JPS6373192A - Boiling water type reactor - Google Patents

Boiling water type reactor

Info

Publication number
JPS6373192A
JPS6373192A JP61218974A JP21897486A JPS6373192A JP S6373192 A JPS6373192 A JP S6373192A JP 61218974 A JP61218974 A JP 61218974A JP 21897486 A JP21897486 A JP 21897486A JP S6373192 A JPS6373192 A JP S6373192A
Authority
JP
Japan
Prior art keywords
control rod
fuel
core
bundle
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61218974A
Other languages
Japanese (ja)
Other versions
JPH0658419B2 (en
Inventor
深沢 幸久
淳一 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61218974A priority Critical patent/JPH0658419B2/en
Publication of JPS6373192A publication Critical patent/JPS6373192A/en
Publication of JPH0658419B2 publication Critical patent/JPH0658419B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、原子燃料資源p有効利用のために転換比の向
上を図りた沸騰水型原子炉に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a boiling water nuclear reactor with an improved conversion ratio for effective utilization of nuclear fuel resources.

〔従来の技術〕[Conventional technology]

原子炉の炉心で発生する中性子は、核分裂性のウラン2
35に吸収されて、核分裂を引き起こす他に、ウラン元
素の大部分を占めるウラン238にも吸収される。ウラ
ン238は核分裂性でないために、核分裂を直接に引き
起こすことはないが、中性子を吸収すると核分裂性のプ
ル)=ラム239に変換される。このウラン238のよ
うに中性子を吸収して核分裂性物質を作〕出す物質は親
物質と呼ばれ、親物質によ多核分裂性燃料物質を作シ出
す過程は、転換と呼ばれる。そこで、転換比(CR)を
次のように定義する。
Neutrons generated in the core of a nuclear reactor are fissile uranium 2
In addition to being absorbed by uranium-35 and causing nuclear fission, it is also absorbed by uranium-238, which makes up the majority of the uranium element. Since uranium-238 is not fissile, it does not cause nuclear fission directly, but when it absorbs neutrons, it is converted to fissile pul) = ram-239. Substances such as uranium-238 that absorb neutrons and create fissile material are called parent materials, and the process of creating multi-fissile fuel materials from the parent material is called conversion. Therefore, the conversion ratio (CR) is defined as follows.

転換がある場合には、原子炉運転中に燃料の原子がN個
消費されると、CR−N個の新しい核分裂性物質の原子
が生み出されることになる。一般に軽水炉では、この転
換比は0.6程度であるが、これよシ幾分高い転換比0
.8〜1.0の原子炉は転換炉と呼ばれる。
In the case of conversion, when N atoms of fuel are consumed during reactor operation, CR-N new atoms of fissile material will be created. Generally, in a light water reactor, this conversion ratio is about 0.6, but the conversion ratio is slightly higher than this.
.. 8 to 1.0 reactors are called converter reactors.

転換比を高めることは、その!までは核分裂を引き起こ
さないウラン238を核分裂性のプルトニウムに変える
比率が大きくなるため、ウラン資源の有効利用が図れる
と共に、燃料費の低減に有効である。
Increasing the conversion ratio is the key! Since the ratio of converting uranium-238, which previously did not cause nuclear fission, to fissile plutonium increases, uranium resources can be used more effectively and fuel costs can be reduced.

炉心内におけるプル)=ラム生成量を増大させるために
転換比を高めるには、ウラン238の中性子吸収が比較
的エネルギーの高い中性子によシ引き起こされる(共鳴
捕獲吸収)ことから、炉心の中性子エネルギスペクトル
を高エネルギ側にシフトすることによシ達成可能である
。この丸めには、軽水炉においては、中性子減速効果の
大きい水素原子と燃料でちるり2ン原子の炉心内での原
子数比(VU比)を小さくする必要がある。
In order to increase the conversion ratio in order to increase the amount of ram produced (pull in the reactor core), the neutron energy in the reactor must be This can be achieved by shifting the spectrum towards higher energies. To achieve this rounding, in light water reactors, it is necessary to reduce the atomic ratio (VU ratio) in the core of hydrogen atoms, which have a large neutron moderating effect, and fuel.

