JPS6374070A - Magnetic toner - Google Patents

Magnetic toner

Info

Publication number
JPS6374070A
JPS6374070A JP61218216A JP21821686A JPS6374070A JP S6374070 A JPS6374070 A JP S6374070A JP 61218216 A JP61218216 A JP 61218216A JP 21821686 A JP21821686 A JP 21821686A JP S6374070 A JPS6374070 A JP S6374070A
Authority
JP
Japan
Prior art keywords
toner
powder
magnetic
resistivity
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61218216A
Other languages
Japanese (ja)
Inventor
Norie Matsui
松井 乃里恵
Takeshi Hashimoto
健 橋本
Koichi Takashima
高島 紘一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP61218216A priority Critical patent/JPS6374070A/en
Publication of JPS6374070A publication Critical patent/JPS6374070A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/0819Developers with toner particles characterised by the dimensions of the particles
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/0821Developers with toner particles characterised by physical parameters

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Developing Agents For Electrophotography (AREA)

Abstract

PURPOSE:To enhance development performance by specifying the average particle diameter and the particle diameter distribution of an amorphous fine powder and a proportion of the particles with <=8mum diameters in a magnetic toner high in resistivity, and further, the powder compressibility of the mixture with additives. CONSTITUTION:The particle diameter distribution of the amorphous fine particles containing a magnetic powder in a binder resin is regulated to the range of 5-35mum, and their average particle diameter is controlled to 10-18mum, and further, the proportion of the particles with <=8mum is controlled to 5vol%, thus permitting the obtained toner to be enhanced in powder fluidity, development performance transferability, cleanability, and stability against time lapse, an to prevent the inside of the copying machine from staining, and the additives are added to the surface of the toner and the powder compressibility is controlled to 25-40%, thus permitting the fluidity of the magnetic toner to be enhanced.

Description

【発明の詳細な説明】 本発明は電子写真、静電記録、静電印刷等における磁性
トナー、特に高抵抗磁性トナーに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a magnetic toner for use in electrophotography, electrostatic recording, electrostatic printing, etc., and particularly to a high-resistance magnetic toner.

従来、感光体あるいは静′電記録体に形成した静電WI
濠を一成分現鷹剤を用いて現像する。いわゆる−成分現
像法が知られている。
Conventionally, electrostatic WI formed on a photoreceptor or an electrostatic recording medium
Develop the moat using a one-component developer. A so-called -component development method is known.

この−成分現[家法はキャリアを用いることなく結着樹
脂中に磁性粉を含有した磁性トナーを用いて現像する方
法であり、特に磁気ブラシ現像法で現像する方法が代表
的である。
This -component development method is a method of developing using a magnetic toner containing magnetic powder in a binder resin without using a carrier, and in particular, a method of developing using a magnetic brush developing method is typical.

この磁気ブラシ現像法はトナーの磁性を利用し、磁気ロ
ール等にトナーの磁気ブラシを形成してトナーを搬送し
、光導電性感光体上の静電潜像をトナーのブラシにより
現像してトナー像を得るものである。
This magnetic brush development method uses the magnetism of toner to form a magnetic brush of toner on a magnetic roll or the like to convey the toner, and develops the electrostatic latent image on the photoconductive photoreceptor with the toner brush to form a toner magnetic brush. It is something that gives you an image.

一成分現f象法として71!々の方法が提案されている
が、これらは (1)比較的低抵抗の磁性トナーを用いる方法(2)比
較的高抵抗の磁性トナーを用いる方法に大別される。
71 as a one-component phenomenon method! Various methods have been proposed, and these can be broadly classified into (1) a method using a magnetic toner with relatively low resistance, and (2) a method using a magnetic toner with a relatively high resistance.

前者は静電潜像の電荷に応じて、低抵抗磁性トナーに反
対極性の電荷を誘起させ、静電力と磁気力との拮抗によ
り現像するものである。この方法は高効率の現像が行な
える反面、トナー像の静電転写時にトナーの飛散を生じ
、又転写効率も悪い。これを改善するためには転写用紙
を高抵抗化した特殊な用紙を用いなければならないとい
う欠点を有する。
The former induces charges of opposite polarity in a low-resistance magnetic toner according to the charge of an electrostatic latent image, and develops by the competition between electrostatic force and magnetic force. Although this method allows for highly efficient development, toner scattering occurs during electrostatic transfer of a toner image, and the transfer efficiency is also poor. In order to improve this problem, a special transfer paper with high resistance must be used, which is a drawback.

後者は高抵抗磁性トナーを摩擦帯電、誘電分極あるいは
電極による電荷注入等によりトナーに潜像と反対極性の
電荷を与えて現像するものである。この方法はトナー像
の転写に際し、特殊な転写用紙を用いる必要はなく高効
率で良好な転写を行なうことができるものであるが、ト
ナーが高抵抗であるために、トナー粒子の静電凝集が起
こりやす(、さらに現像トナー像はエツジ効果が強(、
又非WJ濠部の地汚れ、現はムラ等を起こしやす(現像
性が劣るといつ欠点がある。
The latter is a method in which high-resistance magnetic toner is developed by imparting a charge of opposite polarity to the latent image to the toner by frictional charging, dielectric polarization, charge injection using an electrode, or the like. When transferring toner images, this method does not require the use of special transfer paper and can perform high-efficiency and good transfer, but because the toner has high resistance, electrostatic aggregation of toner particles occurs. This is likely to occur (and the developed toner image has a strong edge effect (,
In addition, it is easy to cause scumming and unevenness in non-WJ moat areas (poor developability is always a drawback).

高抵抗磁性トナーの帯電及び現f家の機構に関してはト
ナー粒子の表面構造及びトナー粒子の粉体流動性が現像
時のトナーの電気的性質に太き(影響し、現陳性を支配
する事が知られている。
Regarding the charging and development mechanism of high-resistance magnetic toner, the surface structure of toner particles and the powder fluidity of toner particles have a large influence on the electrical properties of toner during development and control the development properties. It has been known.

そのため従来よりトナーの表面構造、粉体流動性を制御
して前述の高抵抗磁性トナーの欠点を解消すべく検討が
なされてきた。
Therefore, studies have been made to overcome the above-mentioned drawbacks of high-resistance magnetic toner by controlling the surface structure and powder fluidity of the toner.

たとえば、トナー自身を球形化処理したり、滑剤をトナ
ー表面に付着あろいI工固着させたり、さらにトナーの
粒度分布を特定の範囲に限定すること等が提案されてい
る。しかしながら、球形化処理や滑剤を固着させる際、
熱風や溶剤を用いるために、トナー粒子同志が付着しや
すいこと、トナー粒子の表面のみの変質が起こりやすい
こと、溶剤の残留等の開運、さらに表面処理時間が長い
こと、付着して大粒径化したトナー粒子の除去、残留溶
剤の完全除去等の工程が必要となるという欠点がある。
For example, it has been proposed to spheroidize the toner itself, to attach a lubricant to the surface of the toner, and to limit the particle size distribution of the toner to a specific range. However, when performing spheroidization treatment or fixing lubricant,
Because hot air and solvents are used, toner particles tend to stick to each other, only the surface of the toner particles tends to change in quality, residual solvent remains, and the surface treatment time is long, and the toner particles stick together and become large particles. This method has a disadvantage in that it requires steps such as removing the toner particles and completely removing the residual solvent.

従って本発明の第1の目的を工高抵抗磁性トナーの粒度
分布、トナー粒子の形状、及び表面構造を制御し、さら
にはトナー粒子の電気特性を調整することによって現像
性の良好な磁性トナーを提供することである。
Therefore, the first object of the present invention is to manufacture a magnetic toner with good developability by controlling the particle size distribution, shape and surface structure of the toner particles, and further adjusting the electrical properties of the toner particles. It is to provide.

