JPS6374615A - Reinforced reaction injection molding method - Google Patents

Reinforced reaction injection molding method

Info

Publication number
JPS6374615A
JPS6374615A JP22019986A JP22019986A JPS6374615A JP S6374615 A JPS6374615 A JP S6374615A JP 22019986 A JP22019986 A JP 22019986A JP 22019986 A JP22019986 A JP 22019986A JP S6374615 A JPS6374615 A JP S6374615A
Authority
JP
Japan
Prior art keywords
calcium sulfate
fiber
molded
injection molding
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22019986A
Other languages
Japanese (ja)
Inventor
Yasuo Uemori
上森 泰夫
Tsutomu Nishide
勉 西出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kinugawa Rubber Industrial Co Ltd
Original Assignee
Kinugawa Rubber Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kinugawa Rubber Industrial Co Ltd filed Critical Kinugawa Rubber Industrial Co Ltd
Priority to JP22019986A priority Critical patent/JPS6374615A/en
Publication of JPS6374615A publication Critical patent/JPS6374615A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/12Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of short length, e.g. in the form of a mat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • B29C67/24Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00 characterised by the choice of material
    • B29C67/246Moulding high reactive monomers or prepolymers, e.g. by reaction injection moulding [RIM], liquid injection moulding [LIM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/12Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of short lengths, e.g. chopped filaments, staple fibres or bristles

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To reduce the pressure loss in piping and at the same time improve the smoothness and sharpness of the coated surface of a molded item by a method wherein molding material blended with specified substance is injection- molded. CONSTITUTION:A molding material blended with single crystal calcium sulfate fibers is injection-molded by means of an injection molder. The single crystal calcium sulfate fiber secures the sharpness of the coating surface, suppresses the rise of the viscosity of the moding surface and prevents the mixing property from lowering and the pressure loss in the piping of the injection molder and the like from occurring. In addition, because the aspect ratio L/D of the single crystall calcium sulfate fiber is large, a molded item has enough reinforcing property and at the same time, because the length of the fiber is short, the orientating property of the molded item becomes low.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は1強化フィラーによる製品面の肌荒れ状態を
防止するとともに成形材料の増粘度を抑し、ミキシング
性及び配管内の圧力損失の改善を可能とする強化反応射
出成形方法に関する。
Detailed Description of the Invention (Field of Industrial Application) This invention prevents roughening of the product surface caused by the reinforcing filler, suppresses the increase in viscosity of the molding material, and improves mixing performance and pressure loss in piping. The present invention relates to a reinforced reaction injection molding method that makes it possible.

(従来の技術) 従来、この檜の反応射出成形方法として5成形品塗装弐
面の鮮映性を向上せんがために、成形材料1例えばポリ
オール、イソシアネートなどに非常に細かいフィラーを
混入しておき、成形にあたジイソシアネートと混合して
型内に射出成形するものが知られている。
(Prior art) Conventionally, in this reaction injection molding method for cypress, very fine fillers were mixed into the molding material 1, such as polyol, isocyanate, etc., in order to improve the sharpness of the painted second side of the molded product. It is known that the mixture is mixed with a diisocyanate and then injection molded into a mold.

(発明が解決しようとする問題点ン しかしながら、このような従来例にあっては、フィラー
粒子が成形材料中にミクロ分散され1表面の平滑な成形
品が得られる反面、細かいフィラーになる程フィラー粒
子の添加に伴ない成形材料の粘度上昇を来し、ミキシン
性の低下、配管内の圧力損失を起す問題点があり之。
(Problems to be Solved by the Invention) However, in such conventional examples, filler particles are microdispersed in the molding material and a molded product with a smooth surface can be obtained, but on the other hand, the finer the filler, the more the filler particles are dispersed in the molding material. There are problems in that the addition of particles increases the viscosity of the molding material, resulting in a decrease in mixability and pressure loss in the piping.