炉心内のル勺比を小さくする方法としては、燃料棒をバ
ンドル(燃料集合体)内に稠密に配置することによシ、
バンドル内のル勺比を小さくする方法が考えられる。ウ
ラン資源の有効利用の観点から、ウラン238から核分
裂性物質たるプルトニウム239への転換を良くするた
めに稠密格子構造を用いた原子炉が、Nucl、 T@
ehno1.59t212(1982年)に01dko
pらKよる” General f@atur@sof
  advanc@d  pre@5uriz@d  
wat@r  r@actarm  withImpr
oved fuel utlllzatlon”と題す
る論文で示されている。
One way to reduce the fuel ratio in the core is to densely arrange fuel rods in bundles (fuel assemblies).
One possible method is to reduce the ratio within the bundle. From the perspective of effective use of uranium resources, nuclear reactors that use a dense lattice structure to improve the conversion of uranium-238 to plutonium-239, a fissile material, are Nucl, T@
ehno1.59t212 (1982) 01dko
General f@atur@sof
advance@d pre@5uriz@d
wat@r r@actarm with Impr
This is shown in a paper titled ``Oved Fuel Utll Zatlon''.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記論文での原子炉は加圧水型原子炉での技術であシ、
これを沸騰水型原子炉に適用するには、種々の解決すべ
き技術課題がある。すなわち、バンドル内の各燃料棒は
、振動による接触の防止等によシ、ある程度以上の間隔
が必要であシ、現行の沸騰水型原子炉で使用されている
水平断面積と同一のバンドルを使用する限シ、制約があ
る。また、炉心内のル勺比を小さくするためにバンドル
の水平断面積を大きくすることが考えられるが、バンド
ルを大盤化した場合、原子炉の制御の面から見て安全に
原子炉を停止させるためには制御棒の本数を減らすこと
のないようにしなければならない。
The reactor in the above paper is a pressurized water reactor technology,
In order to apply this to boiling water reactors, there are various technical issues that need to be solved. In other words, each fuel rod in a bundle must be spaced apart from each other by a certain distance to prevent contact due to vibration, etc., and it is necessary to create a bundle with the same horizontal cross-sectional area as that used in current boiling water reactors. There are restrictions on how it can be used. In addition, it is possible to increase the horizontal cross-sectional area of the bundle in order to reduce the power ratio in the reactor core, but if the bundle is made larger, it will not be possible to safely shut down the reactor from the standpoint of reactor control. In order to achieve this, it is necessary to avoid reducing the number of control rods.

本発明の目的は、沸騰水型原子炉において、炉心水平断
面積を従来よフ増大させることなく、制御棒の数を減ら
すことなく、シかも、効果的に炉心内のH7U比を小に
することにある。
An object of the present invention is to effectively reduce the H7U ratio in the reactor core in a boiling water reactor without increasing the horizontal cross-sectional area of the reactor core or reducing the number of control rods. There is a particular thing.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の沸騰水型原子炉は、格子状の上部炉心支持部材
の一つの格子の一対の対角の位置の真下に断面十字形の
制御棒が位置し、該上部炉心支持部材の一つの格子内に
一本の断面正方形の燃料集合体が装荷され、制御棒の断
面十字形の翼は該燃料集合体の辺に沿りて延び、制御棒
の上半部は中性子減速効果の小さい材料からなるフォロ
ア部をなし、制御棒の下半部は中性子吸収材を含む中性
子吸収部をなし、該両部はいずれも燃料有効長と同等ま
たはその5/6以上の長さを有することを特徴とするも
のである。
In the boiling water reactor of the present invention, a control rod having a cross-shaped cross section is located directly below a pair of diagonal positions of one lattice of one lattice-shaped upper core support member, and one lattice of the upper core support member has a cross-section. A single fuel assembly with a square cross section is loaded in the interior, the cross-sectional wings of the control rod extend along the sides of the fuel assembly, and the upper half of the control rod is made of a material with a small neutron moderation effect. The lower half of the control rod forms a neutron absorbing part containing a neutron absorbing material, and both parts have a length equal to or 5/6 or more of the effective length of the fuel. It is something to do.