本発明の第2の目的は、粉体流動性の良好な磁性トナー
を提供することである。
A second object of the present invention is to provide a magnetic toner with good powder fluidity.

本発明の第3の目的はあらゆる感光体に対しても良好な
転写性を示す磁性トナーを提供することである。
A third object of the present invention is to provide a magnetic toner that exhibits good transferability to any photoreceptor.

本発明の第4の目的を工、環境に対して安定な磁性トナ
ーを提供することである。
A fourth object of the present invention is to provide a magnetic toner that is stable against the environment.

本発明の第5の目的は、プロセススピードの高、低にか
かわらず安定な画質を与える磁性トナーを提供すること
である。
A fifth object of the present invention is to provide a magnetic toner that provides stable image quality regardless of whether the process speed is high or low.

本発明の第6の目的は経時変化がなく安定した画質を与
えろ磁性トナーを提供することである。
A sixth object of the present invention is to provide a magnetic toner that does not change over time and provides stable image quality.

本発明のWJ7の目的は感光体上の残留トナーを良好に
除去できろ磁性トナーを提供することである。
The object of WJ7 of the present invention is to provide a magnetic toner that can effectively remove residual toner on a photoreceptor.

本発明の第8の目的は複写機内部のトナー粒子による汚
れのない磁性トナーを提供する事である。
An eighth object of the present invention is to provide a magnetic toner that is free from contamination by toner particles inside a copying machine.

本発明の前記のすべての目的は磁性トナー粉体の粒径が
5〜35μの範囲にあり、平均粒径が10〜18μ及び
粒径が8μ以下のものが5体積−以下の不定形微粉末と
、この不定形微粉末の表面に付着した添加剤からなる磁
性トナーにより達成することができる。更に好ましくは
不定形微粉末の粉体抵抗率が10 KV /cmの電界
下で1016Ωα以上、かつ圧縮抵抗率が5KV/cm
の電界下で10140百以上であり、帯7エ制御および
流動化のための添加剤と付着させた際の粉体抵抗率が1
0KV/cmの電界下で1015Ω儒以上、かつ圧縮抵
抗率が5Kv/r!nの電界下で10120画以上に制
御された磁性トナーにより達成することができる。
All of the above objects of the present invention are such that the particle size of the magnetic toner powder is in the range of 5 to 35μ, the average particle size is 10 to 18μ, and the particle size is 8μ or less, which is an amorphous fine powder of 5 volumes or less. This can be achieved by using a magnetic toner made of an additive attached to the surface of this amorphous fine powder. More preferably, the powder resistivity of the amorphous fine powder is 1016 Ωα or more under an electric field of 10 KV/cm, and the compression resistivity is 5 KV/cm.
10140 or more under an electric field of
1015Ω or more under an electric field of 0KV/cm, and compression resistivity is 5Kv/r! This can be achieved by using a magnetic toner that is controlled to 10120 pixels or more under an electric field of n.

以下に、本発明の構成を詳細に説明する。The configuration of the present invention will be explained in detail below.

本発明に用いる磁性トナーは高抵抗であるために、トナ
ー粒子の静電凝集等による粉体流動性の低下すること、
さらに、現像トナー像はエツジ効果が強く、非画CI!
、部の地汚れ、現像ムラ等が起こること等の問題がある
。これを解決するために、トナー表面に帯電制御剤や流
動化剤である微粒子を付着させる方法やトナー粒子を球
形化する方法等が提案されている。
Since the magnetic toner used in the present invention has high resistance, powder fluidity may be reduced due to electrostatic aggregation of toner particles, etc.
Furthermore, the developed toner image has a strong edge effect, and the non-image CI!
There are problems such as background smudges and uneven development. In order to solve this problem, methods have been proposed such as a method of attaching fine particles as a charge control agent or a fluidizing agent to the toner surface and a method of making toner particles spherical.

しかし、球形化処理には熱や溶剤を使用することによる
弊害1例えばトナー粒子同志の付着やトナー粒子の変質
を生ずること、これら処理のための工程を必要とするこ
と、残留溶剤による経時変化が起こること等の弊害があ
る。さらに、帯電制御剤として添加剤を混合付着させる
場合には、トナー粒子表面がなめらかすぎて。
However, the use of heat and solvent in the spheroidization process has disadvantages such as adhesion of toner particles and deterioration of toner particles, the need for processes for these processes, and the possibility of aging due to residual solvent. There are negative effects such as things that happen. Furthermore, when adhering an additive as a charge control agent, the surface of the toner particles is too smooth.

添加剤が付着しにり(、そのため遊離した添加剤による
画質の汚れや機械内部の汚れや酢時安定性に問題を生じ
てくる。この解決策として、添加剤をトナー粒子表面に
固着させる方法等が実施されているが、この方法では熱
風等を用いる必要があり、前述の弊害が生じる可能性が
ある。
Additives tend to stick to the surface of the toner particles (this results in problems such as image quality stains due to free additives, stains inside the machine, and stability when using vinegar.As a solution to this problem, there is a method of fixing the additives to the surface of the toner particles. However, this method requires the use of hot air or the like, which may cause the above-mentioned disadvantages.

一方、不定形粒子表面の凹凸が大きいと、凹部に添加剤
が偏在しやすく、帯電制御剤として加えである添加剤が
電荷交換の際効果を示さず電気特性制御が行われずトナ
ー粒子の帯電性。
On the other hand, if the surface of the amorphous particles has large irregularities, additives tend to be unevenly distributed in the recesses, and additives added as charge control agents have no effect during charge exchange, resulting in poor control of electrical properties and poor charging of toner particles. .

現は性、転写性、クリーニング性の低下をまねき、良好
な画質が得られない。従って、トナー粒子としては表面
がなめらかで不定形の微粉末が望ましい。特に粒子表面
に二種以上の材料が分散して表面を形成している場合、
トナー粒子間の接触の際、異種材料間で摩擦帯電が起こ
り、異符号の電荷を持つトナーが存在し、トナーが靜1
!凝集しやすい状態になる。これを防止するためにトナ
ー粒子表面に導電性もしくは半導電性の微小粒子を均一
に付着させることにより、帯電性、粉体流動性の改善が
図られる。ここで用いる微小粒子は粒径が10ミリミク
ロンから30ミリミクロンで、形状は任意であり、トナ
ー粒子表面に均一にかつ単層にて付着する半導7エ性も
しくは導電性の有機材料あるいは無機材料からなるもの
である。その例としては、カーボンプラ、り、金属粉、
金属塩、グラファイト、7ツ化黒鉛、酸化アルミニウム
、二酸化チタン。
At present, this leads to deterioration in image quality, transferability, and cleaning performance, making it impossible to obtain good image quality. Therefore, it is desirable that the toner particles be fine powders with smooth surfaces and irregular shapes. Especially when two or more materials are dispersed on the particle surface to form the surface,
When toner particles come into contact, frictional electrification occurs between different materials, and some toner particles have charges of opposite signs, causing the toner to become static.
! It becomes easy to aggregate. In order to prevent this, by uniformly adhering conductive or semiconductive fine particles to the surface of the toner particles, charging properties and powder fluidity can be improved. The microparticles used here have a particle size of 10 mm to 30 mm, can have any shape, and are semiconductive or conductive organic materials or inorganic materials that adhere uniformly and in a single layer to the toner particle surface. It is made of materials. Examples include carbon plastic, glue, metal powder,
Metal salts, graphite, graphite heptadide, aluminum oxide, titanium dioxide.

酸化亜鉛等がある。Examples include zinc oxide.

本発明の目的を達成するためKは、導電性粉末、なかで
もカーボンブラックをトナー表面に付着させるのが最も
簡便であり、特に黒色トナーの場合には好都合である。
In order to achieve the object of the present invention, it is most convenient to apply K to the toner surface by adhering a conductive powder, especially carbon black, to the toner surface, which is particularly advantageous in the case of a black toner.

