JPS6373581A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPS6373581A
JPS6373581A JP21775786A JP21775786A JPS6373581A JP S6373581 A JPS6373581 A JP S6373581A JP 21775786 A JP21775786 A JP 21775786A JP 21775786 A JP21775786 A JP 21775786A JP S6373581 A JPS6373581 A JP S6373581A
Authority
JP
Japan
Prior art keywords
layer
active layer
semiconductor laser
semiconductor
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21775786A
Other languages
Japanese (ja)
Inventor
Hideaki Iwano
岩野 英明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP21775786A priority Critical patent/JPS6373581A/en
Publication of JPS6373581A publication Critical patent/JPS6373581A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain a semiconductor laser, which has small oscillation threshold current density, generates single transverse mode oscillation and can be manufactured with excellent yield in a uniform large area, by specifying a buried semiconductor layer from the periodic table and changing the semiconductor layer into a semi-insulating compound semiconductor layer. CONSTITUTION:When a II-VI compound semiconductor layer 103 consists of ZnSl, it has index difference extremely larger than the refractive index of an active layer 109 composed of GaAs, etc., and the efficiency of optical confinement is improved, thus lowering injection current density. Since a II-VI compound semiconductor has an extremely large band gap, the resistivity of a thin-film through an MOCVD method is increased, and the buried layer 103 can prevent inJection currents completely. Consequently, threshold current density can further be lowered. The active layer 109 is inverted-mesa-etched in a striped manner, and the buried layer 103 is shaped, thus acquiring a flat surface. The width of the actual active layer 109 is made narrower than that of a resist pattern in a photolithographic process, thus resulting in a single oscillation transverse mode, then allowing stable laser operation.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、低閾値電流密度、単一モード発振の半導体レ
ーザの構造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to the structure of a semiconductor laser with low threshold current density and single mode oscillation.

〔従来の技術〕[Conventional technology]

半導体レーザにおいて、低閾直電流密度、単−横モード
の安定し九レーザを得るために、活性層の両端は、活性
層の両端を活性層の屈折率よ)小さい半導体材料で埋め
込む方法が取られている。
In a semiconductor laser, in order to obtain a stable laser with a low threshold direct current density and a single transverse mode, a method is used in which both ends of the active layer are buried with a semiconductor material whose refractive index is smaller than that of the active layer. It is being

従来のむの埋め込み型半導体レーザのm造はジャーナル
拳オプ・アプライド・フィジックス(J、AppA、P
Ays、、45,4899(1974) )に見られる
ように。
The construction of the conventional embedded semiconductor laser was published by Journal Kenop Applied Physics (J, AppA, P
Ays, 45, 4899 (1974)).

発振領域であるA7’0−070(Lo、9IA8層の
両側を、A7’<1.5saao、es人8層で埋め込
み、両材料のMFr率差を利用するというように1同一
の■−■族系材料を用いその組設の異なる半導体で埋め
込むものであった。
Both sides of the oscillation region A7'0-070 (Lo, 9IA8 layer are filled with A7'<1.5 saao, ES layer 8 layers, and the same ■-■ This was done by using family-based materials and embedding semiconductors with different configurations.

その代表的な構造を第5図に示す。A typical structure thereof is shown in FIG.

また従来の埋め込み型レーザの埋め込み層は、液相エピ
タキシャル法(以下LPE法と記す)によシ製造されて
いた。
Further, the buried layer of a conventional buried laser has been manufactured by a liquid phase epitaxial method (hereinafter referred to as LPE method).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし前述の従来技術では、埋め込み層の比抵抗が低い
ために、活性層部注入キャリアが拡散してしまい、注入
キャリアのロスが大きく1発振閾直電流密度を小さくす
ることは困難である。ま九。
However, in the above-mentioned conventional technology, since the specific resistance of the buried layer is low, the carriers injected into the active layer diffuse, and the loss of the injected carriers is large, making it difficult to reduce the threshold direct current density for one oscillation. Nine.

同じ■−v族系を用いるため、活性層部との間の屈折率
差は5チ程度しかとれず、横方向の光閉じ込め率が悪く
1発振閾直置流密度が高いという問題点を有してhる。
Since the same ■-V group system is used, the difference in refractive index between the active layer and the active layer is only about 5 degrees, which has the problem of poor lateral optical confinement and high single-laser threshold perpendicular flow density. Do it.

更に、半導体層の成長法が。Furthermore, the growth method of the semiconductor layer.