〔作用〕[Effect]

本発明の前記構成によれば、炉心水平断面積と増さずに
各バンドル(燃料集合体)の水平断面積を増大させ、且
つ制御棒の数は現行と同じにすることができる。しかも
、前記のように制御棒を構成したことによシ、通常軽水
で満たされているバンドル外部の領域(洩漏領域)の軽
水が前記中性子減速効果の小さいフォロア部で置き換え
られるととKよって、バンドル周辺部のル勺比も小さく
でき、このため、炉心全体に亘ってφ比を均一に小さく
できる。
According to the above configuration of the present invention, the horizontal cross-sectional area of each bundle (fuel assembly) can be increased without increasing the horizontal cross-sectional area of the core, and the number of control rods can be kept the same as the current one. Moreover, by configuring the control rod as described above, the light water in the area outside the bundle (leakage area), which is normally filled with light water, is replaced by the follower part that has a small neutron moderation effect. The diameter ratio in the peripheral portion of the bundle can also be reduced, and therefore the φ ratio can be uniformly reduced throughout the core.

〔実施例〕〔Example〕

第2図は従来の現行の沸騰水型原子炉の炉心の一部分を
示す平面図であシ、図中、101は上部格子板、103
は断面十字形の制御棒、105は格子板101の単位格
子内に4個配置された断面正方形のバンドル(燃料集合
体)である。
FIG. 2 is a plan view showing a part of the core of a conventional boiling water reactor; in the figure, 101 is an upper grid plate;
105 is a control rod having a cross-shaped cross section, and 105 is a bundle (fuel assembly) having a square cross-section and four pieces are arranged in a unit grid of the grid plate 101.

第1図は本発明の実施例に係る沸騰水型原子炉の炉心の
一部を示す平面図であって、炉心の上部に位置している
上部格子板1を炉心上方から見た平面図である。上部格
子板1は、沸騰水型原子炉の原子炉圧力容器(図示せず
)内に設置されている。第1図において、本実施例にお
ける上部格子板1は、第2図に示した現行の炉心構造に
おける上部格子板101(第1図に点線で示す)の単位
格子において4交点のうち対向する交点をそれぞれ結ん
だ形をしていて、現行炉心の格子に対して45°回転し
た位置となっている。現行炉心における制御棒103(
第1図に点線で示す、)の中心軸の位置は本実施例の上
部格子板1の交点2に一致する。制御棒3は、現行炉心
における位置を変更せずに向きを45″回転させ、炉心
上方から見た場合に十字型のブレードが完全に上部格子
板1の真下になる配置とする。このようKして出来た井
桁状の上部格子板1は、格子の一辺の長さが現行炉心の
上部格子板101のそれの77倍でsb上部格子板1の
交点は制御棒3の中心軸位置の真上に位置する交点2と
、制御棒位置にない交点4(現行炉心の上部格子板10
1の交点位置に一致する)とが交互に配列した構造であ
る。
FIG. 1 is a plan view showing a part of the core of a boiling water reactor according to an embodiment of the present invention, and is a plan view of an upper lattice plate 1 located at the top of the core, viewed from above the core. be. The upper grid plate 1 is installed in a reactor pressure vessel (not shown) of a boiling water reactor. In FIG. 1, the upper lattice plate 1 in this embodiment is located at the opposing intersections among the four intersections in the unit lattice of the upper lattice plate 101 (indicated by dotted lines in FIG. 1) in the current core structure shown in FIG. It has a shape in which the two are tied together, and is rotated 45 degrees relative to the current core grid. Control rod 103 (
The position of the central axis of ) shown by the dotted line in FIG. 1 coincides with the intersection point 2 of the upper grid plate 1 of this embodiment. The control rods 3 will be rotated 45 inches without changing their position in the current core, and the cross-shaped blades will be completely located directly below the upper grid plate 1 when viewed from above the core. The length of one side of the lattice is 77 times that of the upper lattice plate 101 of the current core, and the intersection of the sb upper lattice plate 1 is at the true position of the center axis of the control rod 3. Intersection 2 located above and intersection 4 not located at the control rod position (current core upper grid plate 10
1) are arranged alternately.