この発明は、かかる問題点に着目して案出され次もので
あって、塗装表面の鮮映性を確保するとともに成形材料
の瑠粘度會抑止し、ミキシング性の向上及び配管内の圧
力損失の少ない強化反応射出成形方法を得んとするもの
である。
This invention was devised in view of these problems, and it ensures the sharpness of the painted surface, suppresses the viscosity of the molding material, improves mixing performance, and reduces pressure loss in piping. The purpose is to obtain a reaction injection molding method with less reinforcement.

(問題点を解決する九めの手段) この発明は、成形材料に硫酸カルシウム単結晶繊維を添
加し、射出成形機で射出成形することを、その構成とし
ている。
(Ninth Means for Solving the Problems) The present invention has a structure in which calcium sulfate single crystal fibers are added to a molding material and injection molding is performed using an injection molding machine.

(作用) 硫酸カルシウム単結晶繊維は、塗装弐面の鮮映性を確保
するとともに成形材料の粘度上昇を低く抑え、ミキシン
グ性の低下、射出成形機などの配管内での圧力損失を防
止する。さらに、a酸カルシウム単結晶繊維のL/Dが
大きいため充分な補強性をもつとともに長さが短かい几
め配向性が低くなる。
(Function) Calcium sulfate single-crystal fibers ensure the sharpness of the second side of the coating, suppress the increase in viscosity of the molding material, and prevent a drop in mixing performance and pressure loss in piping of injection molding machines. Furthermore, since the L/D of the calcium a-acid single crystal fiber is large, it has sufficient reinforcing properties and has a low tight orientation due to its short length.

(実施例) 以下、この発明t−実施例および比較例に基づいて説明
する。
(Example) Hereinafter, a description will be given based on an example of the present invention and a comparative example.

実施例及び比較例の各原料は以下の通シである。The raw materials used in Examples and Comparative Examples are as follows.

イ6本実施例 a、 使用フィラー:硫酸カルシウム単結晶繊維(商品
名フランクリンフアイ バーA−30) 平均繊維長  50〜60μm 平均繊維径  2μm アスペクト比+ L/D )  25〜30b、使用ウ
レタン処方 下衣に示すとおりである。
A6 Example a, Filler used: Calcium sulfate single crystal fiber (trade name Franklin Fiber A-30) Average fiber length 50-60 μm Average fiber diameter 2 μm Aspect ratio + L/D) 25-30b, Urethane prescription lower garment used As shown below.

第  1  表 口、比較例1 a、 f用フィラー;加工鉱物1*維(商品名プロセス
ドミネラルファイバーJ 平均繊維長  220μm 平均繊維径  4〜6μm アスペクト比(L/D)40〜46 b、使用ウレタン処方 前記実施例のものと同じである。
Filler for 1st front opening, Comparative Example 1 a, f; Processed Mineral Fiber 1*Fiber (Product name: Processed Mineral Fiber J Average fiber length: 220 μm Average fiber diameter: 4 to 6 μm Aspect ratio (L/D): 40 to 46 b, used The urethane formulation was the same as in the previous example.

ハ、比較例2 a、使用フィラー:ガラス短繊維(商品名l/16“ミ
ルドファイバー参731 DA) 平均繊維長  140μm 平均繊維径  10μm アスペクト比(L/D)  14 b、使用ウレタン処方 前記実施例のものと閤じておる。
C. Comparative Example 2 a. Filler used: Short glass fiber (trade name: l/16" milled fiber 731 DA) Average fiber length 140 μm Average fiber diameter 10 μm Aspect ratio (L/D) 14 b. Urethane prescription used in the previous example I think of it as something like that.

二、比較例3 a、使用フィラー:ガラス短繊維(商品名ガラスカット
ファイバーFESSOO5) 平均繊維長  120μm 平均繊維径  104m アスペクト比(L7D)  12 b、使用ウレタン処方 前記実施例のものと同じである。
2. Comparative Example 3 a. Filler used: Short glass fiber (trade name: glass cut fiber FESSOO5) Average fiber length: 120 μm Average fiber diameter: 104 m Aspect ratio (L7D) 12 b. Urethane formulation used: Same as in the previous example.

ホ、比較例4 a、 使用フィラー:天然カルシウムメタシリケート(
商品名ウオラストナイト NAYD−G) 平均繊維長  110μm 平均繊維径  8μm アスペクト比(L/D)  13〜15b、使用ウレタ
ン処方 前記実施例のものと同じである。
E, Comparative Example 4 a, Filler used: natural calcium metasilicate (
(trade name: Wollastonite NAYD-G) Average fiber length: 110 μm Average fiber diameter: 8 μm Aspect ratio (L/D): 13-15b The urethane formulation used is the same as that of the previous example.

へ、比較例5 a、使用フィラー:チタン酸カリウム単結晶繊維(商品
名テイスモD) 平均繊維長  10〜204m 平均繊維径  0.2〜0.5μm アスペクト比(L/p )  40 #mb、m用。レ
タン処方 前記実施例のものと同じでろる。
Comparative Example 5 a. Filler used: Potassium titanate single crystal fiber (trade name Teismo D) Average fiber length 10-204 m Average fiber diameter 0.2-0.5 μm Aspect ratio (L/p) 40 #mb, m for. The urethane formulation was the same as that of the previous example.

なお、実施例並びに各比較例においては、夫々フィラー
添加吊金10ffi:11%としている。
In addition, in the examples and each comparative example, the filler addition hanger was set to 10ffi: 11%.

このような原料を実施例及び各比較例においては、R−
RIM法をもって成形品を作成したものである。Ill
ち、ポリオール成分にフィラー全酢加し1Lこれとイソ
シアネート成分金型内に備突混合し、成形品全作成し次
In Examples and Comparative Examples, such raw materials were used as R-
The molded product was created using the RIM method. Ill
First, add 1L of filler to the polyol component and mix it with the isocyanate component in a mold to create the entire molded product.

上記のような原料混合比によって反応射出成形品を得九
後、成形品に焼付は塗装を施すこと金行った。
After obtaining a reaction injection molded product using the above raw material mixing ratio, the molded product was baked and painted.

第1図に示すグラフは、実施例、比較例3及び比較例5
において、充填剤(フィラー)の添加量kfえた場合(
温度は一定Jの、原料粘度(:CPS)の値全示してい
る。
The graph shown in FIG.
, when the amount of filler added kf is increased (
The temperature is constant J, and all values of raw material viscosity (CPS) are shown.

同図かられかるように、本実施例(硫酸カルシウム単結
晶1jlt維含有)は、比較例5(チタン酸カリウム単
結晶繊維含有)ニジも、充填剤添加量の増加に伴なう粘
度上昇が低く、比較例3のそれよシも高くなっている。
As can be seen from the figure, this example (containing 1 jlt calcium sulfate single crystal fiber) and Comparative Example 5 (containing potassium titanate single crystal fiber) did not exhibit an increase in viscosity as the amount of filler added increased. It is also higher than that of Comparative Example 3.

ま几、第2図は、充填剤(フイラーンのiを20(pb
w)に保ち、本実施例及び各比較例3.5の原料の6度
と粘度との関係を見ている。
Fig. 2 shows the i of filler (fillerane) of 20 (pb).
w), and the relationship between the 6 degree and viscosity of the raw materials of this example and each comparative example 3.5 is observed.

このグラフにおいても、本実施例は比較例3と比較例5
の中間の値をとっている。
In this graph as well, this example shows that Comparative Example 3 and Comparative Example 5
It takes an intermediate value.

ま友、本実施例及び各比較例によシ反応射出成形された
成形品を焼付は塗装し友場合の成形品塗装面の平滑性及
び鮮映性は、本実施例と比較例5(チタン酸カリウム単
結晶繊維含有)が特に高く。
The smoothness and sharpness of the coated surfaces of the molded products were evaluated by baking and painting the reaction injection molded products according to this example and comparative examples 5 (titanium). Contains potassium acid single crystal fiber) is particularly high.

次いで、比較例1(加工鉱物繊維含有J、比較例4(天
然カルシウムメタシリケート含有)の順であり、ガラス
短繊維含有の比較例2,3は平滑性及び鮮映性の点で他
に劣るものであった。
This is followed by Comparative Example 1 (J containing processed mineral fibers) and Comparative Example 4 (containing natural calcium metasilicate), and Comparative Examples 2 and 3 containing short glass fibers are inferior to the others in terms of smoothness and sharpness. It was something.

このような結果から、本実施例にあっては、成形品塗装
面の平滑性及び鮮映性が高く、シかも原料粘度が比較的
低く保てるため、ミキシング性。
From these results, in this example, the smoothness and sharpness of the coated surface of the molded product are high, and the viscosity of the raw material can be kept relatively low, resulting in excellent mixing properties.

配管内の圧力損失全改善することが可能である。It is possible to completely improve the pressure loss within the piping.

なお、本実施例、比較例3,5並びにフイラ−を含まな
い原料(オリジナル)に依つ几反応射出成形によりシー
ト状成形品を形成し、120℃。
In addition, a sheet-like molded product was formed by cold reaction injection molding using the present example, Comparative Examples 3 and 5, and a raw material (original) containing no filler, and was heated at 120°C.

1時間のボストキュア後に各物性値を測定し几結果を以
下の表に示す。
After 1 hour of boss curing, each physical property value was measured and the results are shown in the table below.

第  2  衣 上記第2戒から明らかな工うに、本実施例にあっては、
フィラーを含まないオリジナルに比較して、50チモジ
ユラスが向上し、また、伸び、線膨張係数が低下したも
のであり、変形しにくい成形品の成形が可能である。さ
らに、本実施例にあっては、比較例3,5と比較して、
密度、50%モジュラス、引張強さ、伸び、引裂強さ9
勝膨張係数が略同じであり、強直的な遜色は見られなか
った。
Second Clothing As is clear from the second precept above, in this example,
Compared to the original containing no filler, the 50 thimodules is improved, and the elongation and linear expansion coefficient are reduced, making it possible to mold a molded product that is difficult to deform. Furthermore, in this example, compared to Comparative Examples 3 and 5,
Density, 50% modulus, tensile strength, elongation, tear strength9
The win expansion coefficients were almost the same, and there was no difference in tonicity.

以上、実施例について説明しtが、この他に各棟の設計
変更が可能でお9、例えば、上記実施例においては、第
1異に示すような原料を用いたが、反応射出成形に用い
られる他の原料に硫酸カルシウム単結晶繊維を添加して
も勿論よい。
The above examples have been explained, but in addition to this, it is possible to change the design of each building.9 For example, in the above examples, raw materials as shown in the first variation were used, Of course, calcium sulfate single crystal fibers may be added to other raw materials.

(発明の効果) 以上の説明で明らかなように、この発明に係る強化反応
射出成形方法にあっては、配合原料の粘度上昇が低いた
め、ミキシング性及び配管内の圧力損失が改善される効
果がある。
(Effects of the Invention) As is clear from the above explanation, in the reinforcing reaction injection molding method according to the present invention, since the increase in viscosity of the compounded raw materials is low, the mixing property and the pressure loss in the piping are improved. There is.

i友、物性的にも、硫酸カルシウム単結晶繊維の長さが
比較的短かく、アスペクト比が大きいため、配向性が小
さくなる効果がある。
Also, in physical terms, the length of the calcium sulfate single crystal fiber is relatively short and the aspect ratio is large, which has the effect of reducing orientation.

さらに、成形品の塗装外表面に平滑性及び鮮映性t−待
九せる効果がある。
Furthermore, it has the effect of improving the smoothness and sharpness of the coated outer surface of the molded product.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に係る実施例と比較例3.5の充填剤
の量と粘度の関係を示すグラフ、第2図は、原料温度と
粘度の関係を示すグラフである。 第1図 第2図 @I3+屈醍(’C)
FIG. 1 is a graph showing the relationship between filler amount and viscosity for Examples according to the present invention and Comparative Example 3.5, and FIG. 2 is a graph showing the relationship between raw material temperature and viscosity. Figure 1 Figure 2 @I3+Kudai ('C)

Claims (1)

【特許請求の範囲】[Claims] 成形材料に硫酸カルシウム単結晶繊維を添加し、反応射
出成形機で射出成形することを特徴とする強化反応射出
成形方法。
A reinforcing reaction injection molding method characterized by adding calcium sulfate single crystal fiber to a molding material and injection molding with a reaction injection molding machine.
JP22019986A 1986-09-18 1986-09-18 Reinforced reaction injection molding method Pending JPS6374615A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22019986A JPS6374615A (en) 1986-09-18 1986-09-18 Reinforced reaction injection molding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22019986A JPS6374615A (en) 1986-09-18 1986-09-18 Reinforced reaction injection molding method

Publications (1)

Publication Number Publication Date
JPS6374615A true JPS6374615A (en) 1988-04-05

Family

ID=16747440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22019986A Pending JPS6374615A (en) 1986-09-18 1986-09-18 Reinforced reaction injection molding method

Country Status (1)

Country Link
JP (1) JPS6374615A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02169214A (en) * 1988-12-23 1990-06-29 Mitsubishi Motors Corp Reinforcing reaction injection molding method
JPH02182757A (en) * 1989-01-10 1990-07-17 Mitsubishi Motors Corp Automotive outer ply

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02169214A (en) * 1988-12-23 1990-06-29 Mitsubishi Motors Corp Reinforcing reaction injection molding method
JPH02182757A (en) * 1989-01-10 1990-07-17 Mitsubishi Motors Corp Automotive outer ply

Similar Documents

Publication Publication Date Title
US4168259A (en) Glass reinforced PBT resins
EP0321236B1 (en) Production of composite resins
DE2446041A1 (en) SILICONE RESIN MOLDING COMPOUND
US3158528A (en) Siliceous reinforced resins
JPS6374615A (en) Reinforced reaction injection molding method
Kudori et al. Tensile and morphological properties on kenaf core or bast filled natural rubber latex foam (NRLF)
JPH0617363A (en) Method for manufacturing molded item by compression-molding of textile material by simultaneous adhesion and its molded item
JPH06262621A (en) One liquid fluorosilicon composition stable to storage and hardenable at room temperature
JP4370652B2 (en) Sizing agent and chopped carbon fiber treated with the sizing agent
CN112500639A (en) Isotropic high-strength polypropylene composite material and preparation method thereof
DE1926966A1 (en) Silicone rubber compounds
JP2020193345A5 (en)
JPH0539384A (en) Rubber composition and its manufacture
JPH068278A (en) Production of glass-fiber reinforced resin component
CN112812491B (en) External coating material and preparation method and application thereof
CN109322564B (en) Outer handle liner
US1979012A (en) Manufacture of molded articles
US2018524A (en) Carpet material
US1257698A (en) Rubber compound and method of producing the same.
JPH01178421A (en) Reaction injection molding containing reinforcing material
JPH0243012A (en) Reactive injection molding of reinforced polyurethane molded product
JP3033997B2 (en) Glass chopped strand
CN116427047A (en) Preparation method of polyolefin fiber, and product and application thereof
JPH05116171A (en) Manufacture of fiber-reinforced resin molding
JPS642055B2 (en)