JPS6374227A - Receiver for very long wavelength electromagnetic wave - Google Patents
Receiver for very long wavelength electromagnetic waveInfo
- Publication number
- JPS6374227A JPS6374227A JP61220260A JP22026086A JPS6374227A JP S6374227 A JPS6374227 A JP S6374227A JP 61220260 A JP61220260 A JP 61220260A JP 22026086 A JP22026086 A JP 22026086A JP S6374227 A JPS6374227 A JP S6374227A
- Authority
- JP
- Japan
- Prior art keywords
- ground
- core
- underground
- long wavelength
- electromagnetic wave
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000035945 sensitivity Effects 0.000 abstract description 5
- 238000005553 drilling Methods 0.000 description 13
- 238000010586 diagram Methods 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000009412 basement excavation Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 239000003345 natural gas Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Near-Field Transmission Systems (AREA)
- Input Circuits Of Receivers And Coupling Of Receivers And Audio Equipment (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は極長波長電磁波の受信装置に関し、例えば石油
、天然ガス等の井戸を掘削する場合の地下の情報を地上
に送信する極長波長電磁波の受信装置を提案するもので
ある。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an ultra-long wavelength electromagnetic wave receiving device, which transmits underground information to the surface when drilling wells for oil, natural gas, etc. This paper proposes an electromagnetic wave receiving device.
石油、天然ガス等の井戸を掘削する場合には、掘削部に
おける地質、温度、圧力等の地下情報を得る必要があり
、従来は掘削用のパイプを地上に引き上げてから検層用
の計測装置を掘削した井戸から地中に位置させて計測す
る方法、又は掘削時に地中と地上との間を掘削用パイプ
を介して循環させるマントと称する泥水の成分を調べる
マントロギング法が採用されている。When drilling wells for oil, natural gas, etc., it is necessary to obtain underground information on the geology, temperature, pressure, etc. The mant logging method is used to measure the components of muddy water, which is circulated between the underground and the surface through drilling pipes during drilling, by placing it underground from a well that has been drilled. .
しかし乍ら、これらの方法は計測に長い時間を要し、掘
削中の地下情報をリアルタイムで計測することができな
い、そのため、最近はMWD (Measure−s
+ent While Drilling :掘削時
計側)と称するリアルタイムによる計測を目的とした計
測技術が研究されてきており、種々の方法が提案されて
いる。However, these methods require a long time for measurement and cannot measure underground information during excavation in real time.
Measurement technology aimed at real-time measurement called +ent While Drilling (drilling clock side) has been researched, and various methods have been proposed.
その中で電磁波を使用する方式が注目されて・いる。Among these, methods that use electromagnetic waves are attracting attention.
例えば第2図は米国文献“O4l & Gas Jou
rna185” Feb21.19830GJ Re
port rSecond−GenerationM
WD Tool Pa5ses Field Te5t
Jに示された地下情報を送信する極長波長電磁波の受信
状態図である。For example, Figure 2 is based on the American document “O4l & Gas Jou.
rna185” Feb21.19830GJ Re
port rSecond-GenerationM
WD Tool Pa5ses Field Te5t
FIG. 3 is a reception state diagram of extremely long wavelength electromagnetic waves that transmit underground information shown in FIG.
図において大地1上には掘削リグ2を建設しており、こ
の掘削リグ2の直下には、掘削された井戸3が形成され
ており、この井戸3内にはドリルバイブ4が延出し、ド
リルバイブ4の先端には絶縁カラー5を介してドリルカ
ラー6を連結している。In the figure, a drilling rig 2 is constructed on the ground 1, and a well 3 is drilled directly below the drilling rig 2. A drill vibe 4 extends into the well 3, and a drilling rig 2 is constructed on the ground 1. A drill collar 6 is connected to the tip of the vibrator 4 via an insulating collar 5.
このドリルカラー6の先端には掘削のためのビット7を
取付けていて、ドリルバイブ4を回転駆動することによ
り大地1を掘削する。ドリルカラー6内には掘削中の地
下の温度、圧力等を検出して電気信号に変換した変調信
号により地下情報を送信する送信装置8を収納している
。この送信装置8の図示しない送信出力端子は、絶縁カ
ラー5を挾んで連結されているドリルバイブ4とドリル
カラー6とに接続されており、ドリルバイブ4及びドリ
ルカラー6が送信用ダイポールアンテナとなって変調さ
れた極長波長電磁波を地上に送信するようにしている。A bit 7 for drilling is attached to the tip of the drill collar 6, and the ground 1 is drilled by rotating the drill vibe 4. The drill collar 6 houses a transmitting device 8 that detects temperature, pressure, etc. underground during excavation, and transmits underground information using a modulated signal converted into an electrical signal. A transmission output terminal (not shown) of this transmitting device 8 is connected to a drill vibe 4 and a drill collar 6, which are connected with an insulating collar 5 in between, and the drill vibe 4 and drill collar 6 function as a transmission dipole antenna. It is designed to transmit ultra-long wavelength electromagnetic waves modulated by the radio waves to the ground.
一方、地上の掘削リグ2の基部には大地1と平行し、掘
削リグ2から放射方向に位置させたダイポールアンテナ
9を設置し、地中からの極長波長電磁波を受信するよう
にしている。そしてダイポールアンテナ9が受信した信
号を増幅器10に入力し、増幅された信号はその信号を
復調(検波)して地下情報を得るための信号処理部11
に入力している。そして、この場合の極長波長電磁波の
周波数は50Hz以下が多く、その場合の波長は約60
00km以上となっている。なお、地層、地質、深さ等
によっては100H2程度の周波数の極長波長電磁波が
使用される。On the other hand, a dipole antenna 9 is installed at the base of the drilling rig 2 on the ground, parallel to the earth 1 and positioned in the radial direction from the drilling rig 2, so as to receive extremely long wavelength electromagnetic waves from underground. The signal received by the dipole antenna 9 is then input to an amplifier 10, and the amplified signal is demodulated (detected) by a signal processing unit 11 for obtaining underground information.
is being input. In this case, the frequency of the extremely long wavelength electromagnetic waves is often 50Hz or less, and the wavelength in that case is about 60Hz.
00km or more. Note that depending on the strata, geology, depth, etc., extremely long wavelength electromagnetic waves with a frequency of about 100H2 are used.
前述した極長波長電磁波の受信装置におけるダイポール
アンテナは、適長寸法の単一導体でアンテナを形成し、
これを地上に沿わせてS#1リグの基部に設置している
ため、その単一導体のアンテナで検出される電圧は低く
、アンテナの受信感度が低いという問題がある。The dipole antenna in the ultra-long wavelength electromagnetic wave receiving device described above is formed by a single conductor of appropriate length,
Since this is installed at the base of the S#1 rig along the ground, the voltage detected by the single-conductor antenna is low, and there is a problem that the reception sensitivity of the antenna is low.
本発明は前述した問題に鑑み、地中から送信される極長
波長電磁波を高感度で受信できる極長波長電磁波の受信
装置を提供することを目的とする。SUMMARY OF THE INVENTION In view of the above-mentioned problems, an object of the present invention is to provide a receiving device for extremely long wavelength electromagnetic waves that can receive extremely long wavelength electromagnetic waves transmitted from underground with high sensitivity.
C問題点を解決するための手段〕
本発明は、極長波長電磁波を受信するアンテナに多芯ケ
ーブルを使用して該ケーブルの各芯線が検出した電圧信
号を加算器にて加算して、加算して得た出力信号から情
報を得るよう構成する。Means for Solving Problem C] The present invention uses a multicore cable as an antenna for receiving extremely long wavelength electromagnetic waves, and adds the voltage signals detected by each core wire of the cable using an adder. The configuration is such that information is obtained from the output signal obtained by
地中の送信装置は、情報を極長波長電磁波により地上に
送信する。この電磁波は多芯ケーブルを用いたアンテナ
の各芯線で受信される。受信によって各芯線が検出した
電圧信号は加算器で加算されて信号レベルの大きい出力
信号を得る。Underground transmitters transmit information to the ground using extremely long wavelength electromagnetic waves. This electromagnetic wave is received by each core wire of an antenna using a multicore cable. The voltage signals detected by each core wire upon reception are added by an adder to obtain an output signal with a high signal level.
以下本発明を実施例を示す図面によって詳述する。第1
図は本発明に係る極長波長電磁波の受信装置の構成図で
ある。第1図において、図示しない掘削リグの基部に近
い地上に、地中から送信されてきる極長波長電磁波(以
下電磁波という)を受信するためのダイポールアンテナ
9を、大地1より若干上方に位置させて大地1に沿って
設置している。このダイポールアンテナ9は等長の多芯
ケーブル20.21を適長離隔して同一直線上に並設し
ており、夫々の多芯ケーブル20.21がアンテナ半部
を構成している。また多芯ケーブル20は芯線201,
202・・・205が集束されており、多芯ケーブル2
1は芯線211,212・・・215が集束されている
。そしてこれらの多芯ケーブル20.21が対向してい
る端部側の多芯ケーブル20の芯線201,202・・
・205の端部は、フィーダF、、F2・・・F5を介
して増幅器10A、 IOB・・・IOEの一方の入力
端子と接続されている。同様に多芯ケーブル21の芯線
211.212・・・215の端部はフィーダF II
+ F 12・・・F15を介して増幅器10A、
IOB・・・IOEの他方の入力端子と接続されている
。従って、多芯ケーブル20.21の芯線201,21
1で受信した電圧信号は増幅器10Aに入力され、芯線
202,212.203,213.204,214.2
05,215で夫々受信した電圧信号は夫々増幅器10
B、 IOC,100,1OHに入力されている。各増
幅器10A、 IOB、 IOC,IOD、 IOEで
増幅された電圧信号は加算器30に入力されている。The present invention will be explained in detail below with reference to drawings showing embodiments. 1st
The figure is a configuration diagram of a receiving device for extremely long wavelength electromagnetic waves according to the present invention. In FIG. 1, a dipole antenna 9 for receiving extremely long wavelength electromagnetic waves (hereinafter referred to as electromagnetic waves) transmitted from underground is located on the ground near the base of a drilling rig (not shown), slightly above the ground 1. It is installed along the ground 1. This dipole antenna 9 has multicore cables 20.21 of equal length arranged in parallel on the same straight line with an appropriate distance apart, and each multicore cable 20.21 constitutes a half of the antenna. In addition, the multicore cable 20 has core wires 201,
202...205 are bundled, and the multicore cable 2
1, core wires 211, 212, . . . , 215 are bundled. And the core wires 201, 202 of the multicore cable 20 on the end side where these multicore cables 20, 21 are facing each other...
- The end of 205 is connected to one input terminal of amplifier 10A, IOB...IOE via feeders F, F2...F5. Similarly, the ends of the core wires 211, 212...215 of the multicore cable 21 are connected to the feeder F II.
+F12...Amplifier 10A via F15,
IOB: Connected to the other input terminal of IOE. Therefore, the core wires 201, 21 of the multicore cable 20.21
The voltage signal received at 1 is input to the amplifier 10A, and the core wires 202, 212.203, 213.204, 214.2
The voltage signals received at 05 and 215 are respectively sent to amplifiers 10.
B. Input to IOC, 100, 1OH. The voltage signals amplified by each amplifier 10A, IOB, IOC, IOD, and IOE are input to an adder 30.
このように多芯ケーブル20.21からなるアンテナ9
と、増幅器10A、 IOB・・・1.OEと、加算器
30とにより構成された受信装置の動作を説明する。地
中に設置した図示しない送信装置が、地質、地中の温度
、圧力等の地下情報を電磁波により地上に送信する。こ
の電磁波は地上に設置した受信用のダイポールアンテナ
9で受信されるが、ダイアF−ルアンテナ9が多芯ケー
ブル20と21からなっているため、一方の多芯ケーブ
ル20の各芯線201 、202・・・205と、他方
の多芯ケーブル21の各芯線211.212・・・21
5とで受信することになる。そして、受信した電圧信号
は増幅器10A、IOB・・・IOEで増幅されて電圧
信号a1.a2・・・a5となり、それらの電圧信号は
加算器30で加算されて、加算器3oはa、+a2 +
a3 +a、+85の出力信号を出力する。In this way, the antenna 9 consists of multicore cables 20 and 21.
, amplifier 10A, IOB...1. The operation of the receiving device including the OE and the adder 30 will be explained. A transmitting device (not shown) installed underground transmits underground information such as geology, underground temperature, and pressure to the ground using electromagnetic waves. This electromagnetic wave is received by a receiving dipole antenna 9 installed on the ground, but since the dial antenna 9 consists of multicore cables 20 and 21, each core wire 201, 202 of one multicore cable 20, 205 and each core wire 211, 212, 21 of the other multicore cable 21
5 will be received. Then, the received voltage signals are amplified by the amplifiers 10A, IOB, . . . , IOE, and the voltage signals a1. a2...a5, and these voltage signals are added by the adder 30, and the adder 3o outputs a, +a2 +
a3 Outputs an output signal of +a, +85.
つまり多芯ケーブルをアンテナに用いたことにより、各
芯線で受信した電圧信号の大きさがaであると、多芯ケ
ーブルの芯線数nとの積anとなって受信感度が高くな
る。また、ダイポールアンテナ9を設置するに当って多
芯ケーブルを設置して多数のアンテナを同時に得ること
になり、少ない設置工数で高感度のアンテナが得られる
。That is, by using a multi-core cable as an antenna, when the magnitude of the voltage signal received by each core wire is a, it becomes the product an of the number of core wires n of the multi-core cable, and the reception sensitivity increases. Furthermore, when installing the dipole antenna 9, a multi-core cable is installed to obtain a large number of antennas at the same time, and a highly sensitive antenna can be obtained with fewer installation steps.
なお、本実施例では芯線が集束された多芯ケーブルを使
用したが、多数の芯線を同一面に並設しているテープ電
線の如き構造のケーブルを使用してもよい。In this embodiment, a multi-core cable in which the core wires are bundled is used, but a cable having a structure such as a tape electric wire in which a large number of core wires are arranged in parallel on the same surface may also be used.
以上詳述したように、本発明は地中から送信される極長
波長電位波を受信するアンテナを多芯ケーブルで構成し
、多芯ケーブルの各芯線が受信した信号を加算器で加算
する構成としたので、電圧信号レベルの大きい出力信号
が得られて受信感度が高くなりS/Nも向上する。また
、多芯ケーブルで多数のアンテナが同時に設置できるか
ら設置工数が少なくてすむ等の優れた効果を奏する。As described in detail above, the present invention has a configuration in which an antenna that receives extremely long wavelength potential waves transmitted from underground is configured with a multi-core cable, and an adder adds the signals received by each core wire of the multi-core cable. Therefore, an output signal with a high voltage signal level is obtained, the reception sensitivity is increased, and the S/N ratio is also improved. Furthermore, since a large number of antennas can be installed simultaneously using multi-core cables, excellent effects such as fewer installation steps can be achieved.
第1図は本発明に係る極長波長電磁波の受信装置の構成
図、第2図は従来の極長波長電磁波の受信装置の構成図
である。
1・・・大地 9・・・ダイポールアンテナ10A〜I
OE・・・増幅器 20.21・・・多芯ケーブル30
・・・加算器 201〜205.211〜215・・・
芯線なお、図中、同一符号は同一、又は相当部分を示す
。
代理人 大 岩 増 雄
第2図
昭和 年 月 日FIG. 1 is a block diagram of a receiving apparatus for extremely long wavelength electromagnetic waves according to the present invention, and FIG. 2 is a block diagram of a conventional receiving apparatus for extremely long wavelength electromagnetic waves. 1... Earth 9... Dipole antenna 10A-I
OE...Amplifier 20.21...Multicore cable 30
...Adder 201-205.211-215...
In the drawings, the same reference numerals indicate the same or equivalent parts. Agent Masuo Oiwa 2nd figure Showa year month day
Claims (1)
信装置において、 多芯ケーブルを用いたダイポールアンテナ と、 該アンテナの各芯線で検出した信号を加算 する加算器とを備え、該加算器の出力信号により前記情
報を得るよう構成したことを特徴とする極長波長電磁波
の受信装置。[Claims] 1. A receiving device for extremely long wavelength electromagnetic waves that transmits information from underground to the ground, comprising: a dipole antenna using a multicore cable; and an adder that adds signals detected by each core wire of the antenna. 1. A receiving device for extremely long wavelength electromagnetic waves, characterized in that it is configured to obtain the information based on the output signal of the adder.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61220260A JPS6374227A (en) | 1986-09-17 | 1986-09-17 | Receiver for very long wavelength electromagnetic wave |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61220260A JPS6374227A (en) | 1986-09-17 | 1986-09-17 | Receiver for very long wavelength electromagnetic wave |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6374227A true JPS6374227A (en) | 1988-04-04 |
Family
ID=16748395
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61220260A Pending JPS6374227A (en) | 1986-09-17 | 1986-09-17 | Receiver for very long wavelength electromagnetic wave |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6374227A (en) |
-
1986
- 1986-09-17 JP JP61220260A patent/JPS6374227A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4160970A (en) | Electromagnetic wave telemetry system for transmitting downhole parameters to locations thereabove | |
US2992325A (en) | Earth signal transmission system | |
US3906434A (en) | Telemetering system for oil wells | |
US9477008B2 (en) | Method and system of transmitting acoustic signals from a wellbore | |
US5467083A (en) | Wireless downhole electromagnetic data transmission system and method | |
US7145473B2 (en) | Electromagnetic borehole telemetry system incorporating a conductive borehole tubular | |
CA2078090C (en) | Method and apparatus for transmitting information between equipment at the bottom of a drilling or production operation and the surface | |
CA2246315A1 (en) | An apparatus and system for making at-bit measurements while drilling | |
US5959548A (en) | Electromagnetic signal pickup device | |
US2653220A (en) | Electromagnetic wave transmission system | |
JPS60194386A (en) | Focusing very-high-frequency induction logging | |
US20180348394A1 (en) | Modular tool having combined em logging and telemetry | |
US20150035535A1 (en) | Apparatus and Method for At-Bit Resistivity Measurements | |
US8581742B2 (en) | Bandwidth wireline data transmission system and method | |
CA2364339A1 (en) | An apparatus, system, and method for detecting and reimpressing electrical charge disturbances on a drill-pipe | |
US6208265B1 (en) | Electromagnetic signal pickup apparatus and method for use of same | |
JPS6374227A (en) | Receiver for very long wavelength electromagnetic wave | |
WO1998023849A1 (en) | Borehole data transmission system | |
JPS6374223A (en) | Underground communication equipment | |
JPS6374225A (en) | Receiver for very long wavelength electromagnetic wave | |
CN221195045U (en) | Electromagnetic wave data transceiver for near-bit while-drilling engineering parameters | |
JPS6374229A (en) | Receiver for very long wavelength electromagnetic wave | |
JPS6374334A (en) | Underground communication equipment | |
Thiel et al. | Ionospheric induced very low-frequency electric field wavetilt changes | |
JP2856266B2 (en) | Receiver |