制御棒3は、上部格子板1の1つの格子の対向する1対
の対角の位置2にそれぞれ配置され、上部格子板1の真
下で隣接する燃料集合体(バンドル)5間に挿入される
。断面正方形の1体の燃料集合体5が上部格子板1の1
つの格子内に挿入される。この1つの格子内に上端部が
挿入される燃料集合体5は、制御棒3が炉心に全挿入さ
れた状態のとき、格子の対向している対角にそれぞれ配
置された制御棒3に直接隣接(対向)シ、それらの1対
の制御棒3に挟まれることになる。
The control rods 3 are respectively arranged at a pair of opposing diagonal positions 2 of one lattice of the upper lattice plate 1 and are inserted between adjacent fuel assemblies (bundles) 5 directly below the upper lattice plate 1. . One fuel assembly 5 with a square cross section is attached to one of the upper grid plates 1.
inserted into one grid. When the control rods 3 are fully inserted into the reactor core, the fuel assemblies 5 whose upper ends are inserted into this one grid are directly connected to the control rods 3 arranged at opposite corners of the grid. The control rods 3 are sandwiched between adjacent (opposed) control rods 3.

上記炉心構成の技術的意義は次のとおシである。The technical significance of the above core configuration is as follows.

前述したように、ウラン238からグロトニウム239
への転換を良くするためには、炉心内において、中性子
減速効果の大きな水素原子と燃料であるウラン原子数の
比(ル勺比)を小さくする必要がある。炉心内は、バン
ドル(燃料集合体)内部の領域とバンドル外部の領域(
洩漏領域)に分けられる。洩漏領域は、中性子減速効果
の大きな水素を含む軽水によシ充たされる領域である。
As mentioned above, uranium-238 to grotonium-239
In order to improve the conversion to neutrons, it is necessary to reduce the ratio of hydrogen atoms, which have a large neutron moderating effect, to uranium atoms, which serve as fuel, in the reactor core. Inside the reactor core, there are an area inside the bundle (fuel assembly) and an area outside the bundle (
leakage area). The leakage region is a region filled with light water containing hydrogen, which has a large neutron moderating effect.

従って、炉心内の洩漏領域の割合を小さくシ、バンドル
内部の領域の割合を大きくすることによ)炉心全体のル
勺比を小さくすることが可能である。
Therefore, it is possible to reduce the leakage ratio of the entire core (by reducing the proportion of the leakage area in the core and increasing the proportion of the area inside the bundle).

