JPS6373164A - Transformer for testing - Google Patents

Transformer for testing

Info

Publication number
JPS6373164A
JPS6373164A JP61218474A JP21847486A JPS6373164A JP S6373164 A JPS6373164 A JP S6373164A JP 61218474 A JP61218474 A JP 61218474A JP 21847486 A JP21847486 A JP 21847486A JP S6373164 A JPS6373164 A JP S6373164A
Authority
JP
Japan
Prior art keywords
surge voltage
main body
container
test transformer
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61218474A
Other languages
Japanese (ja)
Inventor
Tadao Yashiro
屋代 忠雄
Tsutomu Oyabu
大薮 務
Takaharu Kano
狩野 敬治
Jiro Ashida
芦田 二郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP61218474A priority Critical patent/JPS6373164A/en
Publication of JPS6373164A publication Critical patent/JPS6373164A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Testing Relating To Insulation (AREA)

Abstract

PURPOSE:To divide and reduce a surge voltage and to make a protecting device compact, by inserting the protecting device comprising a parallel circuit of a resistor and electrostatic capacitors between the secondary output terminal of a testing transformer and a load. CONSTITUTION:A secondary output terminal 3 of a main body 2 of a testing transformer, which is enclosed in a container 1, is connected to an electric unit 9 in a container 8 through a protecting device 5 in a container 4 and an insulating spacer 7 in a container 6. The device 5 is constituted by a parallel circuit of a resistor element 5a and capacitor elements 5b. When a high voltage is applied from the main body 2 and a surge voltage is generated on a load side, the surge voltage is applied to the terminal through the device 5. The peak value of the voltage is divided by the impedance ratio between the circuit 5 and the main body 2. The divided surge voltage is applied to the main body 2. In this constitution, the resistance value of the element 5a can be made small in comparison with the case where only the resistor is used. The resistance drop due to a load current can be reduced, and the protecting device can be made compact.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は試験用変圧器に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to test transformers.

〔従来の技術〕[Conventional technology]

対象とする電気機器、例えばガス絶縁開閉装置の耐電圧
試験等を行なう場合、試験用変圧器により高電圧を該電
気機器に加える。
When performing a withstand voltage test on a target electrical device, such as a gas-insulated switchgear, a high voltage is applied to the electrical device using a test transformer.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

この場合、試験用変圧器の二次出力端子を対象電気機器
に直接接続して高電圧を加えると、電気機器側で閃絡等
が生じた場合、急峻なサージ電圧が発生して試験用変圧
器の二次側に侵入し、絶縁破壊を生じるおそれがある。
In this case, if the secondary output terminal of the test transformer is directly connected to the target electrical equipment and high voltage is applied, if a flash short occurs on the electrical equipment side, a sudden surge voltage will be generated and the test transformer will There is a risk of entering the secondary side of the device and causing insulation breakdown.

これを防止するため、両者間にチョークコイル等による
インダクタンスを挿入してサージ電圧を抑制した場合、
閃絡時に上記インダクタンスと試験用変圧器の漂遊静電
容量とによる直列共振が生じ、同様に高いサージ電圧が
発生し、試験用変圧器の絶縁破壊のおそれが生じる。
To prevent this, if an inductance such as a choke coil is inserted between the two to suppress the surge voltage,
When a flash fault occurs, series resonance occurs between the inductance and the stray capacitance of the test transformer, and a high surge voltage is also generated, which may lead to dielectric breakdown of the test transformer.

さらに、インダクタンスの代りに抵抗を挿入しサージ電
圧の侵入阻止を図った場合、その抵抗値が高いため負荷
電流による電力損失が大きく、抵抗が大形、高価となる
と共に、抵抗自体の漂遊静電容量が試験用変圧器のそれ
に比べ小さいため。
Furthermore, if a resistor is inserted instead of an inductance to prevent surge voltage from entering, the high resistance value causes large power loss due to load current, making the resistor large and expensive, and the stray static electricity of the resistor itself increases. This is because the capacity is smaller than that of the test transformer.