LP!法であるため、大面積、均一に成長させることが
難しく、その結果、ウェハ内での不良率が大きいという
問題点を有していた。
LP! Since it is a method, it is difficult to grow uniformly over a large area, and as a result, there is a problem in that the defect rate within the wafer is high.

そこで本発明は、このような問題点を解決するもので、
その目的とするところは、発振閾直電流密。
Therefore, the present invention aims to solve these problems.
Its purpose is to determine the oscillation threshold direct current density.

度が小さく、単−横モード発振し、且つ、大面積均一に
歩留シ良く製造可能な半導体レーザを提供するところに
ある。
The object of the present invention is to provide a semiconductor laser which has a small power, oscillates in a single transverse mode, and can be manufactured uniformly over a large area with a high yield.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の半導体レーザは、周期律表第■族及び第V族元
素よ〕成る化合物半導体層をクラッド層と活性層として
構成されるダブルヘテロ接合を有し且つ前記活性層の両
端は前記活性層の屈折率よ)小なる屈折率を有する半導
体層で埋め込まれた半導体レーザにおいて、前記埋め込
みの半導体層が周期律表第…族及び第■族よシ成シ、且
つ半絶縁性の化合物半導体層であることt−特徴として
いる。
The semiconductor laser of the present invention has a double heterojunction composed of a compound semiconductor layer made of elements of group (I) and group V of the periodic table as a cladding layer and an active layer, and both ends of the active layer are connected to the active layer. In a semiconductor laser embedded with a semiconductor layer having a small refractive index (with a refractive index of It is characterized by being t-characteristic.

また、前記活性層はストライプ状に逆メサエツチングさ
れた後、前記埋め込みの半導体層が形成されていること
を特徴とする。
Further, the active layer is characterized in that the buried semiconductor layer is formed after reverse mesa etching in a stripe shape.

また、前記半導体レーザt−構成する全ての半導体層が
、 Moavp法によシ製造されることを特徴とする。
Further, all the semiconductor layers constituting the semiconductor laser T- are manufactured by the Moavp method.

〔作用〕[Effect]

本発明の上記の構成によれば、n−w族の化合物半導体
層は、たとえば238 g  の場合、屈折率がGcL
AI  等の活性層の発振波長において、 2.51 
程度の値であるため、活性層の屈折率3.59〜.3.
49に比べて非常に大きな屈折率差を有している。その
ため、活性層平面方向の光の閉じ込め効果は、AJG(
zAj  等の1li−V族化合物半導体層で埋め込む
場合に比べて、著しく大きい、光の閉じ込め効率が高い
ので、レーザ発振の条件に必要な注入電流密度を下げる
ことができるのである。
According to the above configuration of the present invention, the n-w group compound semiconductor layer has a refractive index of GcL at 238 g, for example.
At the oscillation wavelength of the active layer of AI etc., 2.51
Since the refractive index of the active layer is about 3.59 to . 3.
It has a very large refractive index difference compared to 49. Therefore, the light confinement effect in the plane direction of the active layer is AJG (
Since the light confinement efficiency is significantly higher than in the case of embedding with a 1li-V group compound semiconductor layer such as zAj, the injection current density required for laser oscillation conditions can be lowered.

また、1−M族の化合物半導体は、たとえばZ%B。Further, the 1-M group compound semiconductor is, for example, Z%B.

の場合、バンドギャップが2.8gVと非常に大きい。In this case, the band gap is as large as 2.8 gV.

そのためMOCVD法による成長方法で純度の高゛い単
結晶薄膜を成長させると、その薄膜の比抵抗は10’Ω
1m以上とな、a、II−M族化合物半導体による埋め
込み層は、完全に注入電流を阻止し得る。
Therefore, when a highly pure single crystal thin film is grown using the MOCVD method, the specific resistance of the thin film is 10'Ω.
A buried layer made of an a, II-M compound semiconductor having a thickness of 1 m or more can completely block the injection current.

従って注入電流の活性頭載以外へのキャリアの拡散がな
く、注入電流は活性領斌に完全に閉じ込め可能である。
Therefore, there is no diffusion of carriers other than the active region of the injection current, and the injection current can be completely confined within the active region.