添加量はトナー粒子表面を均一にかつ単層に付着させる
のに必要な量で、添加剤、トナー粒子それぞれの粒径、
比重から決められる。トナー粒子表面に付着させる添加
剤は、前記物質に限定されるものではなく、さらに流動
性、現像性、転写性、保存安定性をより以上に改善する
ために、あるいは光導電体表面へのトナーのフィルミン
グを防止し、トナーのクリーニング性を向上させるため
に、他の添加剤を加えて用いても良い。
The amount added is the amount necessary to adhere the toner particles uniformly and in a single layer on the surface, and depends on the particle size of the additive and toner particles,
Determined from specific gravity. Additives to be attached to the surface of toner particles are not limited to the above-mentioned substances, but may be used to further improve fluidity, developability, transferability, and storage stability, or to add toner particles to the surface of a photoconductor. Other additives may be added in order to prevent filming and improve the cleaning properties of the toner.

従来、トナー粒子の粒度分布は狭い方が良く、10μ〜
20μが最良であるとされている。粒度分布が広い場合
は、大粒径粒子と小粒径粒子が静’ttv集して、粉体
流動性を低下させる。これはおそらく、粒度によりトナ
ー組成にも偏りがあるため、摩擦帯電により異符号に帯
電し、大粒径粒子表面に、小粒径粒子が静電付着して、
粉体流動性を低下させることによると考えられる。さら
に、現1象の際には小粒径粒子の中で。
Conventionally, the narrower the particle size distribution of toner particles, the better, from 10μ to
20μ is said to be the best. When the particle size distribution is wide, large particles and small particles aggregate statically, reducing powder fluidity. This is probably because the toner composition is uneven depending on the particle size, so the toner is charged with different signs due to frictional charging, and the small particles are electrostatically attached to the surface of the large particles.
This is thought to be due to a decrease in powder fluidity. Furthermore, during the phenomenon, among small-sized particles.

特定の粒径のものが使われていると言われており、長時
間この広い分布を持つ磁性トナーを使用すると、粒度分
布が次第に変化し、画質の濃度低下、非画112部の汚
れ、画像部周辺のトナーの飛び散り等の現象が起こり、
経時安定性のないものとなる。
It is said that a specific particle size is used, and if a magnetic toner with this wide distribution is used for a long time, the particle size distribution will gradually change, resulting in a decrease in image quality, smearing of the non-image area, and damage to the image. Phenomenon such as toner scattering around the area may occur.
It becomes unstable over time.

一方、微小粒子が多量に存在すると、現像機のスリーブ
および(あるいは〕マグネットロールの回転数の増加に
よりトナー飛散が起こりやすくなり、機械内部を汚しや
すくなる。さらに、転写後感光体上に残留した微小粒子
はクリーニングされにくいという欠点を有する。さらに
、微小粒子が多量に存在することlこより、粉体流動性
が悪下する$はすでに公知である。
On the other hand, if a large amount of microparticles is present, toner scatters more easily due to an increase in the number of rotations of the sleeve and/or magnetic roll of the developing machine, making it easier to contaminate the inside of the machine. Fine particles have the disadvantage that they are difficult to clean.Furthermore, it is already known that the presence of a large amount of fine particles deteriorates powder flowability.

また、粒度が大きい粒子)1現Vaにほとんど寄与せず
、スリーブ上に残留し1画質が荒れ、解像力も低下する
。この原因は粒径が大きいと、トナー粒子−個当りの磁
気吸引力が粒径が小さいものより大きく、現像の際、ス
リーブ上に残りやすくなること、静電分極力の寄与が太
き(、トナー粒子で形成される鎖が切れに((なり。
In addition, particles with a large particle size hardly contribute to the current Va and remain on the sleeve, resulting in poor image quality and reduced resolution. The reason for this is that when the particle size is large, the magnetic attraction force per toner particle is larger than when the particle size is small, and it tends to remain on the sleeve during development, and the contribution of electrostatic polarization force is large ( The chains formed by toner particles break (().

スリーブ上に残りやすいことによると考えられる。This is thought to be due to the fact that it tends to remain on the sleeve.

本発明者らは種々の粒度分布を持つ磁性トナーについて
検討した結果、粒径が5〜35μの範囲にあり、平均粒
径が10〜18μ及び粒径が8μ以下のものが5体積チ
以下であるトナーが粉体流動性、現像性、転写性、クリ
ー二/グ性、経時安定性にすぐれ、機械内部を汚染しな
い磁性トナーに必要不可欠であることを見い出した。
The present inventors investigated magnetic toners with various particle size distributions and found that the particle size was in the range of 5 to 35μ, the average particle size was 10 to 18μ, and the particle size was 8μ or less with a volume of 5 μm or less. It has been discovered that a certain toner has excellent powder fluidity, developability, transferability, cleaning/grindability, and stability over time, and is essential for a magnetic toner that does not contaminate the inside of a machine.

次に、粉体の流動性を示す指標について説明する。従来
、粉体の流動性は安息角の項で表わされることが多いが
、これによれば再現性、精度に問題がある。本発明では
粉体の流動性を粉体圧縮率で表わすことにより、この問
題を解決した。
Next, an index showing the fluidity of powder will be explained. Conventionally, the fluidity of powder is often expressed in terms of the angle of repose, but this has problems with reproducibility and accuracy. In the present invention, this problem has been solved by expressing the fluidity of powder in terms of powder compressibility.

粉体圧縮率は以下のようにして求められる。Powder compressibility is determined as follows.

まず、円筒状容器に飾を通してトナーを供給し、軽く充
填された状態における見掛は密度ρ。を求める。次にト
ナーを補給しつつこの容器を測定台に上下に(つかえし
たたきつけ、トナーを圧縮し2はぼ最密充填したときの
密度ρPを求める。そしてC=【(ρ −ρlz)/ρ
、)X100(%)で定義されろCをもって粉体圧縮率
とする。粉体圧縮率の値は測定に用いる容器の形状、寸
法、材質により一般にやや異なるが、本発明において用
いた容器は直径2.81cW1%深さ4.0cmのステ
ンレス製の円筒容器である。粉体の流動性を表わすのに
安息角を用いる場合が多いが、本発明者等の実験による
と特に少量の試料を用いる場合粉体圧縮率のほうが格段
(C再現性が良く、その値は簡易に求められ、かつ流動
性との対応が非常に良好であることがわかった。
First, toner is supplied to a cylindrical container through a decoration, and when it is lightly filled, the apparent density is ρ. seek. Next, while replenishing toner, this container is placed up and down on a measurement stand, the toner is compressed, and the density ρP is determined when the toner is packed to the closest density. Then, C=[(ρ −ρlz)/ρ
, )X100(%), and let C be the powder compressibility. Although the value of powder compressibility generally varies slightly depending on the shape, dimensions, and material of the container used for measurement, the container used in the present invention is a stainless steel cylindrical container with a diameter of 2.81 cW1% and a depth of 4.0 cm. The angle of repose is often used to express the fluidity of powder, but according to experiments by the present inventors, powder compressibility is much better, especially when using a small amount of sample (C reproducibility is good, and its value is It was found that it was easily determined and corresponded very well to fluidity.

本発明における粉体圧縮率の25〜38%の範囲を安息
角であられすとすると、安息角の測定の誤差が大きいた
めに一概には言えないが1本発明者等の測定によれば概
ね34°〜556であった。本発明の粉体圧縮率25〜
40チを有する磁性トナーは粉体流動性にすぐれ、現像
性等にも問題はない。本発明の不定形微粉末の粉体圧縮
率は30〜55チであるが、添加剤をトナー表面に付着
させることにより、25〜40%の粉体圧縮率となる。
Assuming that the range of 25 to 38% of the powder compressibility in the present invention is the angle of repose, it cannot be generalized due to the large error in the measurement of the angle of repose, but according to the measurements made by the present inventors, it is approximately It was 34° to 556°. Powder compressibility of the present invention: 25~
The magnetic toner having a particle diameter of 40 cm has excellent powder fluidity and has no problems in developability. The powder compressibility of the amorphous fine powder of the present invention is 30 to 55%, but by attaching additives to the toner surface, the powder compressibility becomes 25 to 40%.