そのためには、炉心の水平断面積を変えずに、各バンド
ルの水平断面積を大きくした大型バンドルを用いればよ
い。しかし、原子炉を安全に停止させると言う面から見
ると、制御棒の本数を現行よル減らすことはできない、
そこで、現行の沸騰水屋原子炉の大幅な改造なしに、か
つ、制御棒の本数を現行通シの本数に保ち、しかもバン
ドルを大型化を可能にしたのが第1図に示す炉心構成で
ある。第1図の構成においては、制御棒の本数及び据付
は位置は現行通シとし、制御棒の翼の向きを45度回転
させることによシ、対向する2つの制御棒で囲まれた格
子ができ、その各格子の一辺の長さは、現行のバンドル
の一辺の長さの約〆丁倍なので、−辺の長さを現行の7
丁倍した大型バンドルを、各格子内に装備できる。すな
わち、制御棒の本数および位置は現行通シとするが、そ
の十字具の向きを45度回転させている。さらに、上部
炉心支持部材の1つの格子の対角の真下に該制御棒がく
る様に上部炉心支持部材を変更し、上部炉心支持部材の
1つの格子内に、現行の燃料集合体の約〆了倍の辺長の
燃料集合体を具備する。バンドル(燃料集合体)の辺長
を現行のv/2倍にすることによシ、バンドルの水平断
面積は現行の約2倍となる。制御棒と全数挿入した場合
には、各バンドルの4辺すべてに制御棒の翼が隣接する
構造となっている。
For this purpose, it is sufficient to use large bundles in which the horizontal cross-sectional area of each bundle is increased without changing the horizontal cross-sectional area of the core. However, from the perspective of safely shutting down the reactor, it is impossible to reduce the number of control rods compared to the current level.
Therefore, the core configuration shown in Figure 1 has made it possible to maintain the current number of control rods and increase the size of the bundle without major modification of the current boiling water reactor. be. In the configuration shown in Figure 1, the number and installation of control rods is the same as the current one, but by rotating the direction of the control rod wings by 45 degrees, a grid surrounded by two opposing control rods can be created. Since the length of each side of each grid is approximately twice the length of one side of the current bundle, the length of the − side can be reduced to 7
A large bundle doubled in size can be equipped within each grid. That is, the number and position of the control rods are the same as the current model, but the direction of the cross tool is rotated by 45 degrees. Furthermore, the upper core support member is changed so that the control rods are located directly below the diagonal corner of one grid of the upper core support member, and approximately 100% of the current fuel assembly is placed within one grid of the upper core support member. It is equipped with a fuel assembly with a side length twice that of the previous one. By increasing the side length of the bundle (fuel assembly) to v/2 times the current length, the horizontal cross-sectional area of the bundle will be approximately twice the current length. When all control rods are inserted, the control rod wings are adjacent to all four sides of each bundle.

このように、上記構成によれば、制御棒の数を減らすこ
となくバンドルを大型化し、これによシ炉心全体として
ル勺比を小さくすることができる。
In this way, according to the above configuration, the bundle can be increased in size without reducing the number of control rods, thereby reducing the power ratio of the reactor core as a whole.

しかしながら、上記構成のままでは次のような問題があ
る。すなわち、通常運転時には、はとんどの制御棒が全
引抜きであるため、バンドル周辺部の燃料棒は、現行の
沸騰水型原子炉と同様に、水素原子を含む軽水で充され
た洩漏領域に接することになる。従って、個々のバンド
ル内でみると、■比は、バンドルの中央部では小さいが
、バンドルの周辺部では小さくすることができない。そ
のため、多くの燃料棒の存在するバンドルの周辺部では
、中性子スペクトルが低エネルギ側にシフトしてしまう
ため、バンドル周辺部の燃料棒のプルトニウム生成が押
えられてしまう。よりて、高転換比の実現のためには、
バンドル周辺部の燃料棒も高転換に寄与する様に、バン
ドル周辺部のル勺比を小さくするための対策を講する必
要がある。
However, with the above configuration as it is, the following problems arise. In other words, during normal operation, most control rods are fully withdrawn, so the fuel rods around the bundle are exposed to leakage areas filled with light water containing hydrogen atoms, similar to current boiling water reactors. I will come into contact with you. Therefore, when looking at each bundle, the ratio (2) is small at the center of the bundle, but cannot be made small at the periphery of the bundle. Therefore, in the periphery of the bundle where many fuel rods are present, the neutron spectrum shifts to the lower energy side, which suppresses plutonium production in the fuel rods in the periphery of the bundle. Therefore, in order to achieve a high conversion ratio,
It is necessary to take measures to reduce the fuel rod ratio around the bundle so that the fuel rods around the bundle also contribute to high conversion.