その結果更に閾値電流密度を低下できる。また活性層が
ストライプ状に逆メサエツチングされた後、埋め込み層
が形成されるため、埋め込み層表面には異常な突起状の
成長がなく、平担な表面を得ることができ、上部電極を
形成した場合に、電極の切断といった問題を生じない。
As a result, the threshold current density can be further reduced. In addition, since the buried layer is formed after the active layer is reverse mesa-etched into stripes, there is no abnormal protrusion growth on the surface of the buried layer, and a flat surface can be obtained, allowing the upper electrode to be formed. In some cases, problems such as electrode breakage do not occur.

また逆メサエツチングであるので、フォトリソグラフィ
ーの工程のレジストパターン幅よシ、実際の活性層の幅
は狭くなり%0.5μm〜1.0尾の活性層幅が可能で
ある。その結果1発振横モードは単一となり、安定なレ
ーザ動作が可能となる。
Furthermore, since reverse mesa etching is used, the actual active layer width is narrower than the resist pattern width in the photolithography process, and an active layer width of 0.5 .mu.m to 1.0 .mu.m is possible. As a result, the single oscillation transverse mode becomes single, allowing stable laser operation.

〔実施列〕 第1図は本発明の実施列における。埋め込み型半導体レ
ーザの主要断面陣成図であって、(102)のn型Gc
LA8  単結晶基板の上に(107)のか型Gαム8
バッファ層、 (108)のnllムIAaA#  ク
ラッド層、(109)のノンドーグGcLa6  ある
いはAJG、zAg  活性層(105)のP型ムl山
 、クラッド層(106)のPへG(zA5  コンタ
クト層が逆メサ状に構成されている。
[Implementation row] FIG. 1 shows an implementation row of the present invention. It is a main cross-sectional configuration diagram of an embedded semiconductor laser, and is an n-type Gc of (102).
LA8 On the single crystal substrate (107), the shape Gα 8
Buffer layer, nllm IAaA# of (108) Cladding layer, non-doped GcLa6 or AJG of (109), zAg P-type mulch of active layer (105), P to G (zA5 contact layer of cladding layer (106)) It is structured in the shape of an inverted mesa.

更にその両端は(103)の半絶縁性のzBs 6  
層で埋め込まれている。上端は(104)のP型のオー
ミック電極、下端には(101)の外型オーミック電極
が形成されている。 (104)と(101)の電極間
に順方向電流を流すと%(109)の活性層部に電子、
正孔が注入され、レーザ発振が起こる。 (103)の
埋め込み層が、半絶R石であるため、 (109)の微
細な活性層部以外には電流は流れず、レーザ発振光は。
Furthermore, both ends of it are (103) semi-insulating zBs 6
embedded in layers. A P-type ohmic electrode (104) is formed at the upper end, and an external ohmic electrode (101) is formed at the lower end. When a forward current is passed between the (104) and (101) electrodes, electrons are generated in the active layer part of (109).
Holes are injected and laser oscillation occurs. Since the buried layer of (103) is a semi-R stone, no current flows except for the fine active layer part of (109), and the laser oscillation light is emitted.

スポットで発光した。また(109)の活性層と(10
3)の埋め込み層の界面には、屈折率差で28チ以上あ
るため、光は(103)の埋め込み濁にほとんどしみ出
ることがなかった。
It glowed in spots. In addition, the active layer of (109) and the active layer of (10
Since there is a refractive index difference of 28 or more at the interface of the buried layer 3), almost no light seeps into the (103) buried layer.

次に1本発明の半導体レーザの製造工程ヲtJI、2図
を用いて説明する。箸2図(tL)において(201)
の外型GCLA8  単結晶基板を、 H,EiO4:
 H!o〒+ : 1 : 1 ’4のエツチング液を
用いて、清浄な表面を作製する。
Next, the manufacturing process of the semiconductor laser according to the present invention will be explained with reference to FIG. In chopsticks figure 2 (tL) (201)
The outer mold of GCLA8 single crystal substrate is H,EiO4:
H! A clean surface is prepared using an etching solution of o〒+:1:1'4.