本発明の高抵抗磁性トナーは不定形微粉末の粉体抵抗率
がl0KV/αの電界下で10160α以上、かつ圧縮
抵抗率が5KV/cmの電界下で10140百以上であ
ることが必要である。さらに、添加剤をこの不定形微粉
末表面に付着させた後の粉体抵抗率が1.0Kv/c!
11の電界下で1015Ω口以上、かつ圧縮抵抗率が5
 K V 7口の電界下で1012Ωm以上であること
を必要とする。
The high-resistance magnetic toner of the present invention requires that the powder resistivity of the amorphous fine powder be 10,160α or more under an electric field of 10KV/α, and the compression resistivity of 10,140 or more under an electric field of 5KV/cm. . Furthermore, the powder resistivity after adhering additives to the surface of this amorphous fine powder is 1.0 Kv/c!
1015Ω or more under an electric field of 11, and a compression resistivity of 5
It needs to be 1012 Ωm or more under an electric field of KV7.

磁気ロールで磁性トナーを搬送して静電m1象を現1象
する際のトナーの動きを観察すると、交番磁界により磁
性トナーが激しく運動し、更に、現像二ッグ部ではトナ
一層がかなり圧縮されていることが解る。即ち、転写前
のトナーの状態を静的な状態と呼ぶならば、現像時のト
ナーは極めて動的な状態にあるということができる。
Observing the movement of the toner when it is conveyed by a magnetic roll and exhibiting the electrostatic m1 phenomenon, the magnetic toner moves violently due to the alternating magnetic field, and furthermore, the toner layer is considerably compressed in the second developing section. I understand what is happening. That is, if the state of the toner before transfer is called a static state, the toner during development can be said to be in an extremely dynamic state.

本発明者はこの現像時と転写時とのトナーの状態の差に
着目し、磁性トナーの抵抗コントロールを検討した。現
像時、つまり動的な状態では、静的転写時に比し、トナ
ー粒子相互の接触確率は桁違いに高(、又接触面積も非
常に広くなっていると考えられる。磁性トナーは強磁性
体、カーボンブラック等の導電性の高い材料と結着樹脂
等の高絶縁性材料との複合材料と考えることが出来るが
、高導電性材料の濃度と分散状態とを適度にコントロー
ルすれば、静的状態では、高電場下でも比較的高抵抗で
あり、トナー粒子どうしの接触確率、接触面積の大きな
動的状態では、高電場下でわずかに導電性化することは
決して不可能ではない。
The present inventor focused on the difference in the state of the toner between development and transfer, and investigated resistance control of the magnetic toner. During development, that is, in a dynamic state, the probability of toner particles coming into contact with each other is an order of magnitude higher (and the contact area is also considered to be much larger) than during static transfer.Magnetic toner is a ferromagnetic material. It can be thought of as a composite material of a highly conductive material such as carbon black and a highly insulating material such as a binder resin, but if the concentration and dispersion state of the highly conductive material are appropriately controlled, static In this state, it has a relatively high resistance even under a high electric field, and in a dynamic state where the probability of contact between toner particles and the contact area is large, it is by no means impossible to make it slightly conductive under a high electric field.

本発明者はこの静的状態を、トナーの粉体トナー抵抗率
で、動的状態を、トナー粒子を加圧収をして得た固体試
料の体積固有抵抗値である圧縮抵抗率でモデル化し検討
した結果、不定形微粉末の粉体抵抗が10160薗以上
、かつ圧縮抵抗率が10140σ以上であり、添加剤を
付着させた際の粉体抵抗率が101sΩ百以上、かつ圧
縮抵抗率が10120の以上のものが、高抵抗であるに
もかかわらず、現潅性も十分満足できることを確認した
The present inventor modeled this static state using the toner powder resistivity, and the dynamic state using the compression resistivity, which is the volume resistivity of a solid sample obtained by pressurizing toner particles. As a result of the study, it was found that the powder resistance of the amorphous fine powder was 10160 or more, and the compression resistivity was 10140σ or more, and the powder resistivity when the additive was attached was 101sΩ or more, and the compression resistivity was 10120 or more. It was confirmed that the above-mentioned materials had a high resistance, but the current permeability was sufficiently satisfactory.

なお、一般に圧縮抵抗率は粉体抵抗率より常に低い値を
示す。
Note that, in general, the compression resistivity always shows a lower value than the powder resistivity.

従来、磁性トナーの電気抵抗として記載されているもの
は多くの場合粉体抵抗率に相当するものであり、これだ
けでは現像時の抵抗を十分反映することはできない。さ
らに、高抵抗磁性トナーにおける電荷移動を詳細に検討
したところトナー表面に付着している添加剤が重要な役
目を担っていることが明らかになってきた。そして間接
的に、トナー表面での電荷交換性を測定する方法として
本発明者等は添加剤が存在する場合としない場合のそれ
ぞれの粉体抵抗率及び圧縮抵抗率を測定することが有効
であることを見い出した。本発明で必要とされる電気抵
抗率の範囲を満さない場合、例えば不定形微粉末の粉体
抵抗率が1015Ω画である場合には圧縮抵抗率は10
130副であり、導電性または半導′4性の微粉末を不
定形微粉末の表面て付Mさせると粉体抵抗率は1014
Ωα以下、圧縮抵抗率は10100α以下となり、転写
時の画像の乱れが激しく。
Conventionally, what has been described as the electrical resistance of magnetic toner corresponds to the powder resistivity in most cases, and this alone cannot sufficiently reflect the resistance during development. Furthermore, a detailed study of charge transfer in high-resistance magnetic toner has revealed that additives attached to the toner surface play an important role. Indirectly, as a method for measuring the charge exchangeability on the toner surface, the present inventors found that it is effective to measure the powder resistivity and compression resistivity in the presence and absence of additives. I discovered that. When the electric resistivity range required by the present invention is not satisfied, for example, when the powder resistivity of amorphous fine powder is 1015Ω, the compression resistivity is 10
When conductive or semiconductive fine powder is applied to the surface of amorphous fine powder, the powder resistivity is 1014.
Below Ωα, the compression resistivity is below 10100α, and the image is severely disturbed during transfer.

満足な画質を得ることができない。一方、導電性または
半導電性の添加剤のかわりに、絶縁性の添加剤を不定形
微粉末表面に付着させると、粉体抵抗率は10150の
、圧縮抵抗率を工1012Ωαにはなるが、塊法ムラや
白抜げが発生し、高品質の画質は得られなかった。さら
にこれより粉体抵抗率が低い、不定形微粉末について同
様の検討を行ったところ、転写性が極端に低下し、満足
のい(画質は得られなかった。
Unable to obtain satisfactory image quality. On the other hand, if an insulating additive is attached to the surface of the amorphous fine powder instead of a conductive or semiconductive additive, the powder resistivity becomes 10150 and the compression resistivity becomes 1012Ωα. Block method unevenness and white spots occurred, and high quality images could not be obtained. Furthermore, when similar studies were conducted on amorphous fine powder with a powder resistivity lower than this, the transferability was extremely reduced and unsatisfactory (image quality could not be obtained).