この対策として、本発明では、炉心内に下方から上方に
挿入される制御棒の下半部を中性子吸収材を含む中性子
吸収部となし、上半部を中性子減速効果の小さい部材よ
シなるフォロア部となし、かつ、各部の長さtはぼ燃料
有効長程度にした制御棒を装備する。このようにすれば
、出力運転中に、上記制御棒のフォロア部が各バンドル
の燃料有効長位置の洩漏部に挿入させるので、洩漏部を
中性子減速効果の高い軽水から中性子減速効果の小さな
部材に置き換えることになシ、バンドルの周辺部の燃料
棒近傍のル勺比を小さくできる。それによ)、各バンド
ル内部の周辺部及び中央部のいずれにおいても凶比と小
さくでき、高転換比が実現できる。
As a countermeasure against this, in the present invention, the lower half of the control rod inserted into the reactor core from below to above is made into a neutron absorbing part containing a neutron absorbing material, and the upper half is made into a follower made of a member with a small neutron moderating effect. The control rod is equipped with a control rod in which each part has a length t approximately equal to the effective length of the fuel. In this way, during output operation, the follower part of the control rod is inserted into the leakage part at the fuel effective length position of each bundle, so the leakage part is changed from light water, which has a high neutron moderation effect, to a member with a small neutron moderation effect. By replacing it, it is possible to reduce the power ratio near the fuel rods at the periphery of the bundle. As a result, both the peripheral and central portions inside each bundle can be made smaller and a higher conversion ratio can be achieved.

第3図は、本発明におけるこのような制御棒3の実施例
を示す斜視図である。制御棒3は、横断面が十字型をし
ておシ、軸心から四方に伸びる4つの翼(ブレード)を
有している。制御棒3の上半部領域であるフォロア部6
は中性子減速効果の小さいジルカロイ板でア少、その上
下方向の長さは、制御棒3が挿入される原子炉に装荷さ
れる燃料の燃料有効長と同−又はその5/6以上である
FIG. 3 is a perspective view showing an embodiment of such a control rod 3 according to the present invention. The control rod 3 has a cross-shaped cross section and four wings (blades) extending in all directions from the axis. Follower part 6 which is the upper half area of the control rod 3
is a Zircaloy plate having a small neutron moderating effect, and its length in the vertical direction is the same as or 5/6 or more of the effective fuel length of the fuel loaded in the reactor into which the control rod 3 is inserted.

また、制御棒3の下半部領域であるアブソーバ部7は中
性子吸収材であるハフニウム金属棒をツルカロイ製のシ
ースによシ保持しておシ、その長さは、上記7才ロア部
6の長さと同一である。
In addition, the absorber section 7, which is the lower half region of the control rod 3, has a hafnium metal rod, which is a neutron absorbing material, held in a sheath made of Tsukaloy, and its length is the same as that of the 7-year-old lower section 6. It is the same as the length.

制御棒の翼長(図中の長さl)はフォロア部6及び中性
子吸収部7いずれも出き得る限シ長くするのがよい、す
なわち、転換比を増大させるためには洩漏部の軽水を出
き得る限シ排除するのがよいので、制御棒のフォロア部
の翼長を長くした方が効果が上がる。また、中性子吸収
部の翼長も現行の翼長よシも長くする必要がある。何故
なら燃料棒の稠密化及び炉心全体に対するバンドル内領
域の割合の増加によシ炉心内の装荷ウラン量の増加する
ので、各制御棒の制御棒価値を大きくするため、中性子
吸収部の翼長も現行のそれよ)長くする必要があるから
である。制御棒の翼長lは、前述の上部炉心支持部材1
の一つの格子の辺の長さの少くとも172以上であるこ
とが好ましい。
The blade length of the control rod (length l in the figure) should be as long as possible for both the follower section 6 and the neutron absorption section 7. In other words, in order to increase the conversion ratio, light water in the leakage section should be made as long as possible. It is better to eliminate as much as possible, so increasing the blade length of the follower part of the control rod will improve the effect. Additionally, the blade length of the neutron absorbing section needs to be longer than the current blade length. This is because the amount of uranium loaded in the core increases due to the densification of fuel rods and the increase in the ratio of the area within the bundle to the entire core. This is because it is necessary to make it longer (as is the case with the current one). The blade length l of the control rod is the upper core support member 1 described above.
It is preferable that the side length of one lattice is at least 172 or more.