その後、MOCVD装置の反応管内のサセプター上べ設
置し、 (202)のn型GQA4  バッフ7層(2
03)の外型A11)aAs  クラッド層、 (20
4)のノンドープG(zA4  あるいはA#aA a
  活性層、 、(206)のp+aGaAJ  コン
タクト層を、1回の成長で順次積層形成する。その後、
プラズマC’7D法、常圧cvp法等の方法によp 、
 870$ 56nz等の絶縁II (207)を形成
する(第2図(6) ) 、 (207)の絶縁層を、
通常のフォトリソグラフィーの工程によりs2趣〜lO
μm幅のストライプ状に残るようにエツチングされる(
第2図(6) ) 、この絶縁膜をマスクにして。
After that, the susceptor was placed on top of the reaction tube of the MOCVD device, and 7 layers of n-type GQA4 buffer (202) (2
03) Outer mold A11) aAs cladding layer, (20
4) non-doped G (zA4 or A#aA a
An active layer, p+aGaAJ contact layers (206), and (206) are sequentially laminated in one growth. after that,
p by methods such as plasma C'7D method and atmospheric pressure CVP method,
870$ 56nz etc. form the insulation II (207) (Fig. 2 (6)), the insulation layer of (207),
s2 ~ lO by normal photolithography process
It is etched so that it remains in a stripe shape with a width of μm (
(Fig. 2 (6)), using this insulating film as a mask.

”!”04 : us’s : Hs O=4 : 1
 : 1等のエツチング液で(201)のGcLhH基
板が露出するまでエツチングをす。
"!"04: us's: Hs O=4:1
: Etch using a No. 1 etching solution until the GcLhH substrate (201) is exposed.

る、この場合(20?)の絶縁層ストライプは、長手方
向に垂直な断面において、逆メサエツチング可能な方向
を選んで形成されているので、第2図(−に見られるよ
5に、逆メサ形状に1活性層(204)が残される1次
に逆メサエツチング処理したウェハを再びMOCVD装
置内に設置し、 (208)のZ%B g  薄[を成
長させる。z外部−薄膜は、基板温度275℃〜400
℃%反応圧力5〜50Torr  で行なった。 (2
07)の絶縁膜の上には、何ら堆積するものがなく1選
択的な埋め込みエピタキシャル成長が可能で、ZfiB
g  薄膜の比抵抗はto’Ω、α以上あった(第2図
(g) ) 、次に第2図(ト)に示すように、(20
7)の絶縁V&をエツチング処理すると、平担な平面が
得られる1次に、上側に(209)のP型オーミック電
極、下側K (210)のn型オーミック電極を形成し
、ストライプ長手方向に直交する方向に壁間して共振器
を形成する(第2図ω))。
In this case, the insulating layer stripes (20?) are formed by selecting a direction in which reverse mesa etching is possible in the cross section perpendicular to the longitudinal direction. The wafer subjected to the first inverse mesa etching process, which leaves one active layer (204) in the shape, is placed again in the MOCVD apparatus and a Z%B g thin film of (208) is grown. 275℃~400
The reaction was carried out at a reaction pressure of 5 to 50 Torr. (2
There is nothing to deposit on the insulating film of 07), and selective buried epitaxial growth is possible.
g The specific resistance of the thin film was more than to'Ω,α (Figure 2 (g)), and then as shown in Figure 2 (g), it was (20
Etching the insulation V& in 7) yields a flat plane.On the primary side, a P-type ohmic electrode (209) and an N-type ohmic electrode (210) are formed on the lower side, and the stripe is aligned in the longitudinal direction. A resonator is formed between the walls in a direction perpendicular to (ω in Fig. 2)).

このようにして得られた半導体レーザの発振出力と注入
電流の関係を第3図に示す、 (301)は本発明の実
施例における半導体レーザの出力−電流特性の一列であ
る。 (302)は、従来量により得られた埋め込み型
レーザの出力−電流特性の一列である1本発明により、
光閉じ込め、電流閉じ込め効率が向上し、発振問直電流
密度の低下と外部微分効率の向上が得られた。
The relationship between the oscillation output and the injection current of the semiconductor laser thus obtained is shown in FIG. 3. (301) is a line of output-current characteristics of the semiconductor laser in the example of the present invention. (302) is a series of output-current characteristics of an embedded laser obtained by conventional quantities.
The optical confinement and current confinement efficiency were improved, and the oscillation direct current density was reduced and the external differential efficiency was improved.

第4図に1本発明の実施列における半導体レーザのファ
ーフィールドパターン(以下?FPと記す)を示す、 
(401)は活性層幅0.8尾、 (402)は活性層
幅1.0μm 、 (403)は活性層幅1.5踊の場
合の77Pである。いずれも、単−峰のパターンであシ
、基本横モードの発振特性が得られた。
FIG. 4 shows a far field pattern (hereinafter referred to as ?FP) of a semiconductor laser in one embodiment of the present invention.
(401) is the active layer width of 0.8 mm, (402) is the active layer width of 1.0 μm, and (403) is 77P when the active layer width is 1.5 mm. In both cases, a single-peak pattern was obtained, and fundamental transverse mode oscillation characteristics were obtained.