高周波サージに対しては容量分担となり、全サージ電圧
が掛り絶縁が厳しくなる欠点があった。
The problem is that the capacity is shared against high-frequency surges, and the entire surge voltage is applied, making insulation difficult.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記の欠点を解消するため、試験用変圧器の二
次出力端子と負荷との間に抵抗と静電容量との並列回路
よりなる保護装置を挿入することによりサージ電圧を分
割し、試験用変圧器二次側に加わるサージ電圧の減少を
図るものである。
In order to solve the above-mentioned drawbacks, the present invention divides the surge voltage by inserting a protection device consisting of a parallel circuit of resistance and capacitance between the secondary output terminal of the test transformer and the load. This is intended to reduce the surge voltage applied to the secondary side of the test transformer.

〔実施例〕〔Example〕

第1図は本発明による実施例の構成を示し、容器1内に
収納した試験用変圧器本体2の二次出力端子3より、容
器4内に設けた保護装置5を介し、容器6に取付けた絶
縁スペーサ7を通り、容器8に収納された電気機器9に
接続する。
FIG. 1 shows the configuration of an embodiment according to the present invention, in which the secondary output terminal 3 of the test transformer main body 2 housed in a container 1 is connected to a container 6 via a protective device 5 provided in a container 4. It passes through an insulating spacer 7 and is connected to an electrical device 9 housed in a container 8.

なお容器1.4および6は、充填された所定圧力の絶縁
ガスが流通自由なように互いに結合されており、また容
器8は上記絶縁スペーサ7によりガスの流通を遮断され
、別個に絶縁ガスを所定圧力に充填されている。また同
図では、容器1゜4.6および8を順次積み重ねた状態
に示したが、これは容器が互いに直列に結合されたこと
を示すもので、必ずしもこのように積み重ねた構成を必
要とするものではない、また1、4.6を絶縁スペーサ
で各々ガス区分する構成も考えられる。
The containers 1.4 and 6 are connected to each other so that the insulating gas filled therein at a predetermined pressure can freely flow therein, and the container 8 is blocked from gas flow by the insulating spacer 7 and is separately filled with insulating gas. It is filled to a predetermined pressure. Also, in the same figure, containers 1°4.6 and 8 are shown stacked one after the other, but this shows that the containers are connected in series, and such a stacked configuration is not necessarily required. Alternatively, a configuration in which gases 1 and 4.6 are separated by insulating spacers is also conceivable.

第2図は上記保護装!5の実施例の断面図を示し、セラ
ミック等よりなる円筒状絶縁体の表面に酸化金属皮膜あ
るいはカーボン膜等を無誘導巻に形成してなる抵抗素子
5aと、その内部に設けた、例えばセラミックコンデン
サあるいはプラスチックフィルムコンデンサ等からなる
容量素子5bとの並列回路より構成され、両端に電界緩
和用シールド5Cおよび5dを設けたものである。
Figure 2 shows the above protective equipment! 5 shows a cross-sectional view of the embodiment No. 5, which includes a resistive element 5a formed by forming a non-inductively wound metal oxide film or carbon film on the surface of a cylindrical insulator made of ceramic or the like, and a resistor element 5a provided inside the resistor element 5a, which is made of a cylindrical insulator made of ceramic or the like. It is constructed of a parallel circuit with a capacitive element 5b made of a capacitor or a plastic film capacitor, and has shields 5C and 5d for mitigating electric fields at both ends.

なお第3図に保護装置5の等価回路を示す。Note that FIG. 3 shows an equivalent circuit of the protection device 5.

第4図は試験用変圧器本体2の二次出力端子3より保護
装置5を通じて電気機器すなわち負荷9に接続した状態
を示し、定常状態では、試験用変圧器本体2からの電流
は、抵抗素子5aを介して負荷9に流れる。この場合、
抵抗素子5aは後述するように抵抗値が小さく、負荷電
流により生じる電力損失は少ないため小形に構成され、
第1図に示したように、絶縁ガスを充填した容器4に収
納することができる。
FIG. 4 shows a state in which the secondary output terminal 3 of the test transformer body 2 is connected to an electrical device, that is, a load 9, through the protection device 5. In a steady state, the current from the test transformer body 2 flows through the resistive element. Flows to load 9 via 5a. in this case,
As will be described later, the resistance element 5a has a small resistance value, and the power loss caused by the load current is small, so it is configured in a small size.
As shown in FIG. 1, it can be housed in a container 4 filled with insulating gas.

試験用変圧器本体2より高電圧印加中に負荷側で閃絡が
生じサージ電圧が発生した場合、このサージ電圧は逆流
し、保護装置5を通じて試験用変圧器本体2の二次出力
端子3に加わる。第5図に上記負荷lO側から見た保護
装置5および試験用変圧器本体2の等価回路を示す。
If a flash fault occurs on the load side and a surge voltage is generated while a high voltage is being applied from the test transformer main body 2, this surge voltage flows backwards and is sent to the secondary output terminal 3 of the test transformer main body 2 through the protection device 5. join. FIG. 5 shows an equivalent circuit of the protection device 5 and the test transformer main body 2 viewed from the load IO side.

ここで負荷側に、例えば立下りおよび立上りが0 、1
 psecのように急峻なサージ電圧が発生し、保護装
置5を通じて試験用変圧器本体2の二次側に加わった場
合、サージ電圧のピーク値を第5図に示すようにVsと
すると、 Vsは保護回路5と試験用変圧器本体2との
インピーダンス比によって分割され、分割されたサージ
電圧Vtが試験用変圧器本体2に加わる。
Here, on the load side, for example, the falling and rising edges are 0 and 1.
When a steep surge voltage such as psec occurs and is applied to the secondary side of the test transformer body 2 through the protective device 5, and the peak value of the surge voltage is Vs as shown in Fig. 5, Vs is The voltage is divided by the impedance ratio between the protection circuit 5 and the test transformer body 2, and the divided surge voltage Vt is applied to the test transformer body 2.

しかし、サージ電圧は周波数が極めて高いことから、保
護装置5の容量素子5bの静電容量Cpによるリアクタ
ンス、ならびに試験用変圧器本体2の二次側漂遊静電容
量Ctによるリアクタンスは共に減少し、サージ電圧の
ピーク値Vsはほとんど双方の各静電容量のリアクタン
ス比で分割される。
However, since the frequency of the surge voltage is extremely high, both the reactance due to the capacitance Cp of the capacitive element 5b of the protection device 5 and the reactance due to the secondary side stray capacitance Ct of the test transformer main body 2 decrease. The peak value Vs of the surge voltage is almost divided by the reactance ratio of both capacitances.

よって、保護装置5の静電容量Cpを試験用変圧器本体
2の等価静電容量Ctに対し適当な値に定めることによ
り、サージ電圧Vsを分割して試験用変圧器2に加わる
サージ電圧を低減することができる。
Therefore, by setting the capacitance Cp of the protection device 5 to an appropriate value with respect to the equivalent capacitance Ct of the test transformer main body 2, the surge voltage Vs applied to the test transformer 2 can be divided by dividing the surge voltage Vs. can be reduced.

この場合、抵抗素子5aは抵抗値を従来の抵抗のみを挿
入した場合に比べ小さくし、負荷電流による抵抗損失を
減少させることにより、保護装置を小形にすることがで
きる。なお当然のことながら、上記保護装置5の容量素
子5bの静電容量値は、その漂遊静電容量を含めて適当
な値に選定する。
In this case, the resistance value of the resistor element 5a is made smaller than that in the case where only a conventional resistor is inserted, and the resistance loss due to the load current is reduced, thereby making it possible to downsize the protection device. As a matter of course, the capacitance value of the capacitive element 5b of the protection device 5 is selected to be an appropriate value including its stray capacitance.

保護装置5の容量素子5bの静電容量値Cp=200P
F、抵抗素子5aの抵抗値Rp= 5 KΩ、また試験
用変圧器本体2の等価静電容量値Ct=200PF、リ
アクタンス値Lt=1,800H。
Capacitance value Cp of capacitive element 5b of protection device 5 = 200P
F, resistance value Rp of resistance element 5a = 5 KΩ, equivalent capacitance value Ct of test transformer body 2 = 200PF, reactance value Lt = 1,800H.

等価抵抗値Rt= 20 KΩの場合の実測の結果、保
護装置5を用いることにより、試験用変圧器本体2に加
わるサージ電圧は周波数が上昇するにつれて大略半減さ
れると共に波形峻度が十分抑制され、第6図に示すよう
に保護装置がない場合のサージ電圧波形Aに対し、保護
装置を用いたときのVtはBのようにすることができた
As a result of actual measurements when the equivalent resistance value Rt = 20 KΩ, by using the protection device 5, the surge voltage applied to the test transformer main body 2 is approximately halved as the frequency increases, and the waveform steepness is sufficiently suppressed. As shown in FIG. 6, the surge voltage waveform A without the protection device was changed to Vt as shown in B when the protection device was used.

すなわち、負荷側における閃絡等によるサージ電圧を抑
制するため試験用変圧器と負荷との間に抵抗を挿入した
場合は抵抗値の高いものが必要であり、このため定常状
態において負荷に加えられる電流による電力損失が大き
く、抵抗が大形、高価となり、絶縁ガスを充填した容器
に収納することはできなかった。
In other words, if a resistor is inserted between the test transformer and the load in order to suppress surge voltages caused by flashovers on the load side, a resistor with a high resistance value is required; Power loss due to current was large, the resistor was large and expensive, and it was impossible to store it in a container filled with insulating gas.

これに対し、本発明においては抵抗素子と容量素子との
並列回路よりなる保護装置を用い、負荷側に生じたサー
ジ電圧は上記並列回路と試験用変圧器とに分割されて加
わるようにし、抵抗素子の抵抗値を前記抵抗のみを用い
た場合に比べ小さくすることにより、負荷電流による抵
抗損失を減少させ、保護装置を小形化し絶縁ガス充填容
器に収納することができる。
In contrast, in the present invention, a protection device consisting of a parallel circuit of a resistive element and a capacitive element is used, and the surge voltage generated on the load side is divided and applied to the parallel circuit and the test transformer. By making the resistance value of the element smaller than when only the resistor is used, resistance loss due to load current can be reduced, and the protection device can be downsized and housed in an insulating gas-filled container.

〔発明の効果〕〔Effect of the invention〕

このように本発明によるときは、試験用変圧器に加わる
サージ電圧を、抵抗素子と容量素子との並列回路よりな
る保護装置によって分割し減少させ、かつ上記保護装置
を小形化することができる。
As described above, according to the present invention, the surge voltage applied to the test transformer can be divided and reduced by a protection device consisting of a parallel circuit of a resistance element and a capacitance element, and the protection device can be downsized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の構成を示す説明図、第2図は
保護装置の実施例を示す断面図、第3図はその等価回路
図、第4図は試験用変圧器と保護装置および負荷との接
続を示す回路図、第5図はサージ電圧に対する保護装置
と試験用変圧器との等価回路図、第6図は保護装置によ
るサージ電圧の波形峻度抑制効果を示す波形図である。 2・・・試験用変圧器本体、3二次出力端子、5・・・
保護装置、5a・・・抵抗素子、5b・・・容量素子、
9・・・負荷。
Fig. 1 is an explanatory diagram showing the configuration of an embodiment of the present invention, Fig. 2 is a sectional view showing an embodiment of the protection device, Fig. 3 is its equivalent circuit diagram, and Fig. 4 is a test transformer and protection device. Figure 5 is an equivalent circuit diagram of the surge voltage protection device and the test transformer, and Figure 6 is a waveform diagram showing the effect of the protection device on suppressing waveform steepness of surge voltage. be. 2...Test transformer body, 3 Secondary output terminal, 5...
Protective device, 5a...resistive element, 5b...capacitive element,
9...Load.

Claims (1)

【特許請求の範囲】[Claims] 試験用変圧器本体の二次出力端子と負荷との間に抵抗と
静電容量との並列回路よりなる保護装置を挿入し、上記
負荷側の閃絡等により上記負荷より上記二次出力端子に
加わるサージ電圧に対し、上記保護装置は上記試験用変
圧器本体の等価インピーダンスと所定比の等価インピー
ダンスを有することを特徴とする試験用変圧器。
A protective device consisting of a parallel circuit of resistance and capacitance is inserted between the secondary output terminal of the main body of the test transformer and the load, and a protection device consisting of a parallel circuit of resistance and capacitance is installed to prevent the load from reaching the secondary output terminal due to a flash short circuit on the load side. A test transformer, wherein the protection device has an equivalent impedance of a predetermined ratio to an equivalent impedance of the main body of the test transformer with respect to applied surge voltage.
JP61218474A 1986-09-17 1986-09-17 Transformer for testing Pending JPS6373164A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61218474A JPS6373164A (en) 1986-09-17 1986-09-17 Transformer for testing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61218474A JPS6373164A (en) 1986-09-17 1986-09-17 Transformer for testing

Publications (1)

Publication Number Publication Date
JPS6373164A true JPS6373164A (en) 1988-04-02

Family

ID=16720491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61218474A Pending JPS6373164A (en) 1986-09-17 1986-09-17 Transformer for testing

Country Status (1)

Country Link
JP (1) JPS6373164A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03181715A (en) * 1989-08-07 1991-08-07 Matsushita Electric Ind Co Ltd High frequency heater

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03181715A (en) * 1989-08-07 1991-08-07 Matsushita Electric Ind Co Ltd High frequency heater

Similar Documents

Publication Publication Date Title
JP4041068B2 (en) How to protect medium voltage inductive coupling devices from electrical transients
EP2747094A1 (en) Very fast transient overvoltage attenuator
CN1912638B (en) Can type capacitor voltage mutual inductor
Ueta et al. Insulation characteristics of oil-immersed power transformer under lightning impulse and AC superimposed voltage
US20130021709A1 (en) Conductor arrangement for reducing impact of very fast transients
JP2010093968A (en) Gas-insulated switchgear
US20160189858A1 (en) Transformer Arrangement For Mitigating Transient Voltage Oscillations
JPS6373164A (en) Transformer for testing
US10342107B2 (en) Cascaded filament transformer within a resistive shroud
WO2002001687A2 (en) Impulse lightning arresters and pulse arrester columns for power lines
Yutthagowith et al. A Rogowski coil with an active integrator for measurement of long duration impulse currents
Burow et al. Can ferrite materials or resonant arrangements reduce the amplitudes of VFTO in GIS
GB2030390A (en) Protection arrangement for voltage line
EP2194540A1 (en) High voltage bushing
JPH05159909A (en) Fault monitor for lightning arrestor
KR101039147B1 (en) Protection apparatus of transformer for insulating paper
JP7361939B2 (en) Overvoltage protection for test taps of HV bushings
JPS61190910A (en) Gas insulated transformer
JP2013247160A (en) Arrestor
TW471203B (en) Gas insulation switch apparatus and lighting protection apparatus
US4204239A (en) Abnormal voltage protection device
JPS6240022A (en) Testing transformer
JP3121904B2 (en) Capacitor type transformer with lightning arrester
Poljak et al. Dielectric stresses determination in active part of the combined transformer
KR100398824B1 (en) Lightning arrester device