なお1本発明における電気抵抗値の定義および測定法は
下記の説明のとおりである。本発明で、粉体トナー抵抗
率と称する抵抗値は、JISK6911に従いガード電
極を有し、直径5cInの電極間に流れる電流値より求
めたものである。ただし、電極は、水銀ではなく、真鍮
製で、これを保持する絶縁体として高絶縁性ポリ四弗化
エチレン樹脂を用いた。この電極間に、トナー粉末を厚
さ0.12±0.0251に均一に充填し、電極との接
触を良好にするために、約50fP/c11の荷重を加
えた。その後直流電圧を印加して電流を測定し、これを
固有抵抗率に換算した。ここでの粉体抵抗率は、便宜上
電界10KV/@での値を採用している。これは、これ
より低い電界では高抵抗トナーの抵抗値は誤差が大きく
なることと、転写電界は概ね10’V/cInであり1
本発明で用いた装置では転写時よりトナーが高密度に充
填されているために、転写電界より低い電界でも、転写
電界下での磁性トナーの抵抗値を十分に反映しているか
らである。さらに、より高い電場で測定を行うと、トナ
ー材料によっては発熱変化し、測定値にノイズを含む懸
念があるためである。
Note that the definition and measurement method of the electrical resistance value in the present invention are as explained below. In the present invention, the resistance value referred to as powder toner resistivity is determined from the value of current flowing between electrodes having a guard electrode and having a diameter of 5 cIn according to JIS K6911. However, the electrodes were made of brass instead of mercury, and highly insulating polytetrafluoroethylene resin was used as the insulator to hold them. Toner powder was uniformly filled between the electrodes to a thickness of 0.12±0.0251, and a load of about 50 fP/c11 was applied to ensure good contact with the electrodes. Thereafter, a DC voltage was applied, the current was measured, and this was converted into specific resistivity. For convenience, the value of the powder resistivity at an electric field of 10 KV/@ is adopted here. This is because the resistance value of high-resistance toner will have a large error when the electric field is lower than this, and the transfer electric field is approximately 10'V/cIn, so 1
This is because the device used in the present invention is filled with toner at a higher density than during transfer, so even an electric field lower than the transfer electric field sufficiently reflects the resistance value of the magnetic toner under the transfer electric field. Furthermore, if the measurement is performed using a higher electric field, some toner materials may generate heat, and there is a concern that the measured values may include noise.

一方、圧縮抵抗率はトナー粉体を常温で加圧成型して、
直径5cM、厚さ約2.5鴫の円板状試料とした後、ガ
ード電極を有する直径3.4αの真鍮製′電極間に密着
させて、直流電圧を印加して1!流値を測定し、これを
固有抵抗率に換算したものである。円板状試料の加圧成
型は約500紛/6Aから約1000 K9 / c−
dの圧力を約30秒間。
On the other hand, the compression resistivity is determined by molding the toner powder under pressure at room temperature.
After forming a disk-shaped sample with a diameter of 5 cm and a thickness of about 2.5 cM, it was placed in close contact between brass electrodes with a diameter of 3.4 α and a guard electrode, and a DC voltage was applied. The current value is measured and converted into specific resistivity. Pressure molding of disc-shaped samples ranges from about 500 powder/6A to about 1000 K9/c-
d pressure for about 30 seconds.

90’ずつ方向を変えて4回加圧することにより行った
。成厖圧を変えるのは、圧縮トナー抵抗率が、加圧成型
試料中の空隙により変化しないように空隙率を5チ以下
にするためである。結着樹脂中に軟質成分を多(含有す
る磁性トナーは低圧で成型し、また硬質成分を多(含有
する磁性トナーを1高圧で成型することにより、一定の
空隙を有する試料が調整できる。これに必要な圧力はほ
ぼ約500Kg/c!Iから約1000Kf/−であっ
た。加圧成型試料中の空隙が5チ以丁の本発明で定義す
る圧縮抵抗:$はトナー固体の実際の体債抵抗率という
より、むしろ高充填、高接触状態でのトナー粉体の接触
抵抗というべきであり、トナー粉体集合の動的状態下で
の抵抗の指標として、非常に有効であると考えられる。
This was done by applying pressure four times, changing the direction by 90'. The purpose of changing the forming pressure is to keep the porosity to 5 or less so that the resistivity of the compressed toner does not change due to voids in the pressure-molded sample. By molding the soft component (containing magnetic toner) in the binder resin at low pressure and the hard component (containing magnetic toner) by molding the hard component (containing magnetic toner) at high pressure, a sample with a certain amount of voids can be prepared. The pressure required for this was about 500 Kg/c!I to about 1000 Kf/-.The compression resistance defined in the present invention when the void in the pressure-molded sample is 5 or more: $ is the actual body of toner solid. Rather than bond resistivity, it should be referred to as the contact resistance of the toner powder under high filling and high contact conditions, and is considered to be a very effective indicator of the resistance of toner powder aggregates under dynamic conditions. .

圧縮抵抗率は、5KV10nの電界での値を採用してい
る。これは、低電界での測定において、粉体抵抗率の測
定と同様に低電界での誤差の問題があることと、現数電
界は10Kv/cMとされているが、感光体上の舊渫の
電位に分布があるため必ずしも一定の電界値に規定でき
ないが、現像の際のトナー粒子の充填と、加圧成型試料
の空隙率とを比較すると、はるかに加圧成製試料の方が
密に充填されており、104■/cfRより低い電界で
測定可能となることがわかった。さらに。
For the compression resistivity, the value at an electric field of 5KV10n is adopted. This is due to the problem of errors in low electric fields, similar to the measurement of powder resistivity, and the fact that the current electric field is said to be 10 Kv/cM, but the Although it is not necessarily possible to specify a constant electric field value because there is a distribution in the potential of It was found that measurements could be made with an electric field lower than 104 /cfR. moreover.

本発明者らが種々検討した結果、電界は5 Kv/cr
Rが最適であることを見い出した。
As a result of various studies by the inventors, the electric field was 5 Kv/cr.
It was found that R is optimal.

粉体抵抗率、圧縮抵抗率は共に温度約25℃。Both powder resistivity and compression resistivity are at a temperature of approximately 25°C.

湿度約60チの条件下で電圧印加1分後に測定した電流
値から体積抵抗を計算して求めたものである。
The volume resistance was calculated from the current value measured 1 minute after voltage application under conditions of approximately 60° humidity.

本発明の磁性トナーの製造はどの様な方法でもよいが、
前記記載の粉度分布と電気抵抗性をもつ不定形微粉末か
らなる磁性トナーを製造する方法として、結M’M脂及
び磁性体粉末に、必要に応じて内部添加剤を加えて溶融
混練し、冷却後機械的に粉砕して不定形微粉末とする。
The magnetic toner of the present invention may be produced by any method, but
As a method for producing a magnetic toner made of amorphous fine powder having the above-mentioned particle size distribution and electrical resistance, internal additives are added as needed to the condensed M'M resin and magnetic powder, and the mixture is melt-kneaded. After cooling, it is mechanically pulverized into an amorphous fine powder.

粉砕法を大別すると (1)被粉砕物同志を衝突させて微粉化する方法(2)
被粉砕物同志を衝突させずに微粉化する方法 の二つがある。本発明で用いるのは後者の粉砕法が好ま
しく、たとえばターボミル等があり峙願昭   号)、
この方法を用いると望みの粒度分布を有する微粉砕物を
容易に得ろことができる。この方法によれば、被粉砕物
が粉砕室内に設けられた周速60m/S以上で高速回転
する羽根、粉砕室内壁、粉砕室内に発生する渦に衝突す
るために、ショートバスで粉砕され、粒度分布が狭(、
均一な組成でかつ表面が比較的なめらかな不定形の粉砕
物を得ることができる。
The pulverization methods can be roughly divided into (1) a method in which the objects to be crushed are made to collide with each other to become fine powder (2)
There are two methods of pulverizing the objects without causing them to collide with each other. The latter pulverization method is preferable for use in the present invention, such as a turbo mill, etc.
Using this method, a finely ground product having a desired particle size distribution can be easily obtained. According to this method, the material to be crushed is crushed in a short bath in order to collide with the blades provided in the crushing chamber that rotate at high speed at a peripheral speed of 60 m/s or more, the walls of the crushing chamber, and the vortices generated inside the crushing chamber. Narrow particle size distribution (,
An irregularly shaped pulverized product with a uniform composition and a relatively smooth surface can be obtained.