〔発明の効果〕〔Effect of the invention〕

以上述べたよ5に本発明によれば、電流聞直密度が低い
ので、半導体レーザの発熱を低くおさえることができる
。これKより、半導体レーザの寿命の向上に多大な効果
を有する。更に、ヒートシンクへの実装が接合面を上に
できるので、集積型し一ザ等の実装が極めて容易になる
という効果を有する。更に本発明によれば、n−w族化
合物半導体層の成長温度が400℃以下と低いので、先
に成長しておい友活性層に熱的影響が少なく、レーザ特
性が安定するという効果を有する。更に全での半導体層
がMOCVD法により製造されるので。
As described above, according to the present invention, the current density is low, so that the heat generation of the semiconductor laser can be kept low. This K has a great effect on improving the life of the semiconductor laser. Further, since the bonding surface can be mounted on a heat sink with the bonding surface facing upward, it has the effect that mounting on an integrated type circuit board or the like becomes extremely easy. Furthermore, according to the present invention, since the growth temperature of the N-W group compound semiconductor layer is as low as 400° C. or less, there is less thermal influence on the active layer that is grown first and the laser characteristics are stabilized. . Furthermore, all semiconductor layers are manufactured by MOCVD.

大面積均一に製造可能となシ、生涯性が著しく高いとい
う効果を有する。
It has the advantage of being able to be manufactured uniformly over a large area and having an extremely long lifespan.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の半導体レーザの一実施例を示す主要断
面図である。 第2図μ)〜@は本発明の半導体レーザの一実施例を示
す製造工程図である。 ° 第3図は本発明の半導体レーザの一実施例の光出力
と注入電流の関係を示す図である。 第4図は本発明の半導体レーザの一実施例のF?Pを示
す図である。 第5図は、従来の半導体レーザの一列を示す主要断面図
である。 (101)、(210)e(501) ・・n型オーミ
ック電極(102)、(201)、(502) ・・s
型GQA3基板(103)、(208) −−ZnB−
理め込み層、 (104)t(209)、(509)・
・p型オーミック電極(105)、(205)、(50
6)−−9型AJGcLAjクラッド層(106)、(
206)・・・p”fJI GaA3コンタクト・層(
107)、(202) −−−n型G(Bi2  バッ
フ7層(108)、(203)、(504)  ・・n
型AJG aA aクラッド層(109)、(204)
、(505)・・活性層(207)・・・絶縁層 (301)・・・Z%B−埋め込み型半導体レーザの光
出力特性 (302)・・・AIGaAa 埋め込み型半導体レー
ザの光出力特性 (401)・拳・活性層幅0.8μmのFFF(402
) −−−活性層幅1.0尾OF F’ ?(403)
・・・活性層幅1.5踊のF’1FF(503)・・・
か型Aハaha埋め込み層(508)・・・絶縁層 (507)・・・2外拡散領域 toA   lo!; 羊11i
FIG. 1 is a main sectional view showing an embodiment of the semiconductor laser of the present invention. FIGS. 2 μ) to 2 are manufacturing process diagrams showing an embodiment of the semiconductor laser of the present invention. 3 is a diagram showing the relationship between optical output and injection current of an embodiment of the semiconductor laser of the present invention. FIG. 4 shows F? of an embodiment of the semiconductor laser of the present invention. It is a figure showing P. FIG. 5 is a main cross-sectional view showing one row of conventional semiconductor lasers. (101), (210)e(501)...n-type ohmic electrode (102), (201), (502)...s
Type GQA3 substrate (103), (208) --ZnB-
Reasoning layer, (104)t(209), (509)・
・P-type ohmic electrode (105), (205), (50
6)--9 type AJGcLAj cladding layer (106), (
206)...p"fJI GaA3 contact layer (
107), (202) ---n type G (Bi2 buffer 7 layers (108), (203), (504)...n
Type AJG aA a cladding layer (109), (204)
, (505)...Active layer (207)...Insulating layer (301)...Z%B- Optical output characteristics of buried type semiconductor laser (302)...AIGaAa Optical output characteristics of buried type semiconductor laser ( 401)・Fist・FFF with active layer width 0.8 μm (402
)---Active layer width 1.0 tails OF F'? (403)
...F'1FF (503) with an active layer width of 1.5 steps...
Shape A haha buried layer (508)...insulating layer (507)...2 outer diffusion region toA lo! ; sheep 11i

