JPS6375620A - Apparatus for measuring flow rate of open channel - Google Patents

Apparatus for measuring flow rate of open channel

Info

Publication number
JPS6375620A
JPS6375620A JP22163686A JP22163686A JPS6375620A JP S6375620 A JPS6375620 A JP S6375620A JP 22163686 A JP22163686 A JP 22163686A JP 22163686 A JP22163686 A JP 22163686A JP S6375620 A JPS6375620 A JP S6375620A
Authority
JP
Japan
Prior art keywords
electromotive force
flow rate
open channel
magnetic field
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22163686A
Other languages
Japanese (ja)
Inventor
Fumio Yoshino
文雄 吉野
Nobumitsu Hayakawa
早川 信光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KENSETSUSHO DOBOKU KENKYU SHOCHO
Original Assignee
KENSETSUSHO DOBOKU KENKYU SHOCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KENSETSUSHO DOBOKU KENKYU SHOCHO filed Critical KENSETSUSHO DOBOKU KENKYU SHOCHO
Priority to JP22163686A priority Critical patent/JPS6375620A/en
Publication of JPS6375620A publication Critical patent/JPS6375620A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/002Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow wherein the flow is in an open channel

Abstract

PURPOSE:To measure a flow rate in real time with stable accuracy, by generating a magnetic field in an open channel in the direction right-angled to a water flowing direction and measuring a flow speed, the electromotive force generated in the direction right-angled to the magnetic field and a water level to subject the measured values to arithmetic processing. CONSTITUTION:Power is supplied to an exciting coil 2 from an exciting power source 3 to generate a magnetic field in an open channel 1. Electromotive force is measured by an electromotive force measuring device 4 through a pair of the electrodes 4a, 4b arranged to both banks of the open channel 1. The output signals of the power source 3 and the electromotive force measuring device 4 are converted to digital signals by an A/D converter to be inputted to an arithmetic processor 7. The output signals of the sensors 5a, 6a of a water level meter 5 and a conductivity meter 6 are converted to digital signals by an A/D converter to be inputted to the operational processor 7. The arithmetic processor 7 applies arithmetic processing to the input signals to calculate a flow rate which is, in turn, recorded on a recorder 9.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は上水道、下水道、農工業用水路、人工河川、
さらには一般河用を含む全ての開水路、あるいは満管流
C;なったり自由水面流になったりして開水路と同様に
水位が逐次変化する管水路において、その流量を測定す
るための流f1測定装置C二関する。
[Detailed description of the invention] (Industrial application field) This invention is applicable to water supply, sewerage, agricultural and industrial waterways, artificial rivers,
In addition, it is necessary to measure the flow rate in all open channels, including general rivers, or in pipe channels where the water level changes sequentially as in open channels, such as full pipe flow or free water surface flow. f1 measuring device C2 is concerned.

(従来の技術) 開水路を対象とした流量測定方式としては、流速計を用
いて流量を測定する流速計測法や、浮子を橋等から投下
して流速を求め、流量を測定する浮子側法等が知られて
いる。
(Prior art) Flow rate measurement methods for open channels include the current velocity measurement method, which uses a current meter to measure the flow rate, and the float side method, which measures the flow rate by dropping a float from a bridge, etc. to determine the flow velocity. etc. are known.

(発明が解決しようとする問題点) しかしながら上記のような従来方式は、いずれも測定精
度に安定性を欠くだけでなく、時間的(二連続した測定
を行うことが困難であり、また測定には人手を必要とす
るという問題点があった。
(Problems to be Solved by the Invention) However, all of the conventional methods described above not only lack stability in measurement accuracy, but also have problems in terms of time (difficult to perform two consecutive measurements) and The problem was that it required manpower.

この発明は上記のような従来の問題点を解決することが
できる流量測定装置を提供することを目的とする。
An object of the present invention is to provide a flow rate measuring device that can solve the conventional problems as described above.

(問題点を解決するための手段) まずこの発明による流量測定装置の原理について説明す
る。
(Means for Solving the Problems) First, the principle of the flow rate measuring device according to the present invention will be explained.

一般に磁界の中を導電体が移動すれば、ファラデイの電
磁誘導の法則1:より、その導電体の移動速度(二比例
した起電力が発生する。
Generally, when a conductor moves in a magnetic field, an electromotive force is generated that is proportional to the speed of the conductor's movement, according to Faraday's law of electromagnetic induction 1:

ここで第1図(−示すような開水路]において、流水の
流速Vと直角方向に磁束密度Bをもった磁界を発生させ
ると、通常流水は導電体であることから、流速および磁
界と直角方向に起電力Eが発生する。この起電力Eの大
きさは、開水路1が矩形断面の場合、その水路幅をbと
すると、 E=b−vφB  ・・・(1) で表わされる。
Here, in Fig. 1 (an open channel as shown in -), if a magnetic field with magnetic flux density B is generated in a direction perpendicular to the flow velocity V of flowing water, the flow velocity and magnetic field are An electromotive force E is generated in the direction. When the open channel 1 has a rectangular cross section, the magnitude of the electromotive force E is expressed as E=b−vφB (1) where b is the channel width.

一方、開水路lの流水の流fQは Q=i)@11φV  ・・・(2) であることから、(1)、(2)式よりQ=h  拳−
・・・(3) と表わすことができ、水深りおよび発生する起電力Eを
測定すれば、流tQが求められる。
On the other hand, since the flow fQ of water in the open channel l is Q=i)@11φV (2), from equations (1) and (2), Q=h fist-
...(3) It can be expressed as follows, and by measuring the water depth and the generated electromotive force E, the flow tQ can be determined.

この発明の流量測定装置は上記原理に基づくもので、開
水路にその流水の流速と直角方向1:磁界を発生させる
励磁コイルと、流速および磁界(二直角方向(二発生す
る起電力を測定する起電力測定部材と、水流の水位を測
定する水位測定部材と、起電力測定部材および水位測定
部材の各出力信号を入力し、これらの出力信号C二基づ
いて流量を算出する演算部材とを具えてなることを特徴
とするものである、(実施例) 第2図はこの発明の一実施例を示し、開水路】の上方ζ
;励磁電源3からの電力が供給されて開水路1に磁界を
発生する励磁コイル2が配置され、両岸に起電力測定器
4の1対の’IK極4a、4bが配置され、励磁′¥i
i源3および起11力測定器4の各出力信号はA/D変
換されて演算処理装置71二人力される。さらに開水路
1f;は水位計5および電導度肝6の各センサ5a、 
fiaが配置され、それらの出力信号はA/D変換され
て演算処理装置7に入力される。
The flow measuring device of the present invention is based on the above principle, and includes an excitation coil that generates a magnetic field in an open channel at right angles to the flow velocity of the flowing water, and a magnetic field that measures the flow velocity and magnetic field (two directions at right angles to the generated electromotive force). It includes an electromotive force measuring member, a water level measuring member that measures the water level of the water flow, and a calculation member that inputs each output signal of the electromotive force measuring member and the water level measuring member and calculates the flow rate based on these output signals C2. (Embodiment) Fig. 2 shows an embodiment of the present invention, in which the upper ζ
; An excitation coil 2 that is supplied with power from an excitation power supply 3 and generates a magnetic field in the open channel 1 is arranged, and a pair of 'IK poles 4a and 4b of an electromotive force measuring device 4 are arranged on both banks, and the excitation coil 2 is arranged to generate a magnetic field in the open channel 1. ¥i
The output signals of the i source 3 and the electromotive force measuring device 4 are A/D converted and input to the arithmetic processing unit 71. Furthermore, the open channel 1f; each sensor 5a of the water level gauge 5 and the conductivity gauge 6;
fia are arranged, and their output signals are A/D converted and input to the arithmetic processing unit 7.

また、河床の電導度も変化する場合C二は、別途河床の
電導度を測定し、その測定信号はA/D変換器を介して
、演算処理装置7に入力される。
In addition, in case C2 when the conductivity of the riverbed also changes, the conductivity of the riverbed is separately measured, and the measurement signal is input to the arithmetic processing unit 7 via the A/D converter.

起電力測定器4は増幅回路、フィルター回路、位相検波
回路、および平滑化回路等を含み、Sin波の励磁磁界
Cよって電極4a、 4b間に発生する起重力を、位相
検波方式を用いて、Sin波の+側および一側を各々独
立させて平滑化し、各々の差を出力値とする方式が採用
されている。この方式tユより検出時間をに の影響等を除去することができる。
The electromotive force measuring device 4 includes an amplifier circuit, a filter circuit, a phase detection circuit, a smoothing circuit, etc., and uses a phase detection method to measure the electromotive force generated between the electrodes 4a and 4b by the excitation magnetic field C of the sine wave. A method is adopted in which the + side and one side of the sine wave are smoothed independently, and the difference between them is used as an output value. This method makes it possible to eliminate the influence of detection time.

8は入カキーゼード、9は記録器、]0はテレメータ、
l」は/ぐツクアップ電源を示す。
8 is input kakizade, 9 is recorder, ]0 is telemeter,
"l" indicates the /pull-up power supply.

演算処理装置7においては、基本的Cユは前記(3)式
(二基づいて流管演算がなされるのであるが、実際には
磁束密度を一定C二することは困難であるため、磁界分
布補正する必要がある。すなわち水位計5による水位計
測結果を基に、磁界の中央の水路横断面における磁界の
平均値を求め、さら(二最低河床の磁束密度に変換する
磁界補正関数を用いる補正方式が採用されている。これ
を測定される起電力Eの関係式で示せば、次のようにな
る。
In the arithmetic processing unit 7, the flow tube calculation is performed based on the above equation (3) (2), but in reality it is difficult to keep the magnetic flux density constant C2, so the magnetic field distribution In other words, based on the water level measurement result by the water level gauge 5, the average value of the magnetic field in the cross section of the waterway at the center of the magnetic field is calculated, and then (correction using a magnetic field correction function that converts it into the magnetic flux density of the second lowest riverbed) This method can be expressed as a relational expression for the electromotive force E to be measured as follows.

B=f(h)  φB。B=f(h) φB.

Bo=C11■。Bo=C11■.

、’、B=c・工。・f (h)   ・・・(4)こ
こでf (h)は磁界補正関数、Cは定数、Boは河床
の磁束密度、■。はコイル(−流れる電流を示す。
,',B=c・ENG.・f (h) ... (4) Here, f (h) is the magnetic field correction function, C is a constant, Bo is the magnetic flux density of the river bed, ■. indicates the current flowing through the coil (-).

(4)式を(3)式1;代入すると、 r(h〕I。   “−1,31 と表わされる。Substituting equation (4) into equation (3) equation 1; r(h〕I.     -1,31 It is expressed as

河床が電気的C二絶縁されている場合には、直接流体(
二発生する起電力を測定し、流tQは(5)式によって
求められる。
If the river bed is electrically insulated, the direct fluid (
Second, the generated electromotive force is measured, and the current tQ is determined by equation (5).

しかしながら河床が絶縁されていない場合C二は、開水
路自身や周囲の土壌も通電性をもつことから、河床や流
水の電導度を考慮して測定起電力の補正を行う必要が生
じる。このため、河床の電導度をあらかじめ測定して演
算処理装置7に入力し、逐次変化する流水の電導度は電
導度肝6(二よって常時測定し、その測定信号を演算処
理装置7 C入力するようにした。
However, in case C2 where the river bed is not insulated, the open channel itself and the surrounding soil are conductive, so it is necessary to correct the measured electromotive force by taking into account the conductivity of the river bed and flowing water. For this reason, the conductivity of the riverbed is measured in advance and input to the arithmetic processing unit 7, and the conductivity of the flowing water, which changes sequentially, is constantly measured and the measured signal is input to the arithmetic processing unit 7C. I made it.

この補正の基本的な考え方は、流体(二発生する起電力
と流体自身の内部抵抗および河床の外部抵抗の関係から
、流体(二発生する起電力のうち、全抵抗(内部抵抗+
外部抵抗)に対する外部抵抗の割合のみを計測すること
1:なるため、これらの抵抗を求めて流体に発生する全
起電力C二換算するものである。これをさらζ−詳しく
討明すると次のようになる。
The basic idea of this correction is that from the relationship between the electromotive force generated by the fluid, the internal resistance of the fluid itself, and the external resistance of the river bed, the total resistance (internal resistance +
Therefore, these resistances are calculated and converted into the total electromotive force C2 generated in the fluid. If we discuss this in more detail, it will be as follows.

計測の対象として河床通電を有する矩形水路l:おける
薄い流れを考え、内部抵抗すなわち流水の電気抵抗r、
および外部抵抗すなわち河床の電気抵抗r、は、 と表わすことができる。ここでσ1.σ2はそれぞれ流
水および河床の電導度を示す。
Considering a thin flow in a rectangular channel l: with river bed current as the measurement object, the internal resistance, that is, the electrical resistance r of the flowing water, is
and the external resistance, i.e., the electrical resistance r of the river bed, can be expressed as follows. Here σ1. σ2 represents the conductivity of running water and riverbed, respectively.

また電流五と全起電力Eとの関係は i/(r1+r2 )=E   ・−(81と表わされ
る。
Further, the relationship between the current 5 and the total electromotive force E is expressed as i/(r1+r2)=E.multidot.-(81).

次C両岸に設置された1極4a、4b間Cおける測定起
電力Eoは、実際(二は河床イニ相当する外部抵抗によ
る値のみを示すことになり、これは BO=i・rz =l ’    ”’ (91σ重 と表わせ、(6)〜(9)式から となり、0)式を考フすると。
Next, the measured electromotive force Eo between the poles 4a and 4b installed on both banks of C is actually (2 shows only the value due to the external resistance corresponding to the riverbed, and this is BO=i・rz=l '''' (Represented as 91σ weight, it is from equations (6) to (9), and considering equation 0).

と表わせる。It can be expressed as

また流イl)Qは(21式によって示されるから、+2
1.(11式より、 となる。さらに磁界分布補正を考慮して、(4)式をα
■式C二代入すると、 ここで、水路が薄い流れであるという条件を考、Vする
と、C0・hくC2・bとなり、0■式はb   C2
・E。
Also, since Q is shown by (21), +2
1. (From Equation 11,
■ Substituting the formula C2, Now consider the condition that the waterway is a thin flow, and if V, then C0・h C2・b, and 0■ Formula is b C2
・E.

f(h)  1.− I。  °°αJと表わせる。f(h) 1. - I. It can be expressed as °°αJ.

0式は河床通電を有する矩形水路における流量の一般式
であるが、台形水路あるいはその細形状の水路について
も前記と同様C二して導くことができる。
Equation 0 is a general equation for the flow rate in a rectangular waterway with riverbed energization, but it can also be derived using C2 in the same manner as above for a trapezoidal waterway or its narrow-shaped waterway.

第2図に示した実施例では励磁コイル2を開水路1の上
方に配置したが、開水路1の下方に配置してもよい。ま
た第3A図(二示すよう(;開水路]の上方および下方
に配置してもよく、この場合上下から同期した磁界を発
生させること(二より、比較的均等な磁界分布を得るこ
とができる。また第30図に示すようC二励磁コイル2
をコの字形とし、開水路!を下方から包むようC二装置
してもよく、この場合第3A図のものと同様の利点をも
ちながら、水路上方を塞ぐことなく磁界を発生させるこ
とができる。さらに図示しないが、水路を台形等に整形
し、水路面に溢って励磁コイル?配置してもよい。
Although the excitation coil 2 is arranged above the open channel 1 in the embodiment shown in FIG. 2, it may be arranged below the open channel 1. It may also be placed above and below the open channel as shown in Figure 3A (2), in which case synchronized magnetic fields can be generated from above and below (from 2, a relatively uniform magnetic field distribution can be obtained. In addition, as shown in Fig. 30, the C double excitation coil 2
Make it U-shaped and make it an open channel! It is also possible to use a C2 device that wraps the waterway from below, and in this case, it has the same advantages as the one shown in FIG. 3A, but can generate a magnetic field without blocking the upper part of the waterway. Furthermore, although not shown, the waterway is shaped into a trapezoid or the like, and the excitation coil overflows the waterway surface? May be placed.

(発明の効果) 以上のよう(二、この発明によれば、開水路に磁界を発
生させて、それによって発生する起電力と水位とを測定
し、その測定値に基づいて流ダ′を演算処理するもので
あるので、精産が安定したリアルタイムの流量測定を行
うことが可能となり、人手を要せずに水資源を有効(二
管理することができる。
(Effects of the Invention) As described above (2. According to this invention, a magnetic field is generated in an open channel, the electromotive force and water level generated thereby are measured, and the flow rate is calculated based on the measured values. Since it is a water treatment device, it is possible to perform stable real-time flow rate measurement, and water resources can be effectively managed without the need for human labor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明装置の測定原理を示す図、第2図はこ
の発明の一実施例を示すブロック図、第3図は励磁コイ
ルの別の配置例を示す概略図。
FIG. 1 is a diagram showing the measurement principle of the device of this invention, FIG. 2 is a block diagram showing one embodiment of the invention, and FIG. 3 is a schematic diagram showing another example of arrangement of excitation coils.

Claims (1)

【特許請求の範囲】 1、開水路にその流水の流速と直角方向に磁界を発生さ
せる励磁コイルと、流速および磁界に直角方向に発生す
る起電力を測定する起電力測定部材と、水流の水位を測
定する水位測定部材と、起電力測定部材および水位測定
部材の各出力信号を入力し、これらの出力信号に基づい
て流量を算出する演算部材とを具えてなる開水路の流量
測定装置。 2、流水の電導度を測定する電導度測定部材を具え、そ
の出力信号が演算部材に入力される特許請求の範囲第1
項記載の流量測定装置。 3、河床の電導度を測定する電導度測定部材を具え、そ
の出力信号が演算部材に入力される特許請求の範囲第2
項記載の流量測定装置。
[Claims] 1. An excitation coil that generates a magnetic field in an open channel in a direction perpendicular to the flow velocity of the flowing water, an electromotive force measuring member that measures the electromotive force generated in the direction perpendicular to the flow velocity and the magnetic field, and the water level of the water stream. A flow rate measuring device for an open channel, comprising: a water level measuring member for measuring the flow rate; and a calculating member for inputting each output signal of the electromotive force measuring member and the water level measuring member and calculating the flow rate based on these output signals. 2. Claim 1, comprising a conductivity measuring member for measuring the conductivity of flowing water, the output signal of which is input to a calculation member.
Flow rate measuring device as described in section. 3. Claim 2, comprising a conductivity measuring member for measuring the conductivity of a river bed, and an output signal thereof is input to a calculation member.
Flow rate measuring device as described in section.
JP22163686A 1986-09-19 1986-09-19 Apparatus for measuring flow rate of open channel Pending JPS6375620A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22163686A JPS6375620A (en) 1986-09-19 1986-09-19 Apparatus for measuring flow rate of open channel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22163686A JPS6375620A (en) 1986-09-19 1986-09-19 Apparatus for measuring flow rate of open channel

Publications (1)

Publication Number Publication Date
JPS6375620A true JPS6375620A (en) 1988-04-06

Family

ID=16769876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22163686A Pending JPS6375620A (en) 1986-09-19 1986-09-19 Apparatus for measuring flow rate of open channel

Country Status (1)

Country Link
JP (1) JPS6375620A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0557529A1 (en) * 1991-09-03 1993-09-01 Aichi Tokei Denki Co., Ltd. Electromagnetic flowmeter for water conveyance in semifull state

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59228119A (en) * 1983-06-10 1984-12-21 Yokogawa Hokushin Electric Corp Electromagnetic flowmeter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59228119A (en) * 1983-06-10 1984-12-21 Yokogawa Hokushin Electric Corp Electromagnetic flowmeter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0557529A1 (en) * 1991-09-03 1993-09-01 Aichi Tokei Denki Co., Ltd. Electromagnetic flowmeter for water conveyance in semifull state
EP0557529A4 (en) * 1991-09-03 1994-02-16 Aichi Tokei Denki Co., Ltd.

Similar Documents

Publication Publication Date Title
EP0416866B1 (en) Electromagnetic flowmeter utilizing magnetic fields of a plurality of frequencies
US3316762A (en) Apparatus and process for measuring fluid flow
JP3756862B2 (en) Electromagnetic flow meter
RU2645834C1 (en) Method and device for determining consumption in large diameter pipelines
US20230213367A1 (en) Method of operating a magnetically-inductive flowmeter
JPH10253412A (en) Method and device for measuring flow velocity of liquid, particularly, water
US20230015365A1 (en) Method for operating a magneto-inductive flowmeter, and magneto-inductive flowmeter
US3897684A (en) Permanent magnet type e.m. current meters
JPS6375620A (en) Apparatus for measuring flow rate of open channel
CN104956190B (en) So that the method for magnetic induction flowmeter work
Guelke et al. The measurement of sea-water velocities by electromagnetic induction
JP3337118B2 (en) Electromagnetic flow meter
JP2000028408A (en) Electromagnetic flow meter
JP2003065816A (en) Electromagnetic flowmeter
JPH05172598A (en) Vortex flowmeter
JPH05273015A (en) Weir type electromagnetic flowmeter
JP3460213B2 (en) Electromagnetic flow meter
SU1007015A1 (en) Flow parameter electromagnetic converter
JPS63234111A (en) Flow rate measuring instrument
RU2239789C1 (en) Method of measuring flow rate of liquid and electromagnetic transducer for measuring flow rate of liquid
JPH075005A (en) Electromagnetic flowmeter
SU901825A1 (en) Device for touch-free measuring of flowrateof electroconductive liquid
JPS5935633Y2 (en) Capacitive level detection device for pouring pipes
JPS60174915A (en) Low frequency exciting electromagnetic flow meter
JPS59228119A (en) Electromagnetic flowmeter