磁性トナーとして用いるこ′の微粉末は前記の粒度分布
とするために必要により分級なする。
The fine powder used as the magnetic toner is classified as necessary to obtain the above-mentioned particle size distribution.

さらに、この微粉末に前記記載の外部添加剤をクーロン
力、ファンデルワールス力等で表面に付着させる。
Furthermore, the external additives described above are attached to the surface of this fine powder using Coulomb force, van der Waals force, or the like.

外部添加剤の付着方法として、外部添加剤をトナー微粉
末表面に均一に分散させるために。
As a method of attaching external additives, this method is used to uniformly disperse external additives on the surface of fine toner powder.

また、トナー微粉末を破壊、付着、融着することのない
方法を採用した。この方法は、周速25m/S以上の高
速に回転する攪拌羽根を攪拌室内に有する攪拌器(たと
えばヘンシェルミキサー等)を用いて短時間、例えば数
10秒以内での処理をするものである。添加剤は、トナ
ー粒子表面に固着させても良い。
In addition, a method was adopted that does not destroy, adhere, or fuse the fine toner powder. This method uses a stirrer (such as a Henschel mixer) having a stirring blade in a stirring chamber that rotates at a peripheral speed of 25 m/s or more to carry out the treatment in a short time, for example within several tens of seconds. The additive may be fixed to the surface of the toner particles.

本発明の高抵抗磁性トナーの製造に用いる材料について
以下に説明する。
The materials used for manufacturing the high-resistance magnetic toner of the present invention will be explained below.

先づ、穂着樹脂材′#+は特に限定されず、基本的には
天然及び合成の如何なる樹脂状物質も使用することがで
きる。特に1種々の目的に応じて、非相溶性成分を有す
る二種以上の樹脂を用いた磁性トナー、軟質取分を硬質
成分中に分散させた構成を有する磁性トナー、例えば圧
力でトナー画像を普通紙等に固定するのに用いられる圧
力定着トナーとして有効である。
First, the bristled resin material '#+ is not particularly limited, and basically any natural or synthetic resinous substance can be used. In particular, depending on various purposes, magnetic toners using two or more types of resins having incompatible components, magnetic toners having a structure in which a soft fraction is dispersed in a hard component, etc. It is effective as a pressure fixing toner used for fixing onto paper, etc.

圧力定着用磁性トナーの結着樹脂はトナー組成物中で連
続相を形成することにより、トナーの粉砕性、耐ブロッ
キング性、耐衝撃性、粉体流動性等を保証する硬質成分
と常温で塑性変形、粘弾性変形が可能で、トナー組放物
に感圧変形能および粘着性を付与する軟質成分から構成
されている。
By forming a continuous phase in the toner composition, the binder resin of magnetic toner for pressure fixing has a hard component that guarantees the toner's crushability, blocking resistance, impact resistance, powder fluidity, etc., and plasticity at room temperature. It is composed of a soft component that is capable of deformation and viscoelastic deformation and imparts pressure-sensitive deformability and adhesiveness to the toner assembly.

各成分共、必ずしも一種の樹脂に限定されるものではな
(、さらに周成分を有する共重合体でも良い。
Each component is not necessarily limited to one type of resin (and may also be a copolymer having peripheral components).

次にこれら成分の具体例を示す。硬質成分としては、ス
チレンあるいはその誘導体の単独重合あるいは他の重合
性単量体との共重合によって得られるスチレン系重合体
、アクリル酸あるいはメタクリル酸の単独重合体あるい
は他の重合性単a体との共重体、アルキルメタクリレー
ト重合体あるいはそσ)共重合体、ノ・ロゲン化ビニル
の重合体あるいはその共重合体、ポリスルホン、ポリア
ミド、ポリエステル、ポリ力−ボネート等がある。
Next, specific examples of these components will be shown. As the hard component, styrenic polymers obtained by homopolymerization of styrene or its derivatives or copolymerization with other polymerizable monomers, homopolymers of acrylic acid or methacrylic acid, or other polymerizable monomers. Examples include copolymers of alkyl methacrylate or copolymers thereof, polymers of vinyl chlorides or copolymers thereof, polysulfones, polyamides, polyesters, polybonates, and the like.

軟質成分としては、ブタジェン、イソブレy等のジエン
系重合体あるいはその共重合体、オレフィン系重合体あ
るいはその共重合体、酢酸ビニル重合体あるいはその共
重合体、アルキレンオキシド重合体、シリコン樹脂、ウ
レタン重合体、ポリエステル、パラフィンワックス、低
分子tポリエチレン、ポリプロピレン、エチレン/酢酸
ビニル共重合体、エチレン/アクリル酸共重合体、エチ
レンオキサイド、有機酸グラフトポリエチレン等の低分
子量結晶性ポリオレフィン系の単独及び共重合体、さら
Kはこれらの酸化物、ハロゲン化物、ケン化物等、また
低分子量結晶性のポリアミドあるいはポリエステル等か
ら選択することができろ。
Soft components include diene polymers such as butadiene and isobray, or copolymers thereof, olefin polymers or copolymers thereof, vinyl acetate polymers or copolymers thereof, alkylene oxide polymers, silicone resins, and urethane. Polymers, polyesters, paraffin waxes, low molecular weight polyethylene, polypropylene, ethylene/vinyl acetate copolymers, ethylene/acrylic acid copolymers, ethylene oxide, organic acid-grafted polyethylene, and other low-molecular-weight crystalline polyolefins alone and in combination. The polymer may be selected from oxides, halides, saponified products, etc. of these, and low molecular weight crystalline polyamides, polyesters, etc.

又、磁性体粉末としては感母性を示すあらゆる材料を用
いることができる。例としては鉄、ニッケル、コバルト
等の金属、金属酸化物、合金等が挙げられろ。磁性トナ
ーの場合、四三酸化鉄、三二酸化鉄、コバルト4添加酸
化鉄、フェライト、ニッケル粉末等が使用され、その添
加量は、現像条件、磁性体材料の種類や、電気抵抗によ
り、決定されるが、トナー組成物100重量部に対して
、40重量部から70重量部の範囲で配合するのが望ま
しい。磁性体の磁気特性も、添加量、現像方式により異
なるが、保磁力50〜7000e 、飽和磁化50〜2
00 emu/y程度の範囲のものを使用することがで
きる。磁性体粉末の粒径はトナーの粒径との関連で決定
されるが、通常の粒径数十μのトナーに対しては、0.
01〜1μ、好ましくは0.05〜0.5μ程度のもの
が使用しやすい。又、磁性体粉末の形状は特に限定され
ない。しかし1本発明で必要な抵抗値を達成するために
は、針状磁性体粉末よりも粒状磁性体粉末を用いる方が
よ(、磁性粉を比較的多i−に含有するPこもかかわら
ず、高抵抗の磁性トナーが得られる。この原因は不明で
あるが、トナー表面への磁性粉の露出度、トナー粒子内
での磁性粉の分散性等の関イ2で1粒状磁性体粉末の方
が針状磁性体粉末より、トナー粒子の導電性を低くする
ことができるのではないかと推測される。なお、磁性体
粉末は結着樹脂への分散性の安定化、トナーの湿度依存
性の改善等のためにその表面を親油化処理をしても良い
Further, as the magnetic powder, any material exhibiting mother-sensitivity can be used. Examples include metals such as iron, nickel, cobalt, metal oxides, alloys, etc. In the case of magnetic toner, triiron tetroxide, iron sesquioxide, cobalt-4 added iron oxide, ferrite, nickel powder, etc. are used, and the amount added is determined by the development conditions, the type of magnetic material, and the electrical resistance. However, it is desirable that the amount is in the range of 40 to 70 parts by weight based on 100 parts by weight of the toner composition. The magnetic properties of the magnetic material also vary depending on the amount added and the development method, but the coercive force is 50 to 7000e, and the saturation magnetization is 50 to 2.
00 emu/y can be used. The particle size of the magnetic powder is determined in relation to the particle size of the toner, but for toner with a normal particle size of several tens of microns, the particle size is 0.
01 to 1μ, preferably about 0.05 to 0.5μ is easy to use. Further, the shape of the magnetic powder is not particularly limited. However, in order to achieve the resistance value required in the present invention, it is better to use granular magnetic powder rather than acicular magnetic powder (despite P containing a relatively large amount of magnetic powder, A magnetic toner with high resistance can be obtained.The reason for this is unknown, but due to factors such as the degree of exposure of the magnetic powder to the toner surface and the dispersibility of the magnetic powder within the toner particles, single-grain magnetic powder is better. It is speculated that the conductivity of toner particles can be lowered than that of acicular magnetic powder.Magnetic powder can stabilize the dispersibility in the binder resin and reduce the humidity dependence of the toner. For improvement, etc., the surface may be subjected to lipophilic treatment.

トナー中にはこの外、昇華性、非昇華性の染料、特に着
色を目的としない体質顔料をも含む顔料、可塑剤、補強
剤、劣化防止剤、帯電極性制御剤等を必要に応じて添加
することができる。
In addition, sublimable and non-sublimable dyes, pigments including extender pigments not intended for coloring, plasticizers, reinforcing agents, deterioration inhibitors, charge polarity control agents, etc. are added to the toner as necessary. can do.

なお1本発明の現隊剤は必ずしも一種のトナーのみで構
成する必要はな(、二種以上のトナーの混合物であって
も良い。又、場合によってはキャリア粒子と組合せて二
成分現像剤として使用することもできる。又、圧力定着
だゆではなく、熱定着、フラッシュ定着用トナーとして
も使用できる。更に又、11L気的/fffll’では
な(、凪気的潜像を現像することも可能である。
Note that the developer agent of the present invention does not necessarily have to be composed of only one type of toner (it may be a mixture of two or more types of toner), and in some cases, it can be used in combination with carrier particles to form a two-component developer. It can also be used as a toner for heat fixing and flash fixing instead of pressure fixing.Furthermore, it can also be used to develop a latent image in a calm state. It is possible.

以下に1本発明を実施例及び比較例により説明するが、
本発明はこの記載によって限定されるものではない。
The present invention will be explained below with reference to Examples and Comparative Examples.
The invention is not limited by this description.

なお例中の「部」はすべて重量部を意味する・実施例1 ポリスチレン            30部スチレン
−アリルアルコール共重合体 10部低紙子量ポリエチ
レン        10部粒状四三酸化鉄     
      50部をロータ回転型混練機によって、1
10〜!20’0で、10分間混練し、二本ロールで圧
延後、冷却して粗粉砕及び機械粉砕による微粉砕、必要
に応じて更に風力分級機によって表1の粒度分布を持つ
磁性トナーを試作した。粒度分布の測定はマイクロトラ
ック(ノースラップアンド リーズ社製)を用いて行な
った。粉体抵抗率及び圧wa低抗率を測定したところ表
1の様になった。
In addition, all "parts" in the examples mean parts by weight.Example 1 Polystyrene 30 parts Styrene-allyl alcohol copolymer 10 parts Low paper weight polyethylene 10 parts Granular triiron tetroxide
50 parts were mixed into 1 by using a rotor-rotating kneader.
10~! After kneading at 20'0 for 10 minutes, rolling with two rolls, cooling, coarsely pulverizing and finely pulverizing by mechanical pulverizing, and further using an air classifier as necessary, a magnetic toner having the particle size distribution shown in Table 1 was produced as a prototype. . The particle size distribution was measured using Microtrack (manufactured by Northrup & Leeds). When the powder resistivity and pressure wa low resistance were measured, the results were as shown in Table 1.

表1に示した7種のトナーにカーボンブラック(粒径2
4ミリミクロン、PFI8.13 )を0.50部添加
し、混合付着させ、cIi性トナーとした。この磁性ト
ナーの粉体抵抗率及び圧縮抵抗軍、さらに粉体圧縮率を
測定しその値をも表1(て示したO この磁性トナーなXEROX2300 (富士ゼロック
ス■社製)の現像機を改良した。−成分塊法用磁気ロー
ルを用いて現像し、普通紙に転写し、線圧20 Kq/
crtrで圧力定着を行った。得られた画澹の評価を表
2に示す。
Carbon black (particle size 2
4 millimicrons, PFI 8.13) was added and mixed and deposited to obtain a cIi toner. The powder resistivity and compression resistance of this magnetic toner, as well as the powder compressibility were measured and the values are shown in Table 1. - Developed using a magnetic roll for the component block method, transferred to plain paper, and applied a linear pressure of 20 Kq/
Pressure fixing was performed using crtr. Table 2 shows the evaluation of the obtained image blur.

表2 定着性は7穏共はぼ同じであった。Table 2 The fixing properties were almost the same for the seven grades.

実施例2 低分子量ポリステン7       20部エチレン−
酢酸ビニル共重合体    14部エチレン−ブタジェ
ン−エチレン共重合体11部粒状四三酸化鉄     
      55部を実施例1と同様の方法で製造し、
風力分級機によって5μ以下及び35μ以上の粒度のも
のを除き、平均粒径14μ、8μ以下のものが5体積チ
になる様に調整した。
Example 2 Low molecular weight polystene 7 20 parts ethylene
Vinyl acetate copolymer 14 parts Ethylene-butadiene-ethylene copolymer 11 parts Granular triiron tetroxide
55 parts were produced in the same manner as in Example 1,
Particles with a particle size of 5μ or less and 35μ or more were removed using an air classifier, and the particles with an average particle size of 14μ and 8μ or less were adjusted to 5 volumes.

この不定形微粉末の抵抗率を測定したところ。The resistivity of this amorphous fine powder was measured.

粉本トナー抵抗率は2 X 10”Ωの、圧縮抵抗軍は
3 X 10” Qcmであった。この磁性トナーに、
粒径が24ミリミクロン、 PHが864のカーボンブ
ラックを0.3部混合付着させて抵抗率を測定したとこ
ろ、粉体抵抗率は9X10’Ωm、圧縮抵抗率はlXl
0’Ω薗であった。さらに粉体圧縮率を測定したところ
34%の値を得た。
The powder toner resistivity was 2 x 10" ohms and the compressive resistance was 3 x 10" Qcm. This magnetic toner
When 0.3 parts of carbon black with a particle size of 24 millimicrons and a pH of 864 was mixed and deposited, the resistivity was measured, and the powder resistivity was 9X10'Ωm, and the compression resistivity was 1X1.
It was 0'Ω Sono. Furthermore, when the powder compressibility was measured, a value of 34% was obtained.

この磁性トナーを実施例1と同様の複写機を用いて、現
像、転写して画像を得たが、高品質の画鐵が得られ、3
万コピー後の画質も低下することはなかった。
This magnetic toner was developed and transferred using the same copying machine as in Example 1 to obtain an image.
Image quality did not deteriorate even after 10,000 copies.

比較例1 実施例1と同様の材料を用い、混線から粗粉砕まで実施
例1と同じ方法により、次いでジェットミルで微粉砕を
行なった。得られた微粉は粒度分布が非常に広(,5μ
以下の微粉、35μ以上の粗粉を除去し、実施例2と同
じ粉度分布を持つ不定形微粉末を得るのに機械粉砕法で
得た微粉末の3倍の分級時間を必要とした。粉体抵抗率
は9X10”0m、圧縮抵抗率は7X10”Ωdであっ
た。
Comparative Example 1 Using the same materials as in Example 1, the same method as in Example 1 was used from mixing to coarse pulverization, followed by fine pulverization using a jet mill. The obtained fine powder has a very wide particle size distribution (5μ
In order to remove the following fine powders and coarse powders of 35 μm or more and obtain an amorphous fine powder having the same particle size distribution as in Example 2, three times as long the classification time as for the fine powder obtained by the mechanical pulverization method was required. The powder resistivity was 9×10”0m, and the compression resistivity was 7×10”Ωd.

さらに、実施例2と同様にして同じカーボンブラックを
混合付着させ、抵抗率を測定したところ粉体抵抗率は2
X1015Ω備、圧縮抵抗率は2X10”Ωαであった
。さらに粉体圧縮率を工46チであった。抵抗率や粉体
圧縮率が実施例2と異なるのは、粉砕界面が実施例2と
異なる1こめと考えられる。この磁性トナーを用いて、
実施例2と同様に現像、転写を行ったところ搬送むらに
よると思われる現1タムラを生じた。
Furthermore, the same carbon black was mixed and deposited in the same manner as in Example 2, and the resistivity was measured, and the powder resistivity was 2.
The powder compressibility was 46 cm. It is thought that this is a different method.Using this magnetic toner,
When development and transfer were carried out in the same manner as in Example 2, some unevenness occurred, which was thought to be due to uneven conveyance.

電子顕微鐘にて実施例2と比較例1のS性トナーの形状
及び添加剤の付着の様子を観察したところ比較例1のも
のは、実施例2のものよりトナー表面の凹凸がかなり太
き(、添加剤が凹部に偏在しており、凸部には添加剤の
付着がみられない部分があった。
When the shapes of the S-type toners of Example 2 and Comparative Example 1 and the adhesion of additives were observed using an electron microscope, it was found that the toner surface of Comparative Example 1 had considerably thicker unevenness than that of Example 2. (The additive was unevenly distributed in the concave parts, and there were parts of the convex parts where no additive was observed.

Claims (1)

【特許請求の範囲】 1、結着樹脂中に磁性粉を含有する不定形微粉末とこの
微粉末表面に付着した添加剤との混合物からなる磁性ト
ナーにおいて、不定形微粉末の平均粒径が10〜18μ
であり、その粒度分布が5〜35μであって、粒径8μ
以下の微粉末の量が5体積%以下であり、混合物の粉体
圧縮率が25〜40%であることを特徴とする磁性トナ
ー。 2、前記不定形微粉末が、10KV/cmの電界下での
粉体抵抗率が10^1^6Ωcm以上で、5KV/cm
の電界下での圧縮抵抗率が10^1^4Ωcm以上であ
り、前記混合物が、10KV/cmの電界下での粉体抵
抗率が10^1^5Ωcm以上で5KV/cmの電界下
での圧縮抵抗率が10^1^2Ω以上であることを特徴
とする特許請求の範囲第1項に記載の磁性トナー。
[Claims] 1. In a magnetic toner made of a mixture of an irregularly shaped fine powder containing magnetic powder in a binder resin and an additive attached to the surface of this fine powder, the average particle size of the irregularly shaped fine powder is 10~18μ
and its particle size distribution is 5 to 35μ, with a particle size of 8μ
A magnetic toner characterized in that the amount of the following fine powder is 5% by volume or less, and the powder compressibility of the mixture is 25 to 40%. 2. The amorphous fine powder has a powder resistivity of 10^1^6Ωcm or more under an electric field of 10KV/cm, and 5KV/cm.
The powder resistivity under an electric field of 10^1^4 Ωcm or more is 10^1^4 Ωcm, and the powder resistivity under an electric field of 10 KV/cm is 10^1^5 Ωcm or more and the powder resistivity under an electric field of 5 KV/cm is 10^1^4 Ωcm or more. The magnetic toner according to claim 1, having a compression resistivity of 10^1^2 Ω or more.
JP61218216A 1986-09-18 1986-09-18 Magnetic toner Pending JPS6374070A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61218216A JPS6374070A (en) 1986-09-18 1986-09-18 Magnetic toner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61218216A JPS6374070A (en) 1986-09-18 1986-09-18 Magnetic toner

Publications (1)

Publication Number Publication Date
JPS6374070A true JPS6374070A (en) 1988-04-04

Family

ID=16716433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61218216A Pending JPS6374070A (en) 1986-09-18 1986-09-18 Magnetic toner

Country Status (1)

Country Link
JP (1) JPS6374070A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5635781A (en) * 1993-12-22 1997-06-03 Matsushita Electric Industrial Co., Ltd. Brushless motor with an improved connector terminal
US6323571B1 (en) 1993-11-08 2001-11-27 Mitsubishi Denki Kabushiki Kaisha Rotary motor and production method thereof, and laminated core and production method thereof
US6362553B1 (en) 1989-11-08 2002-03-26 Mitsubishi Denki Kabushiki Kaisha Rotary motor and production method thereof, and laminated core production method thereof
WO2013100187A1 (en) * 2011-12-27 2013-07-04 Canon Kabushiki Kaisha Magnetic toner

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6362553B1 (en) 1989-11-08 2002-03-26 Mitsubishi Denki Kabushiki Kaisha Rotary motor and production method thereof, and laminated core production method thereof
US6323571B1 (en) 1993-11-08 2001-11-27 Mitsubishi Denki Kabushiki Kaisha Rotary motor and production method thereof, and laminated core and production method thereof
US5635781A (en) * 1993-12-22 1997-06-03 Matsushita Electric Industrial Co., Ltd. Brushless motor with an improved connector terminal
WO2013100187A1 (en) * 2011-12-27 2013-07-04 Canon Kabushiki Kaisha Magnetic toner
JP2013134447A (en) * 2011-12-27 2013-07-08 Canon Inc Magnetic toner
CN104024951A (en) * 2011-12-27 2014-09-03 佳能株式会社 Magnetic toner
KR20140107516A (en) * 2011-12-27 2014-09-04 캐논 가부시끼가이샤 Magnetic toner
US20140315126A1 (en) * 2011-12-27 2014-10-23 Canon Kabushiki Kaisha Magnetic toner
US9423710B2 (en) 2011-12-27 2016-08-23 Canon Kabushiki Kaisha Magnetic toner
US9658548B2 (en) 2011-12-27 2017-05-23 Canon Kabushiki Kaisha Magnetic toner

Similar Documents

Publication Publication Date Title
JPS6332182B2 (en)
JPH01219756A (en) Magnetic toner
JPS6046428B2 (en) electrostatography
JPH0245188B2 (en)
JPH0743546B2 (en) Development method
JPH0338588B2 (en)
JPS6374070A (en) Magnetic toner
JPH0232622B2 (en)
JPS60239758A (en) Carrier for developing electrostatic latent image
JPS6353543B2 (en)
JPH0424705B2 (en)
KR0177302B1 (en) Electrostatic Magnetic Toner for Electrophotography
JPS5991449A (en) Manufacture of magnetic toner
JP2563737B2 (en) Magnetic toner and electrophotographic method
JPH02183270A (en) Formation of image
JPH08305169A (en) Developer carrier
JPH02284154A (en) Negatively chargeable magnetic toner and image forming method
JPH0264557A (en) Developing agent for electrostatic charge image development
JPH0381145B2 (en)
JPH01250963A (en) Electrostatic charge image developing one-component type developer and image forming method
JP2850017B2 (en) Method for producing toner particles
JP2675828B2 (en) Developer for developing electrostatic images
JP2926442B2 (en) toner
JPS59170849A (en) Magnetic color developer
JPH01221757A (en) Magnetic toner