Claims (3)

【特許請求の範囲】[Claims] (1)周期律表第III族及び第V族元素により成る化合
物半導体層を、クラッド層と活性層として構成されるダ
ブルヘテロ接合を有し、且つ前記活性層の両端は前記活
性層の屈折率より小なる屈折率を有する半導体層で埋め
込まれた半導体レーザにおいて、前記埋め込みの半導体
層が周期律表第II族及び第VI族より成り且つ、半絶縁性
の化合物半導体層であることを特徴とする半導体レーザ
(1) It has a double heterojunction composed of a compound semiconductor layer made of Group III and Group V elements of the periodic table as a cladding layer and an active layer, and both ends of the active layer have a refractive index of the active layer. A semiconductor laser embedded with a semiconductor layer having a smaller refractive index, characterized in that the embedded semiconductor layer is a semi-insulating compound semiconductor layer made of Group II and VI of the periodic table. semiconductor laser.
(2)前記活性層が、ストライプ状に逆メサエツチング
された後、前記埋め込みの半導体層が形成されているこ
とを特徴とする特許請求の範囲第1項記載の半導体レー
ザ。
(2) The semiconductor laser according to claim 1, wherein the buried semiconductor layer is formed after the active layer is reverse mesa-etched into a stripe shape.
(3)前記半導体レーザを構成する全ての半導体層が、
有機金属化合物を原料とする化学気相成長法(以下MO
CVD法と記す)により製造されることを特徴とする特
許請求の範囲第1項記載の半導体レーザ。
(3) All semiconductor layers constituting the semiconductor laser are
Chemical vapor deposition method (hereinafter referred to as MO) using organometallic compounds as raw materials
2. The semiconductor laser according to claim 1, wherein the semiconductor laser is manufactured by a CVD method.
JP21775786A 1986-09-16 1986-09-16 Semiconductor laser Pending JPS6373581A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21775786A JPS6373581A (en) 1986-09-16 1986-09-16 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21775786A JPS6373581A (en) 1986-09-16 1986-09-16 Semiconductor laser

Publications (1)

Publication Number Publication Date
JPS6373581A true JPS6373581A (en) 1988-04-04

Family

ID=16709265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21775786A Pending JPS6373581A (en) 1986-09-16 1986-09-16 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPS6373581A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01274489A (en) * 1988-04-26 1989-11-02 Sumitomo Electric Ind Ltd Manufacture of semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01274489A (en) * 1988-04-26 1989-11-02 Sumitomo Electric Ind Ltd Manufacture of semiconductor device

Similar Documents

Publication Publication Date Title
JP2823476B2 (en) Semiconductor laser and method of manufacturing the same
Nakamura et al. CW operation of distributed‐feedback GaAs‐GaAlAs diode lasers at temperatures up to 300 K
US7026182B2 (en) Semiconductor device, semiconductor laser, their manufacturing methods and etching methods
US4839307A (en) Method of manufacturing a stripe-shaped heterojunction laser with unique current confinement
US4856015A (en) Semiconductor laser array device
US4188244A (en) Method of making a semiconductor light-emitting device utilizing low-temperature vapor-phase deposition
US4149175A (en) Solidstate light-emitting device
JPS6343387A (en) Semiconductor laser device and manufacture thereof
JP2000058981A (en) Gallium nitride based semiconductor light emitting element and fabrication thereof
US4835783A (en) Semiconductor laser
CA1065461A (en) Semiconductor light-emitting device and method of making of the same
JPS6373581A (en) Semiconductor laser
JP4179802B2 (en) Semiconductor laser device and manufacturing method thereof
EP0205338B1 (en) Semiconductor laser device
JPS6174382A (en) Semiconductor laser device and manufacture thereof
JPS63178574A (en) Manufacture of semiconductor laser device
JPS62117384A (en) Manufacture of buried stripe semiconductor laser and laser obtained by the same
JPS59119781A (en) Manufacture of semiconductor laser
JPS6119186A (en) Manufacture of two-wavelength monolithic semiconductor laser array
JPS6124839B2 (en)
JPS6237835B2 (en)
JP2910119B2 (en) Semiconductor laser
JP2547459B2 (en) Semiconductor laser device and manufacturing method thereof
JPS6244440B2 (en)
JPH0430758B2 (en)