increases, evaporation starts from the outer circumferential pool of the containment vessel 7, and heat of evaporation is removed from this pool. This heat removal effect is further increased by being released through the outer circumferential pool vent line 13 provided in the outer space 5 of the containment vessel via the isolation valve 15 and the line connected to the reactor building construction period. The integrity of the containment vessel 1 can be maintained in the event of an accident.

なお、上記外周プールの注入される外周プール用の注水
は別途設置された非汚染の外周プール注水タンク11よ
り事故時のみなされるため上記の除熱にともなう放熱を
建屋外の大気へ直接放出しても放射線安全上の問題は特
に発生せず、また自重落下による注水により簡素化され
た設備を利用出来る利点を有している。
In addition, since water is injected into the outer pool from the separately installed non-contaminated outer pool water injection tank 11 in the event of an accident, the heat radiated from the above heat removal is directly released into the atmosphere outside the building. However, there are no particular radiation safety problems, and it has the advantage that simplified equipment can be used because water is injected by falling under its own weight.

上記の如く本発明の格納容器の静的冷却システムは格納
容器外周プールのすき間距離を自然循環流が容易に発生
しやすい形状に設定しているため、静的冷却効率を好適
に提供する事を特徴としているが、本発明を適用した時
、例えばサプレッションプール水深さの例として約6m
程度の従来格納容器の場合、外周プールすきま正射は0
.9m以上を設定するのが冷却効率上適切とされるが、
この程度のすき間が格納容器1と生体じゃへい壁2の間
に設置される場合には特に建設工事上格納容器1と生体
しやへい壁2の建設立ちあげを並行して行う事が可能と
なり原子炉建屋建設工期の短縮化の上でも大きな利点を
有する効果をかねそなえる事が可能となる。
As mentioned above, in the static cooling system for the containment vessel of the present invention, the gap distance between the outer circumferential pool of the containment vessel is set to a shape that facilitates the generation of natural circulation flow, and therefore it is possible to suitably provide static cooling efficiency. However, when the present invention is applied, for example, the suppression pool water depth is approximately 6 m.
In the case of a conventional containment vessel of about
.. It is considered appropriate to set the height to 9m or more in terms of cooling efficiency.
If a gap of this magnitude is installed between the containment vessel 1 and the biological barrier wall 2, it becomes possible to start construction of the containment vessel 1 and the biological barrier wall 2 in parallel, especially during construction work. It is possible to have the effect of shortening the construction period of the reactor building, which has a great advantage.

[発明の効果] 本発明によれば、原子炉格納容器内サプレッションチェ
ンバプール水の効果的静的除熱システムを構成する原子
炉格納容器を提供する事が可能となり、従来のポンプ、
熱交換器、大型配管ループ等より構成される動的な機械
設備によるサプレッションチェンバ水冷却設備を削除す
る事が可能となり、合せて設備全体の建設性の向上をも
あわせ持つ効果を有する事となる。
[Effects of the Invention] According to the present invention, it is possible to provide a reactor containment vessel that constitutes an effective static heat removal system for suppression chamber pool water in the reactor containment vessel, and it is possible to provide a reactor containment vessel that constitutes an effective static heat removal system for suppression chamber pool water in the reactor containment vessel, and to replace conventional pumps,
It becomes possible to eliminate the suppression chamber water cooling equipment, which uses dynamic mechanical equipment such as heat exchangers and large piping loops, and also has the effect of improving the constructability of the entire equipment. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原子炉格納容器を有する原子炉設りa
の実施例としての断面図、第2図は同様の平面図、第3
図は、従来の原子炉格納容器サプレッションチェンバプ
ール水冷却システムを示すズ、第4(A)図は1本発明
による原子炉格納容;((外周プールを模式的にあられ
した図、第4 (B )図は、サプレッションプール深
さと外周プール隙間正着による冷却効率をあられす図で
ある。 1・・・・・・原子炉格納容器、2・・・・・・生体し
ゃへい壁、3・・・・・・サプレッションチェンバプー
ル水、4・・・・・・ベント壁、5・・・・・・格納容
器外空間部、6・・・・・・原子炉圧力容器、7・・・
・・・格納容器外周プール、8・・・・・・残留熱除去
系配管、9・・・・・・残留熱除去系ポンプ、lO・・
・・・・残留熱除去系熱交換器、11・・・・・・外周
プール注水タンク、12・・・・・・外周プール注水配
管、13・・目・・外周プールベントライン、14・・
・・・・隔離弁、15・・・・・・囁1〃 L−T7−L−−2しaン7−  IL)tCd−IU
ll’;Gす;’3’;&PjL第20 第3図 0 ・戎f!讐塾V仁ム千jF)ブ 10−・−・残留
失外秤ζム敢転7交4笑志“8午(A)■
Figure 1 shows a nuclear reactor installation a having a reactor containment vessel according to the present invention.
FIG. 2 is a similar plan view, FIG.
The figures show a conventional reactor containment vessel suppression chamber pool water cooling system; Figure 4 (A) shows a reactor containment vessel according to the present invention; B) The figure shows the cooling efficiency depending on the suppression pool depth and the outer pool gap. 1...Reactor containment vessel, 2...Biological shield wall, 3... ... Suppression chamber pool water, 4 ... Vent wall, 5 ... External containment vessel space, 6 ... Reactor pressure vessel, 7 ...
...Containment vessel peripheral pool, 8...Residual heat removal system piping, 9...Residual heat removal system pump, lO...
...Residual heat removal system heat exchanger, 11...Outer pool water injection tank, 12...Outer pool water injection piping, 13...Outer pool vent line, 14...
...Isolation valve, 15...Whisper 1 L-T7-L--2Sian7-IL)tCd-IU
ll';Gsu;'3';&PjL No. 20 Fig. 3 0 ・戎f! Neijuku V Jinmu Senj F) Bu 10-・-・Remaining Loss Foreign Scale ζmu Daring 7 Exchanges 4 Laughs “8 PM (A)■

Claims (1)

【特許請求の範囲】 1、鋼製自立型原子炉格納容器において、本原子炉格納
容器ウェットウェル(サプレッションチェンバ)部とこ
の周囲をとり囲む生体しゃへい壁部の間に構成される空
間部に、前記ウェットウェル内サプレッションプール水
深さ:Lと、原子炉格納容器および生体しゃへい壁間円
筒部すきま距離:dによる比率d/Lの値が15/10
0以上であるすきま距離をもち、サプレッションプール
水のヒートシンク機能を有する原子炉格納容器外周プー
ルを有する事を特徴とする原子炉格納容器。 2、上記原子炉格納容器外周プールへ、事故時サプレッ
ションプール水の静的冷却用の外周プール水を注水する
目的を有する外周プール注水タンクおよび外周プール注
水配管を有し、前記原子炉格納容器外周プールの上部空
間気相部分と原子炉設備外部大気部の間に、ヒートシン
ク用外周プールの放熱を目的とした外周プールベントラ
インを有し、外周プールの静的冷却効率を向上させた事
を特徴とする特許請求の範囲第1項記載の原子炉格納容
器。
[Claims] 1. In a steel self-supporting reactor containment vessel, in a space formed between the reactor containment vessel wet well (suppression chamber) and the biological shielding wall surrounding the wet well, The value of the ratio d/L based on the water depth of the suppression pool in the wet well: L and the cylindrical gap distance between the reactor containment vessel and the biological shield wall: d is 15/10.
A reactor containment vessel characterized by having a reactor containment vessel outer peripheral pool having a clearance distance of 0 or more and having a heat sink function for suppression pool water. 2. An outer circumferential pool water injection tank and an outer circumferential pool water injection piping having the purpose of injecting outer circumferential pool water for static cooling of the suppression pool water in the event of an accident into the reactor containment vessel outer circumferential pool; It has an outer pool vent line between the gas phase part of the upper space of the pool and the outside atmosphere of the reactor equipment for the purpose of dissipating heat from the outer pool for heat sink, which improves the static cooling efficiency of the outer pool. A nuclear reactor containment vessel according to claim 1.
JP61219469A 1986-09-19 1986-09-19 Nuclear reactor container Granted JPS6375694A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP61219469A JPS6375694A (en) 1986-09-19 1986-09-19 Nuclear reactor container
US07/098,530 US5011652A (en) 1986-09-19 1987-09-18 Nuclear power facilities
KR1019870010357A KR950009881B1 (en) 1986-09-19 1987-09-18 Neclear power facilities
CN87106445A CN1012769B (en) 1986-09-19 1987-09-18 Nuclear-powered apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61219469A JPS6375694A (en) 1986-09-19 1986-09-19 Nuclear reactor container

Publications (2)

Publication Number Publication Date
JPS6375694A true JPS6375694A (en) 1988-04-06
JPH0577275B2 JPH0577275B2 (en) 1993-10-26

Family

ID=16735921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61219469A Granted JPS6375694A (en) 1986-09-19 1986-09-19 Nuclear reactor container

Country Status (1)

Country Link
JP (1) JPS6375694A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05172979A (en) * 1991-12-24 1993-07-13 Hitachi Ltd Pressure suppression device for reactor container

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5077693U (en) * 1973-11-19 1975-07-05
JPS59116891U (en) * 1983-01-28 1984-08-07 株式会社日立製作所 reactor containment vessel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5077693U (en) * 1973-11-19 1975-07-05
JPS59116891U (en) * 1983-01-28 1984-08-07 株式会社日立製作所 reactor containment vessel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05172979A (en) * 1991-12-24 1993-07-13 Hitachi Ltd Pressure suppression device for reactor container

Also Published As

Publication number Publication date
JPH0577275B2 (en) 1993-10-26

Similar Documents

Publication Publication Date Title
Yoo et al. Overall system description and safety characteristics of prototype Gen IV sodium cooled fast reactor in Korea
Wu et al. Development strategy and conceptual design of China lead-based research reactor
US3865688A (en) Passive containment system
US3115450A (en) Nuclear reactor containment apparatus
JP5429715B2 (en) Immersion containment for nuclear reactors
US4473528A (en) Passive containment system
US4050983A (en) Passive containment system
US3712851A (en) Nuclear power station
US20120294408A1 (en) Passive emergency feedwater system
US4986956A (en) Passive nuclear power plant containment system
SE0103451L (en) Nuclear power plant with boiling water reactor
Wang et al. Preliminary design of the I2S-LWR containment system
KR20150014508A (en) Passive reactor containment protection system
Kim et al. Application of direct passive residual heat removal system to the SMART reactor
ES349640A1 (en) Containment vessel construction for nuclear power reactors
JPH0727050B2 (en) Liquid metal cooled nuclear reactor with passive cooling system
US4702879A (en) Nuclear reactor with passive safety system
US20180322967A1 (en) Conformal core cooling and containment structure
Park et al. Development of IVR-ERVC evaluation method and its application to the SMART
JPH05196780A (en) Passive cooling system of liquid-metal cooled nuclear reactor
US3725198A (en) Nuclear containment system
US3461034A (en) Gas-cooled nuclear reactor
JPS6375694A (en) Nuclear reactor container
JP2863409B2 (en) Reactor containment vessel
Kang et al. Concept Design Evaluation of Passive Containment Pressure and Radioactivity Suppression System with Cooling Tank for SMR

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees