JPS637487Y2 - - Google Patents

Info

Publication number
JPS637487Y2
JPS637487Y2 JP2166384U JP2166384U JPS637487Y2 JP S637487 Y2 JPS637487 Y2 JP S637487Y2 JP 2166384 U JP2166384 U JP 2166384U JP 2166384 U JP2166384 U JP 2166384U JP S637487 Y2 JPS637487 Y2 JP S637487Y2
Authority
JP
Japan
Prior art keywords
cutting fluid
tool
cutting
cam
fluid supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2166384U
Other languages
Japanese (ja)
Other versions
JPS60134535U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP2166384U priority Critical patent/JPS60134535U/en
Publication of JPS60134535U publication Critical patent/JPS60134535U/en
Application granted granted Critical
Publication of JPS637487Y2 publication Critical patent/JPS637487Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Auxiliary Devices For Machine Tools (AREA)

Description

【考案の詳細な説明】 技術分野 本考案は工作機械の切削液供給装置に関し、工
具の長さや径に応じて切削液の噴出角度を自動的
に変えることができる複数の切削液ノズルを有し
た工作機械の切削液供給装置に関する。
[Detailed description of the invention] Technical field The present invention relates to a cutting fluid supply device for a machine tool, and has a plurality of cutting fluid nozzles that can automatically change the jetting angle of the cutting fluid according to the length and diameter of the tool. This invention relates to a cutting fluid supply device for machine tools.

従来技術 工作機械の切削加工部に切削液又は切削油を供
給する場合に切削工具の長さに応じて切削液供給
ノズルを枢動角度範囲内で自動的に角度調整し、
切削液噴射角度を変えるようにした切削液供給装
置が既に公知である。また、工作機械の主軸頭前
面に取付けたクーラントプレートに複数の切削液
噴射口を回動自在に設け、切削加工中の工具に多
方向から切削液を供給するようにした切削液噴射
装置も既に公知である。然しながら前者の公知装
置の場合には、一本の切削液供給ノズルを流体圧
シリンダ装置の作用で枢動させる方法が採られて
おり、従つてワーク形状や工具種類によつては切
削加工部へ適正な切削液の供給ができないことが
ある。例えば、ワークの凹所内に工具刃先が突入
して切削加工をおこなう場合等には一本の切削液
供給ノズルの枢動調整では、切削液が加工箇所へ
届かない場合が生ずる。このような不都合を解消
して必ず所望の箇所へ切削液が供給されるように
工具主軸の周囲に複数本の切削液供給ノズルを設
け、このとき、切削液供給ノズルの噴射角度を変
えるアクチユエータを各ノズル毎に各1つずつ設
け、全切削液供給ノズルが自動的にかつ独立して
任意の噴射方向へ向くように構成することが考え
られる。しかし、このような構成では必然的にア
クチユエータの作動制御が難しくなつたり、工具
主軸周囲の構造が複雑かつ乱雑になつて工具主軸
のワークに対する接近性が悪くなるという問題点
がある。
Prior Art When supplying cutting fluid or cutting oil to the cutting section of a machine tool, the angle of the cutting fluid supply nozzle is automatically adjusted within the pivot angle range according to the length of the cutting tool,
A cutting fluid supply device that changes the cutting fluid injection angle is already known. In addition, there is already a cutting fluid injection device in which multiple cutting fluid injection ports are rotatably provided on a coolant plate attached to the front of the spindle head of a machine tool, and the cutting fluid is supplied from multiple directions to the tool during cutting. It is publicly known. However, in the case of the former known device, a method is adopted in which a single cutting fluid supply nozzle is pivoted by the action of a fluid pressure cylinder device, and therefore, depending on the workpiece shape and tool type, the cutting fluid supply nozzle may be Appropriate cutting fluid supply may not be possible. For example, when cutting is performed by inserting the cutting edge of a tool into a recess of a workpiece, the cutting fluid may not reach the machining location by adjusting the pivoting of one cutting fluid supply nozzle. In order to eliminate this inconvenience and ensure that cutting fluid is supplied to the desired location, multiple cutting fluid supply nozzles are provided around the tool spindle, and at this time, an actuator that changes the injection angle of the cutting fluid supply nozzle is installed. It is conceivable to provide one for each nozzle so that all the cutting fluid supply nozzles are automatically and independently oriented in any spray direction. However, such a configuration inevitably has problems in that it becomes difficult to control the operation of the actuator, and the structure around the tool spindle becomes complex and disordered, making it difficult for the tool spindle to approach the workpiece.

他方、上述した後者の公知切削液供給装置の場
合には、複数の切削液噴射口の回動調節を手動で
行う方法が採られるために工作機械の自動化率を
低下させるばかりでなく、回動調節のために切粉
や切削液の飛散する危険な加工領域に作業者が接
近しなければならず、操作性や安全衛生上からも
問題点がある。
On the other hand, in the case of the latter known cutting fluid supply device mentioned above, a method is adopted in which the rotation of the plurality of cutting fluid injection ports is manually adjusted, which not only reduces the automation rate of the machine tool but also reduces the rotation. In order to make adjustments, the operator must approach a dangerous machining area where chips and cutting fluid are scattered, which poses problems in terms of operability and health and safety.

考案の目的 依つて、本考案の目的は上述した従来の技術的
課題点に鑑みて、工作機械、特に工具交換を行つ
てワークの切削加工を自動的に遂行する自動工作
機械に適用して有効な切削液供給装置として複数
個の切削液ノズルの噴出角度を工具主軸頭近くに
配置した一つのアクチユエータで一斉に変えるこ
とができ、しかもそのアクチユエータの構造自体
を簡単な機械的要素類の利用によつて構成した工
作機械の切削液供給装置を提供せんとするもので
ある。
Purpose of the invention Therefore, in view of the above-mentioned conventional technical problems, the purpose of the present invention is to make it effective when applied to machine tools, especially automatic machine tools that automatically perform cutting of workpieces by changing tools. As a cutting fluid supply device, the jetting angle of multiple cutting fluid nozzles can be changed all at once using a single actuator placed near the tool spindle head, and the structure of the actuator itself can be changed using simple mechanical elements. It is therefore an object of the present invention to provide a cutting fluid supply device for a machine tool constructed as described above.

考案の構成 本考案によれば、工作機械の主軸頭の工具主軸
を囲繞した機枠部に工具主軸の先端向きに噴射開
口を有し枢動可能に設けられた複数個の切削液ノ
ズルと、前記複数個の切削液ノズルにカム係合し
たノズル枢動調節用の複数カム溝を有し前記機枠
部に被着された回動性のカム円板と、前記カム円
板を回動させ前記複数カム溝を介して前記複数個
の切削液ノズルの噴射開口を一斉にそれぞれ所望
の噴射方向に枢動させるノズル枢動用の駆動装置
と、前記複数個の切削液ノズルに結合した切削液
供給源とを具備したことを特徴とする工作機械の
切削液供給装置が提供される。そして、このよう
に構成すれば、上述のノズル枢動用の駆動装置を
起動させることによつてカム円板を回動させれ
ば、工具長や工具径等の工具寸法に従つて上述し
た複数個の切削液ノズルを一斉に枢動させ、その
噴射角度を変化させることができる。依つて、カ
ム円板の回動量を調節することにより、複数個の
切削液ノズルから工具とワークが切削係合してい
る加工箇所に向け、複数方向から一斉に切削液の
自動供給がなされ、しかも単一の切削液供給ノズ
ルの場合と異り、加工箇所に必ず、切削液を到達
させ得るのである。なお、上述したノズル枢動用
の駆動装置は、前記のカム円板の外周部に設けた
歯車と、その歯車に噛み合う駆動歯車と、該駆動
歯車に回転運動を与えるモータとで構成すればよ
いが、上記駆動歯車に替えてラツクを上記カム円
板の歯車に噛合させ、該ラツクにシリンダ装置で
往復運動を与えるようにしてもよい。以下、本考
案を添付図面に示す実施例に基いて詳細に説明す
る。
Composition of the invention According to the invention, a plurality of cutting fluid nozzles are pivotally provided in a machine frame portion surrounding the tool spindle of a spindle head of a machine tool and have injection openings facing the tip of the tool spindle; a rotatable cam disc attached to the machine frame and having a plurality of cam grooves for adjusting nozzle pivoting cam-engaged with the plurality of cutting fluid nozzles; and a rotatable cam disc for rotating the cam disc. a nozzle pivoting drive device that simultaneously pivots the injection openings of the plurality of cutting fluid nozzles in respective desired injection directions via the plurality of cam grooves; and a cutting fluid supply coupled to the plurality of cutting fluid nozzles. A cutting fluid supply device for a machine tool is provided, characterized in that it is equipped with a source. With this configuration, if the cam disk is rotated by starting the drive device for pivoting the nozzle described above, the plurality of the above-mentioned units can be rotated according to the tool dimensions such as tool length and tool diameter. The cutting fluid nozzles can be pivoted in unison to change their spray angle. Therefore, by adjusting the amount of rotation of the cam disk, cutting fluid can be automatically supplied from multiple directions at the same time from multiple cutting fluid nozzles toward the machining location where the tool and workpiece are engaged in cutting. Moreover, unlike the case of a single cutting fluid supply nozzle, the cutting fluid can always reach the machining location. The drive device for pivoting the nozzle described above may be composed of a gear provided on the outer periphery of the cam disk, a drive gear that meshes with the gear, and a motor that provides rotational motion to the drive gear. Alternatively, instead of the driving gear, a rack may be meshed with the gear of the cam disk, and a cylinder device may be used to impart reciprocating motion to the rack. Hereinafter, the present invention will be described in detail based on embodiments shown in the accompanying drawings.

第1図は本考案による工作機械の切削液供給装
置の要部を示す部分正面図であり、第2図は第1
図の矢視線−方向から見た側面図である。こ
れらの第1図、第2図において、10は工作機械
の主軸頭であり、この主軸頭10の内部には主軸
12が高、低速回転可能に軸承されている。そし
て、この主軸12には工具長や工具径等の工具寸
法が種々異る工具14が装着される。なお、工作
機械が作業者の操作によつて作動される普通の中
ぐり盤等の工作機械であれば、工具14も作業者
の操作によつて主軸12に着脱されるが、周知の
自動工具交換装置を具備した自動工作機械の場合
には、工具マガジンと主軸12との間で種々の工
具14の自動交換が行なわれることは周知であ
る。
FIG. 1 is a partial front view showing the main parts of the cutting fluid supply device for a machine tool according to the present invention, and FIG.
It is a side view seen from the direction of the arrow in the figure. 1 and 2, reference numeral 10 denotes a spindle head of a machine tool, and a spindle 12 is supported inside the spindle head 10 so as to be rotatable at high and low speeds. Tools 14 having various dimensions such as tool length and tool diameter are mounted on this main shaft 12. Note that if the machine tool is an ordinary machine tool such as a boring machine that is operated by an operator's operation, the tool 14 is also attached to and detached from the spindle 12 by the operator's operation, but a well-known automatic tool It is well known that in the case of automatic machine tools equipped with an exchange device, various tools 14 are automatically exchanged between the tool magazine and the spindle 12.

主軸12に工具寸法の種々異る工具14が自動
交換で着脱される場合には、装着された工具14
と被切削ワークとが切削係合する切削加工部の位
置もそれぞれ異り、例えば主軸12の端面12a
から切削加工部までの軸方向距離が工具長の違い
に従つて異なつたり、主軸12の中心軸線Cから
切削加工部までのラジアル方向距離が工具径の違
いに従つて異なる等の状態が出現する。このよう
な種々の状態に対して工具寸法の違いに従つて切
削液の噴射供給方向を自動調節し、常に主軸12
に装着された工具14の切削作業点に切削液を多
方向から一斉に供給して適正な切削液供給をおこ
なう必要がある。
When tools 14 of various tool sizes are attached to and detached from the spindle 12 by automatic exchange, the attached tools 14
The position of the cutting part where the workpiece and the workpiece to be cut engage are also different, for example, the end face 12a of the main shaft 12.
Conditions such as the axial distance from the center to the cutting part differing depending on the tool length, and the radial distance from the central axis C of the spindle 12 to the cutting part differing depending on the tool diameter, etc. occur. do. For these various conditions, the cutting fluid injection supply direction is automatically adjusted according to the difference in tool dimensions, and the main shaft 12 is always maintained.
It is necessary to supply cutting fluid at the same time from multiple directions to the cutting work point of the tool 14 attached to the tool 14 to appropriately supply the cutting fluid.

さて、本考案によれば、主軸頭10の最外殻の
機枠10aにおける先端周辺部に複数の切削液ノ
ズル16が設けられている。これらの切削液ノズ
ル16は、それぞれ主軸頭10の前方に向けて開
口した切削液噴射口18を有し、また、図示され
ていない切削液供給源から矢印“S”方向に導管
路26を介して後端20へ切削液が供給される。
なお、導管路26から各切削液ノズル16の各後
端20へ切削液を分配供給する方式としては、導
管26自体を予めノズル本数と同数の複数導管で
構成して、これら複数導管を介して単一の切削液
供給源からそれぞれ個別に切削液を各切削ノズル
16に供給するようにしてもよく、或いは機枠1
0aの周囲に1個の供給部材40を固定配置で設
け、この給液部材40の内部に導管26と連通し
た共通液路を形成し、該共通液路と各切削液ノズ
ル16の後端20とを連通する構造としてもよ
い。また各切削液ノズル16は主軸頭10の中心
軸線Cに対する切削液の噴射角度θを大小可変と
するように機枠10aの周辺部に枢動可能に取付
けられる。例えば、上述した複数導管26と複数
の切削液ノズル16とをそれぞれ結合する場合に
は上記機枠10aの周囲にブラケツトを固定取付
又は一体形成で設け、そのブラケツトにピボツト
部材を介して各切削液ノズル16を枢着する構成
とすれば良く、また上記給液部材40を固定配置
で機枠10aに設けた場合には、各切削液ノズル
16の後端20を球面軸受構造に形成して給液部
材40の共通液路に形成した球面座内に枢動自在
に受承させ、該球面軸受後端20内に噴射角θの
如何に係わりなく切削液噴射口18および給液部
材40の共通液路に常に連通した液路を形成して
おけばよい。
Now, according to the present invention, a plurality of cutting fluid nozzles 16 are provided around the tip of the outermost machine frame 10a of the spindle head 10. These cutting fluid nozzles 16 each have a cutting fluid injection port 18 that opens toward the front of the spindle head 10, and are supplied from a cutting fluid supply source (not shown) through a conduit 26 in the direction of arrow "S". Cutting fluid is supplied to the rear end 20.
Note that, as a method for distributing and supplying cutting fluid from the conduit 26 to each rear end 20 of each cutting fluid nozzle 16, the conduit 26 itself is configured in advance with a plurality of conduits of the same number as the number of nozzles, and the cutting fluid is distributed through the plurality of conduits. The cutting fluid may be supplied to each cutting nozzle 16 individually from a single cutting fluid supply source, or the machine frame 1
One supply member 40 is provided in a fixed arrangement around the fluid supply member 40, and a common fluid path communicating with the conduit 26 is formed inside this fluid supply member 40, and the common fluid path and the rear end 20 of each cutting fluid nozzle 16 are connected to each other. It is also possible to have a structure that communicates with the Each cutting fluid nozzle 16 is pivotally attached to the periphery of the machine frame 10a so that the spray angle θ of the cutting fluid with respect to the central axis C of the spindle head 10 can be varied in size. For example, when connecting the plurality of conduits 26 and the plurality of cutting fluid nozzles 16 described above, a bracket is fixedly attached or integrally formed around the machine frame 10a, and each cutting fluid is connected to the bracket through a pivot member. The structure may be such that the nozzles 16 are pivotally mounted, and when the liquid supply member 40 is fixedly provided on the machine frame 10a, the rear end 20 of each cutting liquid nozzle 16 is formed into a spherical bearing structure to supply the liquid. The liquid member 40 is rotatably received in a spherical seat formed in a common liquid path, and the cutting liquid injection port 18 and the liquid supply member 40 are commonly connected to each other in the rear end 20 of the spherical bearing, regardless of the injection angle θ. It is sufficient to form a liquid path that is always in communication with the liquid path.

他方、上記複数の切削液ノズル16が取付けら
れている主軸頭10の機枠10aの周囲にはカム
円板28が機枠10aのまわりに回動可能に設け
られている。このカム円板28の回動構造は例え
ば機枠10aの周囲にスリーブ状のすべり軸受を
介して又は回転軸受を介してカム円板28を取付
けるようにすればよい。また、カム円板28には
第2図に明示されているように複数のカム溝30
が形成されており、このカム溝30の各々を上述
した各切削液ノズル16が貫通し、かつカム溝3
0の孔壁と各切削液ノズル16の外周とが以下に
説明するようにカム係合している。つまり、カム
溝30は、上述のようにカム円板28が機枠10
aの周囲に回動すると、係合している各切削液ノ
ズル16の切削液噴射方向、つまり第1図の噴射
角θを予め設計選定した角度範囲内で変化させる
ように切削液ノズル16を枢動させるカム形状を
有している。その具体的カム形状は例えば第2図
に示すような略楕円形の斜行溝に形成すればよ
い。またカム円板28の外周は外歯歯車32とし
て形成され、この外歯歯車32にはカム円板28
の回転駆動源として予め主軸頭10の機枠10a
外周に固定取付けされたモータ38の出力軸に取
付けられた駆動歯車34が噛み合わされており、
従つてモータ38を正又は逆方向に回転作動させ
ると、外歯歯車32と駆動歯車34との間の一定
歯数比に従つてカム円板28は正又は逆方向に減
速回転する。従つてカム溝30が、予めカム円板
28の正回転で各切削ノズル16の切削液噴射角
θを小さくするように形成されていれば、カム円
板28の逆回転で各切削ノズル16の切削液噴射
角θは大きくなる。依つて、主軸12に装着され
る工具14の工具寸法に従つてカム円板28の回
転量を調節すれば、各切削ノズル16の切削液噴
口18からは工具14の所望の点に切削液を噴射
供給することができるのである。なお、本考案に
よれば、単一のカム円板28の回動によつて複数
の切削液ノズル16を一斉に所望の切削液噴射方
向に向けることが可能である点に特長を有し、こ
のためにはモータ38の回動量調節を例えば電気
ボリユーム(図示なし)で行えば所望回転角に亘
つてカム円板28が回転し、全切削ノズル16が
所望の切削液噴射方向に向く。また、工具14が
工作機械の主軸12と自動工具交換装置の工具マ
ガジンとの間で一定順序で自動交換が行われる場
合には、各工具14の工具ナンバーとカム円板2
8の回転量との間の関係を予め工作機械の自動制
御装置に記憶させておき、都度、自動制御装置で
モータ38の回転量制御を行つてカム円板28を
それぞれの工具14に対応した回転角だけ回転さ
せるようにすれば、切削液ノズル16の各切削液
噴射口18から加工部に向けて噴射される切削液
の噴射方向を自動制御することができる。
On the other hand, a cam disk 28 is rotatably provided around the machine frame 10a of the spindle head 10 to which the plurality of cutting fluid nozzles 16 are attached. The rotating structure of the cam disk 28 may be such that the cam disk 28 is mounted around the machine frame 10a via a sleeve-shaped sliding bearing or a rotary bearing. The cam disk 28 also has a plurality of cam grooves 30 as shown in FIG.
are formed, each of the cutting fluid nozzles 16 described above penetrates each of the cam grooves 30, and the cam grooves 30 are
0 hole wall and the outer periphery of each cutting fluid nozzle 16 are in cam engagement as described below. In other words, the cam groove 30 is such that the cam disk 28 is connected to the machine frame 10 as described above.
When the cutting fluid nozzles 16 are rotated around point a, the cutting fluid nozzles 16 are rotated so as to change the cutting fluid jet direction of each of the engaged cutting fluid nozzles 16, that is, the jet angle θ in FIG. 1 within a pre-designed and selected angle range. It has a cam shape for pivoting. The specific shape of the cam may be, for example, a substantially elliptical diagonal groove as shown in FIG. Further, the outer periphery of the cam disc 28 is formed as an external gear 32, and the cam disc 28 is attached to the external gear 32.
The machine frame 10a of the spindle head 10 is used as a rotational drive source in advance.
A drive gear 34 attached to the output shaft of a motor 38 fixedly attached to the outer periphery is engaged with the drive gear 34.
Therefore, when the motor 38 is rotated in the forward or reverse direction, the cam disk 28 is rotated at a reduced speed in the forward or reverse direction in accordance with a constant tooth ratio between the external gear 32 and the drive gear 34. Therefore, if the cam groove 30 is formed in advance so that the cutting fluid injection angle θ of each cutting nozzle 16 is made smaller by the forward rotation of the cam disk 28, then by the reverse rotation of the cam disk 28, the cutting fluid injection angle θ of each cutting nozzle 16 is reduced. The cutting fluid injection angle θ becomes larger. Therefore, by adjusting the amount of rotation of the cam disk 28 according to the tool dimensions of the tool 14 mounted on the main shaft 12, the cutting fluid can be sprayed from the cutting fluid spout 18 of each cutting nozzle 16 to a desired point on the tool 14. It can be supplied by injection. The present invention is characterized in that it is possible to direct the plurality of cutting fluid nozzles 16 all at once in a desired cutting fluid injection direction by rotating the single cam disc 28. For this purpose, if the amount of rotation of the motor 38 is adjusted using, for example, an electric volume (not shown), the cam disk 28 will rotate over a desired rotation angle, and all the cutting nozzles 16 will be oriented in the desired cutting fluid injection direction. In addition, when the tools 14 are automatically exchanged in a fixed order between the main spindle 12 of the machine tool and the tool magazine of the automatic tool changer, the tool number of each tool 14 and the cam disk 2
8 and the rotation amount is stored in advance in the automatic control device of the machine tool, and each time, the automatic control device controls the rotation amount of the motor 38 so that the cam disk 28 corresponds to each tool 14. If the cutting fluid is rotated by the rotation angle, it is possible to automatically control the jetting direction of the cutting fluid that is jetted from each cutting fluid injection port 18 of the cutting fluid nozzle 16 toward the processing section.

また、カム円板28に形成されている複数のカ
ム溝30の形状は、切削液が噴射されるとき、重
力の影響によつて先端が下方に垂れる傾向がある
ことを予め考慮し、各切削液ノズル16の切削液
噴射角θは必ずしも等しくせずに、それぞれ加工
部の所望の切削液供給点に達するように補正した
形状にすることが望ましい。更に、複数の切削液
ノズル16を主軸頭10の機枠10aの周囲に等
間隔で配置すれば、切削液の噴射は、略円錐状に
収束する切削液噴射流が工具14と被切削ワーク
の切削加工部に向けて供給される構成となる。然
しながら例えば、二つの切削液ノズル16を一対
に接近配置し、このような切削液ノズル16の対
を複数、機枠10aの周囲に適当な間隔で配置
し、加工部に多方向から二条ずつの切削液噴射流
が供給されるような構成としてもよい。
In addition, the shape of the plurality of cam grooves 30 formed in the cam disk 28 is designed in consideration of the fact that when cutting fluid is injected, the tip tends to droop downward due to the influence of gravity, and each cutting It is preferable that the cutting fluid injection angles θ of the fluid nozzles 16 are not necessarily made equal, but are corrected so that they each reach the desired cutting fluid supply point of the processing section. Furthermore, if a plurality of cutting fluid nozzles 16 are arranged at equal intervals around the machine casing 10a of the spindle head 10, the cutting fluid jet flow converging in a substantially conical shape can spray the tool 14 and the workpiece to be cut. The structure is such that it is supplied toward the cutting section. However, for example, two cutting fluid nozzles 16 are arranged close to each other as a pair, a plurality of such pairs of cutting fluid nozzles 16 are arranged at appropriate intervals around the machine frame 10a, and two strips are applied to the machining area from multiple directions. A configuration may also be adopted in which a cutting fluid jet stream is supplied.

以上、本考案は図示の実施例を中心に説明した
が、単一のカム円板28の回動によつて、複数の
切削液ノズル16を一斉に工具寸法の違いに対応
した所望の方向に向ける構成に基いて種々の改変
例を構成することが可能であり、例えば、モータ
38によつて外歯の駆動歯車34とカム円板28
の外歯歯車32との噛み合わせを介してカム円板
28を回転駆動する構成に替えて、カム円板28
の外歯歯車32に直線ラツクを噛み合わせ、この
ラツクを油圧又は空圧シリンダ装置で直線往復運
動させるように構成することもできる。また、各
切削ノズル16の後端20を球面軸受構造に形成
した既述の実施例の場合には各切削ノズル16が
切削液噴射角θを大小変化させる一平面内でのみ
首振り動作するように適宜の案内規制溝を有した
案内円板をカム円板28の前方に配置しておくこ
とが実用上望ましい。
The present invention has been described above, focusing on the illustrated embodiment, but by rotating a single cam disk 28, a plurality of cutting fluid nozzles 16 are simultaneously directed in a desired direction corresponding to differences in tool dimensions. Various modifications can be made based on the orientation, for example, the motor 38 drives the externally toothed drive gear 34 and the cam disc 28.
Instead of a configuration in which the cam disc 28 is rotationally driven through engagement with the external gear 32, the cam disc 28
It is also possible to have a configuration in which a linear rack is meshed with the external gear 32, and the rack is moved in a linear reciprocating manner by a hydraulic or pneumatic cylinder device. Further, in the case of the above-mentioned embodiment in which the rear end 20 of each cutting nozzle 16 is formed into a spherical bearing structure, each cutting nozzle 16 swings only within one plane in which the cutting fluid injection angle θ is changed in size. Practically speaking, it is desirable to arrange a guide disk having an appropriate guide restriction groove in front of the cam disk 28.

考案の効果 以上の説明から明らかなように、本考案によれ
ば、単一のモータ又はシリンダ装置で駆動される
一つのカム円板をアクチユエータとして複数の切
削液ノズルを一斉に枢動させ、多方向から切削液
を加工部に向けて噴射させることができるので、
マシニングセンタ等のNC工作機械をはじめとす
る自動工作機械に適用して種々の工具寸法に適正
対応した切削液供給が自動制御方式で達成するこ
とができる。また、本考案では、複数の切削液ノ
ズルと一つのカム円板と歯車伝動によるカム円板
回動装置とを主たる構造要素とした工作機械の切
削液供給装置が構成され、複雑特殊な機械構造要
素が用いられていないから全体構造が簡単であ
り、従つて主軸頭周囲に乱雑複雑に種々の構造体
が取付くこともないから工具主軸のワークへの接
近性も良好に保持される。更に複数の切削液ノズ
ルから切削液噴射方向を自動的に調節受化させて
多方向による切削液供給が行われるから従来の単
一ノズルによる供給のように切削液供給の死角が
発生することもなく、また、作業者の手動操作が
介入しないので安全性も確保でき、ひいては工作
機械の切削加工における精度、信頼性と自動化率
を向上させ、しかも工具耐用寿命の延命も可能と
なる。
Effects of the invention As is clear from the above explanation, according to the invention, a single cam disc driven by a single motor or cylinder device is used as an actuator to simultaneously pivot a plurality of cutting fluid nozzles. Cutting fluid can be sprayed towards the machining area from any direction.
When applied to automatic machine tools such as NC machine tools such as machining centers, cutting fluid supply that appropriately corresponds to various tool sizes can be achieved using an automatic control method. In addition, in the present invention, a cutting fluid supply device for a machine tool is constructed whose main structural elements are multiple cutting fluid nozzles, one cam disk, and a cam disk rotation device driven by gear transmission, and the device has a complicated and special mechanical structure. Since no elements are used, the overall structure is simple, and since various structures are not installed around the spindle head in a messy and complicated manner, the accessibility of the tool spindle to the workpiece is maintained well. Furthermore, since the cutting fluid is supplied from multiple directions by automatically adjusting the cutting fluid jet direction from multiple cutting fluid nozzles, there may be blind spots in the cutting fluid supply unlike when supplying from a single conventional nozzle. In addition, since there is no manual intervention by the operator, safety can be ensured, which in turn improves the accuracy, reliability and automation rate of machine tool cutting, and also extends the useful life of the tool.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案による工作機械の切削液供給装
置の実施例における要部を示す部分正面図、第2
図は第1図の矢視−線方向から見た部分側面
図。 10……主軸頭、10a……機枠、12……主
軸、14……工具、16……切削液ノズル、18
……切削液噴射口、20……後端、26……導
管、28……カム円板、30……カム溝、32…
…外歯歯車、34……駆動歯車、38……モー
タ。
Fig. 1 is a partial front view showing the main parts of an embodiment of the cutting fluid supply device for a machine tool according to the present invention;
The figure is a partial side view seen from the direction of the arrow in FIG. 1. 10...Spindle head, 10a...Machine frame, 12...Spindle, 14...Tool, 16...Cutting fluid nozzle, 18
... Cutting fluid injection port, 20 ... Rear end, 26 ... Conduit, 28 ... Cam disk, 30 ... Cam groove, 32 ...
...External gear, 34... Drive gear, 38... Motor.

Claims (1)

【実用新案登録請求の範囲】 1 工作機械の主軸頭の工具主軸を囲繞した機枠
部に該工具主軸の先端向きに噴射開口を有し枢
動可能に設けられた複数個の切削液ノズルと、
前記複数個の切削液ノズルにカム係合したノズ
ル枢動調節用の複数カム溝を有し、前記機枠部
に被着された回動性のカム円板と、前記カム円
板を回動させ、前記複数カム溝を介して前記複
数個の切削液ノズルの噴射開口を一斉にそれぞ
れ所望の噴射方向に枢動させるノズル枢動用の
駆動装置と、前記複数個の切削液ノズルに結合
した切削液供給源とを具備して構成したことを
特徴とする工作機械の切削液供給装置。 2 実用新案登録請求の範囲第1項に記載の工作
機械の切削液供給装置において、前記ノズル枢
動用の駆動装置は、前記カム円板の外周部に設
けた歯車と、前記歯車に噛み合う駆動歯車と、
前記駆動歯車に回転運動を与えるモータとで構
成した工作機械の切削液供給装置。 3 実用新案登録請求の範囲第1項に記載の工作
機械の切削液供給装置において、前記ノズル枢
動用の駆動装置は、前記カム円板の外周部に設
けた歯車と、該歯車に噛み合うラツクと、該ラ
ツクに往復運動を与えるシリンダ機構とで構成
した工作機械の切削液供給装置。
[Scope of Claim for Utility Model Registration] 1. A plurality of cutting fluid nozzles which are rotatably provided in a machine frame surrounding the tool spindle of the spindle head of a machine tool and have injection openings facing the tip of the tool spindle. ,
a plurality of cam grooves for adjusting nozzle pivoting which are cam-engaged with the plurality of cutting fluid nozzles; a rotatable cam disk attached to the machine frame; a nozzle pivoting drive device that pivots the injection openings of the plurality of cutting fluid nozzles in the respective desired injection directions via the plurality of cam grooves; and a cutting device coupled to the plurality of cutting fluid nozzles. 1. A cutting fluid supply device for a machine tool, comprising: a fluid supply source. 2 Utility Model Registration Scope of Claim 1 In the cutting fluid supply device for a machine tool as set forth in claim 1, the drive device for pivoting the nozzle includes a gear provided on the outer periphery of the cam disc and a drive gear meshing with the gear. and,
A cutting fluid supply device for a machine tool, comprising a motor that provides rotational motion to the drive gear. 3 Utility Model Registration Scope of Claim 1 In the cutting fluid supply device for a machine tool, the drive device for pivoting the nozzle includes a gear provided on the outer periphery of the cam disk, and a rack that meshes with the gear. , and a cylinder mechanism that provides reciprocating motion to the rack.
JP2166384U 1984-02-20 1984-02-20 Cutting fluid supply device for machine tools Granted JPS60134535U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2166384U JPS60134535U (en) 1984-02-20 1984-02-20 Cutting fluid supply device for machine tools

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2166384U JPS60134535U (en) 1984-02-20 1984-02-20 Cutting fluid supply device for machine tools

Publications (2)

Publication Number Publication Date
JPS60134535U JPS60134535U (en) 1985-09-07
JPS637487Y2 true JPS637487Y2 (en) 1988-03-03

Family

ID=30513258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2166384U Granted JPS60134535U (en) 1984-02-20 1984-02-20 Cutting fluid supply device for machine tools

Country Status (1)

Country Link
JP (1) JPS60134535U (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3097985B1 (en) * 2015-05-29 2018-11-21 Gerald Sebert GmbH Positioning device
JP7239288B2 (en) * 2018-09-27 2023-03-14 三井精機工業株式会社 Fluid nozzle device for machine tools
CN114770212B (en) * 2022-05-18 2023-11-17 北京精雕科技集团有限公司 Automatic nozzle angle adjusting device, automatic nozzle angle adjusting method and machine tool

Also Published As

Publication number Publication date
JPS60134535U (en) 1985-09-07

Similar Documents

Publication Publication Date Title
USRE33732E (en) Method of machining a workpiece in a turret lathe and an NC lathe for performing this method
JP4316850B2 (en) Machining method in complex machine tool
JPH0753027Y2 (en) Remote control type free swivel nozzle
US6840720B2 (en) Machine for deburring and fine machining of tooth flanks of toothed workpieces
US5351376A (en) Machine tool
JP6175269B2 (en) Multi-axis milling
US5996329A (en) Multi-axis machining head
US4638550A (en) Horizontal drilling and milling machine
US5413439A (en) Universal spindle head for machine tool
JPH0755405B2 (en) Cutting tools and cutter heads for milling machines
US20110058913A1 (en) Tool head for use in a multiaxis machine, multiaxis machine having such a tool head, and use of such a machine
JPS637487Y2 (en)
JPS63123603A (en) Device for finish machining
USRE34155E (en) Machining a workpiece in a turret lathe and an NC lathe therefor
US4694617A (en) Method for the precision working of the tooth system of bevel gears
JP2731909B2 (en) Lathe processing method and turret turret therefor
JP3383788B2 (en) Machine tool eccentricity device
US3802304A (en) Contouring unit for machine tools
JPH05294656A (en) Numerically controlled cutting machine for glass plate
JPS5816961B2 (en) Machine Tools
JPH0727738U (en) Follow-up coolant nozzle device
JPH0713925Y2 (en) Tool holder for taper hole machining
JPH01240202A (en) Machine tool
JPH0318117Y2 (en)
JPS6338970Y2 (en)