第4図は本発明実施例による原子炉内構造配置図を示す
。この炉心を上から見た平面図は第1図のようになって
いる。第4図において、制御棒3は、現行沸騰水型原子
炉と同様に、炉心下部よル挿入する構造とする。燃料集
合体5において、核分裂性物質の含まれる燃料部8の有
効長は、燃料集合体の長さの1/3〜2/3、好ましく
は半分とし、燃料部を燃料集合体内の下部に設ける。ま
た、燃料集合体は、燃料棒を稠密に配置したものを使用
する。気水分離器9及び蒸気乾燥気10は、現行沸騰水
型原子炉の通シに炉心上部に取シ付ける。
FIG. 4 shows a structural layout diagram inside a nuclear reactor according to an embodiment of the present invention. The plan view of this core seen from above is shown in Figure 1. In FIG. 4, the control rods 3 are inserted into the lower part of the core, similar to the current boiling water reactor. In the fuel assembly 5, the effective length of the fuel section 8 containing fissile material is 1/3 to 2/3, preferably half, of the length of the fuel assembly, and the fuel section is provided in the lower part of the fuel assembly. . Further, the fuel assembly used is one in which fuel rods are densely arranged. The steam separator 9 and the steam dryer 10 are installed in the upper part of the reactor core in the current boiling water reactor.

本実施例の原子炉によシ、出力運転時において制御棒の
フォロア部を燃料の有効長部に隣接させ、洩九部の軽水
を排除し、中性子減速効果の小さい部材よシなるフォロ
ア部と置き換えることによシ、炉心内の騎比を炉内で均
一に小さくできるので、転換比の高い炉心が実現される
。すなわち、本実施例によシ、現行沸騰水型原子炉から
の大幅の改造なしに、高転換炉を実現できる。
In the reactor of this embodiment, the follower part of the control rod is placed adjacent to the effective length part of the fuel during power operation, light water in the leakage part is excluded, and the follower part is made of a material with a small neutron moderating effect. By replacing it, the power ratio in the core can be uniformly reduced within the reactor, so a core with a high conversion ratio can be realized. That is, according to this embodiment, a high conversion reactor can be realized without major modification of the current boiling water reactor.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、現行沸騰水型原子炉からの大幅な変更
なしに1制御棒の数を減らさずにバンドルを大聖化し、
しかもバンドル周辺部をも含めて沸騰水型原子炉内のφ
比を均一に小さくできるので、高転換比を実現できる。
According to the present invention, the bundle can be consecrated without reducing the number of control rods without major changes from the current boiling water reactor,
Furthermore, the φ inside the boiling water reactor, including the surrounding area of the bundle, is
Since the ratio can be uniformly reduced, a high conversion ratio can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例に係る沸騰水型原子炉の炉
心構造の局部平面図、 第2図は、従来の現行の沸騰水型原子炉の炉心の局部平
面図、 第3図は、本発明の沸騰水温原子炉で使用される制御棒
の実施例を示す斜視図、 第4図は、本発明の実施例に係る沸騰水型原子炉の炉心
構造配置の立断面図である。 1・・・上部格子板 2・・・制御棒が真下に配置されている上部格子板の交
点位置 3・・・制御棒 4・・・制御棒が真下に配置されていない上部格子板の
交点位置 5・・・燃料集合体(バンドル) 6・・・フォロア部     7・・・中性子吸収部8
・・・燃料部       9・・・気水分離器10・
・・蒸気発生器 第2図
FIG. 1 is a local plan view of the core structure of a boiling water reactor according to an embodiment of the present invention; FIG. 2 is a local plan view of a core structure of a conventional boiling water reactor; FIG. FIG. 4 is a perspective view showing an embodiment of a control rod used in a boiling water reactor of the present invention; FIG. . 1... Upper lattice plate 2... Intersection position of the upper lattice plate where the control rod is placed directly below 3... Control rod 4... Intersection point of the upper lattice plate where the control rod is not placed directly below Position 5...Fuel assembly (bundle) 6...Follower part 7...Neutron absorption part 8
...Fuel part 9...Steam water separator 10.
・・Steam generator diagram 2

Claims (1)

【特許請求の範囲】[Claims] 格子状の上部炉心支持部材の一つの格子の一対の対角の
位置の真下に断面十字形の制御棒が位置し、該上部炉心
支持部材の一つの格子内に一本の断面正方形の燃料集合
体が装荷され、制御棒の断面十字形の翼は該燃料集合体
の辺に沿って延び、制御棒の上半部は中性子減速効果の
小さい材料からなるフォロア部をなし、制御棒の下半部
は中性子吸収材を含む中性子吸収部をなし、該両部はい
ずれも燃料有効長と同等またはその5/6以上の長さを
有することを特徴とする沸騰水型原子炉。
A control rod with a cruciform cross section is located directly below a pair of diagonal corners of one grid of the upper core support member in the form of a grid, and one fuel assembly with a square cross section is located within one grid of the upper core support member. The wing of the control rod, which has a cruciform cross section, extends along the side of the fuel assembly, the upper half of the control rod forms a follower section made of a material with a small neutron moderating effect, and the lower half of the control rod A boiling water nuclear reactor characterized in that the part constitutes a neutron absorbing part containing a neutron absorbing material, and both parts have a length equal to or 5/6 or more of the effective length of the fuel.
JP61218974A 1986-09-17 1986-09-17 Boiling water reactor Expired - Fee Related JPH0658419B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61218974A JPH0658419B2 (en) 1986-09-17 1986-09-17 Boiling water reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61218974A JPH0658419B2 (en) 1986-09-17 1986-09-17 Boiling water reactor

Publications (2)

Publication Number Publication Date
JPS6373192A true JPS6373192A (en) 1988-04-02
JPH0658419B2 JPH0658419B2 (en) 1994-08-03

Family

ID=16728277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61218974A Expired - Fee Related JPH0658419B2 (en) 1986-09-17 1986-09-17 Boiling water reactor

Country Status (1)

Country Link
JP (1) JPH0658419B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5386440A (en) * 1992-01-10 1995-01-31 Hitachi, Ltd. Boiling water reactor
CN105957561A (en) * 2016-07-05 2016-09-21 上海核工程研究设计院 Control rod mechanism

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60203894A (en) * 1984-03-29 1985-10-15 株式会社東芝 Boiling-water type reactor
JPS6186676A (en) * 1984-10-04 1986-05-02 株式会社日立製作所 Hollow control rod nuclear reactor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60203894A (en) * 1984-03-29 1985-10-15 株式会社東芝 Boiling-water type reactor
JPS6186676A (en) * 1984-10-04 1986-05-02 株式会社日立製作所 Hollow control rod nuclear reactor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5386440A (en) * 1992-01-10 1995-01-31 Hitachi, Ltd. Boiling water reactor
CN105957561A (en) * 2016-07-05 2016-09-21 上海核工程研究设计院 Control rod mechanism

Also Published As

Publication number Publication date
JPH0658419B2 (en) 1994-08-03

Similar Documents

Publication Publication Date Title
US4749544A (en) Thin walled channel
US4968479A (en) Fuel assembly for nuclear reactor
EP0856852B1 (en) Reactor core for a light water cooled nuclear reactor and control rod for the same
KR910006796B1 (en) Undermoderated nuclear reactor
JP3411466B2 (en) Boiling water reactor core and method of operating the same
JPH04128688A (en) Fuel assembly and reactor core
US3212983A (en) Neutronic reactor
JPS6373192A (en) Boiling water type reactor
JPS63235891A (en) Fuel aggregate
USRE34246E (en) Thin walled channel
JPS62259086A (en) Fuel aggregate
JPS60201284A (en) Fuel aggregate
JPS62273485A (en) Fuel aggregate
JP2020118526A (en) Fuel assembly and light water reactor core
JPS6367870B2 (en)
JPH04296693A (en) Core of reactor
JPS62273488A (en) Nuclear reactor system
KR100237136B1 (en) Candu fuel bundle with a low void coefficient
JPS62273489A (en) Nuclear reactor
JPS62259087A (en) Fuel aggregate
JPH1039072A (en) Control rod for boiling water reactor and boiling water reactor core
JPS63231293A (en) Core for nuclear reactor
JPS60242391A (en) Fuel aggregate
JPH09166678A (en) Mox fuel assembly
JPS63247691A (en) Fuel aggregate

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees