JPS6373134A - Method of testing friction lubrication - Google Patents

Method of testing friction lubrication

Info

Publication number
JPS6373134A
JPS6373134A JP21723886A JP21723886A JPS6373134A JP S6373134 A JPS6373134 A JP S6373134A JP 21723886 A JP21723886 A JP 21723886A JP 21723886 A JP21723886 A JP 21723886A JP S6373134 A JPS6373134 A JP S6373134A
Authority
JP
Japan
Prior art keywords
tool
rolling
friction
roll
machined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21723886A
Other languages
Japanese (ja)
Other versions
JPH0447260B2 (en
Inventor
Yasuhiro Sotani
保博 曽谷
Tomoyuki Hirakawa
平川 智之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP21723886A priority Critical patent/JPS6373134A/en
Publication of JPS6373134A publication Critical patent/JPS6373134A/en
Publication of JPH0447260B2 publication Critical patent/JPH0447260B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

PURPOSE:To evaluate the friction characteristic at an interface between a tool and a material to be machined, by rolling the material to be machined with a roll and a tool, and detecting the working force which acts in the vertical direction with respect to the rolling direction and the working force which acts on the tool in parallel with the rolling direction. CONSTITUTION:A plate-shaped tool 1, which has a lubricating film 6 having the specified surface state owing to the application of a lubricant and the like, is fixed on a bearing and the like under the condition of no friction. A material to be machined 3 in a plate shape is rolled between the tool and a roll 2. Then pressure P, which is vertical to the rolling direction, acts on the roll 2 or the tool 1. At the same time, a force F, which is in parallel with the rolling direction, acts on the tool 1 owing to the friction at the interface between the material to be machined 3 and the tool 1. The forces P and F are detected with a compressing force detector 4 and a frictional force detector 5. Then the friction coefficient mu between the material to be machined 3 and the tool 1 is obtained by mu=F/P using the low of friction. The change in the friction coefficient is followed with time from the start of the rolling. Thus, the persistence and the durability of the lubricating film 6 on the surface of the tool and the seizure property between the material to be machined and the tool 1 can be evaluated.

Description

【発明の詳細な説明】 「発明の目的」 本発明は、塑性加工における被加工材と工具の界面の真
の摩擦係数を圧延方向に垂直に作用する力と圧延方向に
平行に工具に作用する力との検出値から塑性加工におけ
る摩擦特性を的確に評価しようとするものである。
[Detailed Description of the Invention] "Objective of the Invention" The present invention aims to calculate the true friction coefficient at the interface between a workpiece and a tool during plastic working by determining the force acting perpendicularly to the rolling direction and the force acting parallel to the rolling direction. The aim is to accurately evaluate the friction characteristics in plastic working from the detected values of force and force.

産業上の利用分野 本発明は、塑性加工における工具と被加工材との界面の
摩擦特性を評価するための試験機およびその試験方法に
関する。
INDUSTRIAL APPLICATION FIELD The present invention relates to a testing machine and a testing method for evaluating the frictional characteristics of the interface between a tool and a workpiece in plastic working.

従来の技術 圧延、押出し、鍛造などの塑性加工においては、加工力
の低減、製品品質の向上および工具の損傷防止などの目
的で潤滑剤が使用されることが多い。
BACKGROUND OF THE INVENTION In plastic processing such as rolling, extrusion, and forging, lubricants are often used for purposes such as reducing processing force, improving product quality, and preventing damage to tools.

また、工具を熱処理したり、異種材料を被覆するなどの
方法で工具に特殊な表面処理を施すことも少なくない。
In addition, it is not uncommon for tools to be subjected to special surface treatments, such as by heat treating them or coating them with different materials.

熱間における定常塑性加工の1つである孔形ロールとマ
ンドレルバ−の間で管の肉厚ヲ減スるマンドレル圧延を
例として説明すると、マンドレルバ−の摩擦抵抗を低減
する目的で、あらかじめマンドレルバ−表面に黒鉛系の
潤滑剤を塗布するのが通常である。しかし潤滑状態が悪
く摩擦係数が高くなると、圧延された管の形状が悪化す
るだけでなく、管材とマンドレルバ−が焼付きを起して
管内面やバー表面が損傷する。また圧延後の管からマン
ドレルバ−を抜き取ることが困難になることもある。更
に近年多く採用されている圧延中にマンドレルバ−速度
を一定に拘束する方法においては、潤滑不良によりバー
の負荷が過大になるとバーの折損を引き起こすなど、潤
滑状態の良否が加工の成否を左右すると言っても過言で
はない。
To explain mandrel rolling, which is one of the steady hot plastic working processes in which the wall thickness of a tube is reduced between a slotted roll and a mandrel bar, as an example, in order to reduce the frictional resistance of the mandrel bar, the mandrel bar is Usually, a graphite-based lubricant is applied to the surface. However, if the lubrication condition is poor and the coefficient of friction becomes high, not only will the shape of the rolled tube deteriorate, but the tube material and mandrel bar will seize, causing damage to the inner surface of the tube and the bar surface. Furthermore, it may be difficult to remove the mandrel bar from the rolled tube. Furthermore, in the method that has been widely adopted in recent years, in which the speed of the mandrel bar is held constant during rolling, the success or failure of machining depends on the quality of the lubrication, as if the load on the bar becomes excessive due to poor lubrication, the bar may break. It's no exaggeration to say that.

しかし潤滑剤の選定および潤滑条件の決定は経験に頼っ
ているのが現状である。このためマンドレル圧延用潤滑
剤の摩擦係数、耐久性および管材とマンドレルバ−の焼
付き性を簡便に評価する手法の確立が切望されている。
However, the selection of lubricants and the determination of lubrication conditions currently rely on experience. Therefore, there is a strong desire to establish a method for easily evaluating the friction coefficient and durability of a lubricant for mandrel rolling, as well as the seizure resistance between a tube material and a mandrel bar.

また、鍛造などの1加工行程で圧下率、負荷などの加工
条件が変化する非定常塑性加工においても、ダイスや金
型の表面に潤滑剤を塗布するのが通常である。これらの
加工においても、潤滑剤の摩擦係数が高い場合には、金
型への材料の充満不足による製品価値の低下、更に圧下
率が太き(なると金型への材料の焼付き、かじりにより
金型の損傷を引き起こすため、前記同様、潤滑剤の摩擦
係数、耐久性および金型と材料の焼付き性を簡便に評価
する手法の確立が求められている。
Furthermore, even in unsteady plastic working, such as forging, where working conditions such as reduction rate and load change during one working process, a lubricant is usually applied to the surface of the die or mold. Even in these processes, if the friction coefficient of the lubricant is high, the product value will decrease due to insufficient filling of the material in the mold, and the rolling reduction will be large (this will cause the material to seize in the mold and cause galling). As described above, there is a need to establish a method for easily evaluating the friction coefficient, durability, and seizure resistance of the lubricant between the mold and the material, since this may cause damage to the mold.

以上のような塑性加工における工具と被加工材の接触界
面の条件は、非常に高い圧力が大きな接触面接にわたっ
て作用し、被加工材の塑性変形に伴って新生面が露出す
る。また熱間加工であれば接触界面が高温にさらされる
The conditions of the contact interface between the tool and the workpiece in plastic working as described above are such that extremely high pressure acts over a large contact surface, and a new surface is exposed as the workpiece undergoes plastic deformation. Furthermore, in hot working, the contact interface is exposed to high temperatures.

従来より潤滑剤の評価試験に、例えば日本潤滑学会編潤
滑ハンドブックの371頁以下などに発表されている四
球式、ティムケンなどの基礎試験機およびその改良機が
多く用いられており、また熱間加工用潤滑剤の評価には
、リング圧縮法が用いられることもある。
Conventionally, basic testing machines such as the four-ball type, Timken, etc., which are published in pages 371 and below of the Lubrication Handbook edited by the Japan Society of Lubricants, and their improved machines have been widely used for lubricant evaluation tests. The ring compression method is sometimes used to evaluate commercial lubricants.

発明が解決しようとする問題点 しかし、四球式、ティムケンなどの基礎試験機およびそ
の改良機による試験において荷重を負荷する接触部は弾
性体相互の接触であり、点あるいは線接触のため接触面
積は小さく、局所的には高荷重にはなるが、塑性変形に
よる新生面の大きな露出はなく、試験結果は単に摩擦現
象を解明するだけに留まり、実際の塑性加工における摩
擦特性を正当に評価できるに到ってない。
Problems to be Solved by the Invention However, in tests using basic testing machines such as the four-ball type, Timken, and their improved machines, the contact area that applies the load is the contact between elastic bodies, and the contact area is small due to point or line contact. Although the load is small and locally high, there is no large exposure of the newly formed surface due to plastic deformation, and the test results merely elucidate the friction phenomenon, making it difficult to properly evaluate the friction characteristics in actual plastic working. There isn't.

またリング圧縮法は、単純圧縮での表面伸びおよび新生
面の露出は実際の塑性加工と比べると小さいものである
ため、この方法により測定された摩擦係数による潤滑剤
の潤滑性の順位と、実際の押出し加工などを行ったとき
の加工力や焼付き性から判定した順位とでは入れ替わる
こともよくあり、潤滑剤の摩擦係数、耐久性および焼付
性の評価が実際の加工に対し正当に行われているとは言
いがたい。
In addition, in the ring compression method, the surface elongation and exposure of new surfaces in simple compression are small compared to actual plastic working, so the ranking of lubricant lubricity based on the friction coefficient measured by this method and the actual The rankings determined based on the processing force and seizure resistance during extrusion processing etc. are often interchanged, and the evaluation of the friction coefficient, durability and seizure resistance of lubricants is not properly performed for actual processing. It's hard to say that there are.

そのため、実際の塑性加工を模擬するため、操業設備と
同規模かあるいはその何分の1かの特別な設備を用いて
加工を行い、加工力による摩擦係数の評価や、工具と被
加工材の焼付き性の評価が行われることもあるが、これ
らの設備は通常大型で、制作費も高額であり、かつ操作
方法も複雑であるとういう欠点を有している。
Therefore, in order to simulate actual plastic working, processing is performed using special equipment that is the same size or a fraction of the operating equipment, and the friction coefficient due to processing force is evaluated and the relationship between the tool and the workpiece is evaluated. Although burn-in properties are sometimes evaluated, these facilities have the drawbacks of being usually large, expensive to produce, and complicated to operate.

「発明の構成」 問題点を解決するための手段 回転する圧延ロールと固定した板状の工具の間で板状の
被加工材を圧延し、圧延方向に垂直に働らく作用力と、
圧延方向と平行に工具に働らく作用力とを共に検出し、
塑性加工における工具と被加工材との界面における摩擦
特性を評価することを特徴とする摩擦潤滑試験方法。
"Structure of the Invention" Means for Solving the Problem A plate-shaped workpiece is rolled between a rotating rolling roll and a fixed plate-shaped tool, and an acting force acting perpendicular to the rolling direction,
Detects both the force acting on the tool parallel to the rolling direction,
A friction lubrication test method characterized by evaluating the friction characteristics at the interface between a tool and a workpiece during plastic working.

作用 圧延方向と垂直な圧下刃(P)と圧延方向に平行な圧下
刃(F)を夫々検出することにより、摩擦の法則から摩
擦係数μを、μ=F/Pで求めることができる。
By detecting the rolling blade (P) perpendicular to the active rolling direction and the rolling blade (F) parallel to the rolling direction, the friction coefficient μ can be determined from the law of friction as μ=F/P.

前記摩擦係数μの経時変化から工具表面における潤滑膜
の如きの持続性、耐久性および焼き付き性などを評価し
判定することができる。
From the change in the friction coefficient μ over time, it is possible to evaluate and determine the durability, durability, and seizure resistance of a lubricant film on the tool surface.

定常塑性加工、非定常塑性加工などの何れに対しても試
験、評価をなし得る。
We can test and evaluate both steady plastic working and unsteady plastic working.

実施例 上記したような本発明について更に説明するならば、本
発明による試験機は、回転する圧延ロールと固定された
板状の工具との間で板状の被加工材を圧延することによ
り、第1に被加工材に大きな塑性変形を与え、第2に、
大きく露出した被加工材の新生面と工具表面との接触界
面に高い圧力を生ぜしめた状態で、被加工材と工具に相
対すべりを与えて、実際の塑性加工における工具と被加
工材の接触状態に近い状態を作らしめるものであり、こ
のような状態で圧延方向に垂直に作用する力と圧延方向
に平行に工具に作用する力を同時に検出機構を用い、両
者の検出値から被加工材と工具との界面における真の摩
擦係数を算定せしめることにより、塑性加工における摩
擦特性を正当に評価できるようにしたものである。
EXAMPLE To further explain the present invention as described above, the testing machine according to the present invention rolls a plate-shaped workpiece between a rotating rolling roll and a fixed plate-shaped tool. Firstly, a large plastic deformation is applied to the workpiece, and secondly,
A high pressure is generated at the contact interface between the newly exposed surface of the workpiece and the tool surface, and relative slip is applied to the workpiece and the tool to determine the contact state between the tool and the workpiece during actual plastic working. In this state, a detection mechanism is used to simultaneously detect the force acting perpendicularly to the rolling direction and the force acting parallel to the rolling direction on the tool, and from the detected values of both, it is possible to determine the By calculating the true coefficient of friction at the interface with the tool, it is possible to accurately evaluate the friction characteristics in plastic working.

斯かる本発明を添付図面を用いて説明するならば、第1
図は本発明の原理的関係の1例を示したものであり、潤
滑剤の塗布その他により所定の表面状態をもった膜6を
有する板状の工具1は、ベアリング等の上に無摩擦条件
で固定設置され、この工具1と圧延ロール2との間で板
状の被加工材3を圧延すると、圧延方向と垂直な圧下刃
Pがロール2あるいは工具1に作用すると同時に、被加
工材3と工具1との界面における摩擦により工具1には
圧延方向に平行な力Fが作用する。このようなそれぞれ
の力PおよびFを荷重検出器4および5で検出すると、
摩擦の法則により被加工材3と工具1との界面の摩擦係
数μは、μ=F/Pで求められる。このようにして求め
た摩擦係数の圧延開始からの経時変化を追うことによっ
て、工具表面の潤滑膜6の持続性、耐久性および被加工
材3と工具1との焼付き性も評価できる。ロール2とし
て板圧延用の円筒ロールを用いれば、ロール回転中の圧
下条件は一定であるから定常塑性加工における試験が可
能であり、一方偏芯ロールあるいはピルが一圧延ロール
などのロール回転に伴い圧下条件が変化するロールを用
いれは、非定常塑性加工における試験が可能になる。
If such the present invention is explained using the accompanying drawings, the first
The figure shows one example of the principle relationship of the present invention. A plate-shaped tool 1 having a film 6 with a predetermined surface condition by applying lubricant or the like is placed on a bearing or the like under a frictionless condition. When a plate-shaped workpiece 3 is rolled between the tool 1 and the rolling roll 2, the rolling blade P perpendicular to the rolling direction acts on the roll 2 or the tool 1, and at the same time the workpiece 3 A force F parallel to the rolling direction acts on the tool 1 due to friction at the interface between the tool 1 and the tool 1. When such respective forces P and F are detected by load detectors 4 and 5,
According to the law of friction, the friction coefficient μ at the interface between the workpiece 3 and the tool 1 is determined by μ=F/P. By tracking the change in the friction coefficient determined in this way over time from the start of rolling, the sustainability and durability of the lubricant film 6 on the tool surface and the seizure resistance between the workpiece 3 and the tool 1 can also be evaluated. If a cylindrical roll for plate rolling is used as the roll 2, the rolling reduction conditions during roll rotation are constant, making it possible to perform tests in steady plastic working. Using rolls with varying rolling reduction conditions allows testing in unsteady plastic working.

また、素材をあらかじめ加熱炉で所定の温度に加熱すれ
ば熱間での試験が可能である。ロール2と工具1の間隔
を変化させることで塑性変形の大きさ、工具1と被加工
材3の接触部に作用する圧力および接触面積を変化させ
ることができ、更にロール2の回転数を変化させること
で工具1と被加工材3間の相対すべり速度を変化させる
ことができる。
Additionally, hot testing is possible by heating the material to a predetermined temperature in a heating furnace in advance. By changing the distance between the roll 2 and the tool 1, it is possible to change the magnitude of plastic deformation, the pressure acting on the contact area between the tool 1 and the workpiece 3, and the contact area, and also change the rotation speed of the roll 2. By doing so, the relative sliding speed between the tool 1 and the workpiece 3 can be changed.

更に工具1形状を単純な形状にすることにより潤滑剤6
の塗布、工具10表面処理、工具材質の変更ならびに工
具1の交換も容易になり、種々の潤滑状態での試験を簡
便に行うこともできる。
Furthermore, by making the tool 1 shape simpler, lubricant 6
coating, surface treatment of the tool 10, changing the tool material, and replacing the tool 1 are also facilitated, and tests under various lubrication conditions can be easily performed.

なお、より長時間における摩擦特性を評価するためには
、長尺の被加工材3を用いるか、あるいは短尺の被加工
材3を多バス圧延すればよい。また第1図において圧下
刃Pはロール2に作用する力を検出するようになってい
るが、工具1に作用する力を検出してもよい。
Note that in order to evaluate the friction characteristics over a longer period of time, a long workpiece 3 may be used, or a short workpiece 3 may be rolled in multiple passes. Furthermore, although the rolling blade P is designed to detect the force acting on the roll 2 in FIG. 1, it may also detect the force acting on the tool 1.

次に、具体例によって本発明をより詳細に説明すると、
第2図〜第4図は本発明者等の作製した試験機の構成を
示すものであって、第2図に示すように市販の双ロール
圧延機における上側ロール14と対設された下側ロール
セットを固定ブロック11に置き換えてベアリング18
上に設置し、固定ブロックIIの工具保持部12におい
て板状に加工した工具13を固定させ、斯かる工具13
と上側ロール14の間で板材の被加工材を圧延するよう
に成っており、第4図に示すようなロールハウジング1
5の出側に圧縮型ロードセル16を取り付け、このロー
ドセル16に前記したような固定ブロック11を押し付
けて固定ブロック11を圧延方向に固定すると共に、上
記のようにロール14と工具13との間のに位置した被
加工材と工具13との間に働く摩擦力を検出する。圧延
方向に垂直な力は、ロールハウジング15の上部に取付
けたロール圧下刃検出用ロードセル17で検出するよう
に成っている。
Next, the present invention will be explained in more detail using specific examples.
FIGS. 2 to 4 show the configuration of a test machine manufactured by the present inventors, and as shown in FIG. Replace the roll set with the fixed block 11 and install the bearing 18
A tool 13 machined into a plate shape is fixed in the tool holding portion 12 of the fixed block II, and the tool 13 is
A plate workpiece is rolled between the upper roll 14 and the roll housing 1 as shown in FIG.
A compression type load cell 16 is attached to the exit side of the roll 16, and the fixing block 11 as described above is pressed against the load cell 16 to fix the fixing block 11 in the rolling direction. The frictional force acting between the workpiece and the tool 13 located at is detected. The force perpendicular to the rolling direction is detected by a roll reduction blade detection load cell 17 attached to the upper part of the roll housing 15.

上記のような本発明における試験機を用いて、まず円筒
ロールを採用して、定常塑性加工を模凝する試験法と試
験結果の1例を述べる。被加工材には炭素M(0,2%
C)を用い、電気炉で1000℃に昇温させた。形状は
厚さ15龍、幅40龍、長さ150 mmであり、噛込
み21性を向上させるために先端部に約10°のテーパ
をもたせた。工具■3には厚さ2511、幅60m、長
さ150nの合金鋼(5%Cr−1%MO)を用い、ロ
ール14と工具13の間隔は7n*(圧下率53%)に
設定し、直径130mmのロールを回転数2Orpmで
直流モータにより駆動し試験した。
An example of a test method and test results for simulating steady plastic working using a cylindrical roll using the test machine of the present invention as described above will be described. Carbon M (0.2%
C) was heated to 1000° C. in an electric furnace. The shape is 15 mm thick, 40 mm wide, and 150 mm long, and the tip has a taper of about 10 degrees to improve the biting property. For the tool 3, alloy steel (5% Cr-1% MO) with a thickness of 2511, a width of 60 m, and a length of 150 n was used, and the distance between the roll 14 and the tool 13 was set to 7 n* (rolling reduction rate of 53%). The test was carried out by driving a roll having a diameter of 130 mm with a DC motor at a rotation speed of 2 Orpm.

第5図と第6図にはそれぞれ水溶性黒鉛系の潤滑材Aお
よびBを予め工具表面に約50μm塗布した場合の試験
結果を示すが、圧延時間の経過に対するロードセル17
からの出力である圧下刃P、ロードセル16からの出力
である摩擦力Fおよび摩擦係数μを、μ=F/Pの演算
結果として示したものである。即ち第5図においては、
圧延中の摩擦係数はほぼ一定であり、その値も極めて低
く安定な潤滑状態が得られていることが分かる。一方第
6図においては、圧延開始早々に摩擦係数が0.2まで
上昇し、圧延途中で摩擦係数が小刻みに変動し、実際は
ここで工具13に板材が焼付きを起こしている。
Figures 5 and 6 show the test results when water-soluble graphite-based lubricants A and B were applied to the tool surface in advance to a thickness of about 50 μm, and the load cell 17 as a function of the rolling time.
The rolling blade P, which is the output from the load cell 16, the friction force F, which is the output from the load cell 16, and the friction coefficient μ are shown as the calculation results of μ=F/P. That is, in Figure 5,
It can be seen that the friction coefficient during rolling is almost constant and its value is extremely low, indicating that a stable lubrication state is obtained. On the other hand, in FIG. 6, the friction coefficient increases to 0.2 immediately after rolling starts, and the friction coefficient fluctuates little by little during rolling, and the plate material actually seizes on the tool 13 at this point.

このように円筒ロールを用いた本発明による試験法によ
り、潤滑剤の摩擦係数、耐久性および工具と被加工材の
焼付性を的確に評価できることが判明した。
As described above, it has been found that the test method according to the present invention using a cylindrical roll can accurately evaluate the friction coefficient and durability of a lubricant, and the seizability of tools and workpieces.

次に、ロールの回転に伴い圧下率が変化する偏芯ロール
を用いて非定常塑性加工を模凝する試験法と試験結果の
1例を述べると、ロールには直径130mm、偏芯量6
.5龍のものを用い、ロール半回転でロールと工具の間
隔が211〜15+u(圧下率O〜80%)で変化でき
る設定とした。潤滑剤には上記Aを用い、その他の条件
は上記したところと同条件にした。第7図には試験結果
として圧下率に対する摩擦係数の変化を示す。この図よ
り圧下率の上昇に従い摩擦係数も上昇し、圧下率が約5
8%で被加工材と工具が焼付きを起こしていることが分
かる。
Next, we will describe an example of the test method and test results for simulating unsteady plastic working using eccentric rolls whose rolling reduction rate changes as the rolls rotate.The rolls have a diameter of 130 mm and an eccentricity of 6
.. 5 Dragon was used, and the setting was such that the distance between the roll and the tool could be changed from 211 to 15+u (rolling reduction ratio O to 80%) in half a rotation of the roll. The above A was used as the lubricant, and the other conditions were the same as above. FIG. 7 shows the change in the friction coefficient with respect to the rolling reduction ratio as a result of the test. This figure shows that as the rolling reduction rate increases, the friction coefficient also increases, and the rolling reduction rate is approximately 5.
It can be seen that seizure occurs between the workpiece and the tool at 8%.

このように本発明によるものは、偏芯ロールを用いる場
合の試験法において、逐次圧下率が変化する場合の潤滑
剤の摩擦係数、耐久性および工具と被加工材の焼付き性
が評価できることが明かである。熱論同様な条件での評
価は前記円筒ロールで板厚が長手方向に逐次変化する素
材を用いても実現できる。
As described above, the present invention can evaluate the friction coefficient and durability of the lubricant and the seizure resistance between the tool and the workpiece when the rolling reduction rate changes sequentially in the test method using eccentric rolls. It's obvious. Evaluation under conditions similar to thermal theory can also be achieved by using the cylindrical roll material whose plate thickness changes successively in the longitudinal direction.

以上、本発明試験機による潤滑剤の評価法を例にとって
試験方法を述べたが、潤滑剤なしで試験すれば工具材質
の摩擦特性を、あるいは工具に熱処理または異種材被覆
などの表面処理を施して試験すれば各表面層の潤滑性を
それぞれ評価できることは明らかである。
The test method has been described above using the test method of the present invention as an example for evaluating lubricants. However, if the test is performed without lubricant, the friction characteristics of the tool material can be evaluated, or the tool can be subjected to surface treatment such as heat treatment or coating with a different material. It is clear that the lubricity of each surface layer can be evaluated individually by testing.

発明の詳細 な説明したような本発明によるときは、回転する圧延ロ
ールと固定された板状の工具との間で板状の被加工材を
圧延することにより、被加工材に大きな塑性変形を与え
ると同時に、大きく露出した被加工材の新生面と工具表
面との接触界面に高い圧力を生ぜしめた状態で、被加工
材と工具に相対すべりを与えて実際の塑性加工における
工具と被加工材の接触状態に近い状態を作らしめ、圧延
方向に垂直に作用する力と圧延方向に平行な工具に作用
する力を同時に検出することができ、両者の検出値から
被加工材と工具界面における真の摩擦係数を算定ならし
めることによって塑性加工における摩擦特性を正当に評
価でき、しかも小型で、製作費が安価であり、試験操作
方法が簡便である等の効果を有しており、工業上のその
効果の大きい発明である。
According to the present invention as described in detail, a plate-shaped workpiece is rolled between a rotating rolling roll and a fixed plate-shaped tool, thereby causing large plastic deformation to the workpiece. At the same time, a high pressure is generated at the contact interface between the newly exposed surface of the workpiece and the tool surface, and a relative slip is applied to the workpiece and the tool to prevent the tool and the workpiece during actual plastic working. It is possible to simultaneously detect the force acting perpendicular to the rolling direction and the force acting on the tool parallel to the rolling direction, and from the detected values of both, the true state at the interface between the workpiece and the tool can be determined. By calculating the coefficient of friction of This is a highly effective invention.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の技術的内容を示すものであって、第1図
は本発明における試験測定の原理的関係の説明図、第2
図は本発明等の作製した試験機の正面図、第3図はその
側面図、第4図はその立面図、第5.6.7図はそれぞ
れ試験結果を示すグラフである。 然して、これらの図面において、1は工具、2はロール
、3は被加工材、4は圧下力検出器、5は摩擦力検出器
、6は潤滑膜、11は固定ブロック、12は工具支持部
、13は工具、14はロール、15はロールハウジング
、16は摩擦検出用ロードセル、17は圧下力検出用ロ
ードセル、18はベアリングを夫々示すものである。 特許出願人   日本鋼管株式会社 発   明   者    曽  谷  保  博同 
           平  川  智  之第 7 
国 水下率−(幻 手続補正書(0謬) 昭和 &1.10.1ilOs
The drawings show the technical contents of the present invention, and FIG. 1 is an explanatory diagram of the principle relationship of test and measurement in the present invention,
The figure is a front view of the test machine manufactured according to the present invention, FIG. 3 is a side view thereof, FIG. 4 is an elevation view thereof, and FIGS. 5, 6, and 7 are graphs showing the test results. In these drawings, 1 is a tool, 2 is a roll, 3 is a workpiece, 4 is a rolling force detector, 5 is a friction force detector, 6 is a lubricating film, 11 is a fixed block, and 12 is a tool support part. , 13 is a tool, 14 is a roll, 15 is a roll housing, 16 is a load cell for detecting friction, 17 is a load cell for detecting rolling force, and 18 is a bearing. Patent applicant Nippon Kokan Co., Ltd. Inventor Yasushi Soya
Satoshi Hirakawa No. 7
National water rate - (phantom procedural amendment (0 error) Showa &1.10.1ilOs

Claims (1)

【特許請求の範囲】[Claims] 回転する圧延ロールと固定した板状の工具の間で板状の
被加工材を圧延し、圧延方向に垂直に働らく作用力と、
圧延方向と平行に工具に働らく作用力とを共に検出し、
塑性加工における工具と被加工材との界面における摩擦
特性を評価することを特徴とする摩擦潤滑試験方法。
A plate-shaped workpiece is rolled between a rotating rolling roll and a fixed plate-shaped tool, and an acting force that acts perpendicular to the rolling direction,
Detects both the force acting on the tool parallel to the rolling direction,
A friction lubrication test method characterized by evaluating the friction characteristics at the interface between a tool and a workpiece during plastic working.
JP21723886A 1986-09-17 1986-09-17 Method of testing friction lubrication Granted JPS6373134A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21723886A JPS6373134A (en) 1986-09-17 1986-09-17 Method of testing friction lubrication

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21723886A JPS6373134A (en) 1986-09-17 1986-09-17 Method of testing friction lubrication

Publications (2)

Publication Number Publication Date
JPS6373134A true JPS6373134A (en) 1988-04-02
JPH0447260B2 JPH0447260B2 (en) 1992-08-03

Family

ID=16701016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21723886A Granted JPS6373134A (en) 1986-09-17 1986-09-17 Method of testing friction lubrication

Country Status (1)

Country Link
JP (1) JPS6373134A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH055696A (en) * 1991-06-27 1993-01-14 Fuji Xerox Co Ltd Measuring device for friction factor
JPH0599823A (en) * 1991-03-08 1993-04-23 Sumitomo Metal Ind Ltd Method and equipment for friction test
US7263876B2 (en) * 2001-09-19 2007-09-04 Ricoh Company Limited Apparatus and method of detecting surface convexity of members, and method of producing the members
CN103048262A (en) * 2011-10-13 2013-04-17 克朗斯股份公司 Method and device for determining friction values
CN103884640A (en) * 2014-03-21 2014-06-25 北京工业大学 Prestressed pipeline friction testing apparatus and installation method of apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0599823A (en) * 1991-03-08 1993-04-23 Sumitomo Metal Ind Ltd Method and equipment for friction test
JPH055696A (en) * 1991-06-27 1993-01-14 Fuji Xerox Co Ltd Measuring device for friction factor
US7263876B2 (en) * 2001-09-19 2007-09-04 Ricoh Company Limited Apparatus and method of detecting surface convexity of members, and method of producing the members
CN103048262A (en) * 2011-10-13 2013-04-17 克朗斯股份公司 Method and device for determining friction values
CN103884640A (en) * 2014-03-21 2014-06-25 北京工业大学 Prestressed pipeline friction testing apparatus and installation method of apparatus
CN103884640B (en) * 2014-03-21 2016-07-27 北京工业大学 A kind of prestress pipe friction resistance test device and installation method thereof

Also Published As

Publication number Publication date
JPH0447260B2 (en) 1992-08-03

Similar Documents

Publication Publication Date Title
Johnson et al. An experimental investigation into the process of ring or metal tyre rolling
Andreasen et al. Bending under tension test with direct friction measurement
Wang et al. Experimental study of the real time change in surface roughness during running-in for PEHL contacts
Branko et al. The influence of the contact surface roughness on the static friction coefficient
Hanna Tribological evaluation of aluminum and magnesium sheet forming at high temperatures
Atala et al. Surface roughness changes during rolling
JPS6373134A (en) Method of testing friction lubrication
Deneuville et al. The study of friction in ironing process by physical and numerical modelling
Matthews et al. Evaluation of coating wear resistance for bulk metal forming
Uchibori et al. Peripheral speed of steel ring during hot ring rolling
Ettouney et al. An approximate model to calculate foldover and strains during cold upsetting of cylinders Part II: Use of the foldover model to estimate friction
JPH05223761A (en) Hardening inspection method
Lenard et al. The distribution of temperatures in a hot/cold die set: The effect of the pressure, temperature, and material
El-Abden et al. Finishing of non-ferrous internal surfaces using ballizing technique
Moghadam et al. Tool condition monitoring in strip reduction testing using acoustic emission
RU2538673C1 (en) Method of assessment of force and friction coefficient during cold metal forming and device for its implementation
RU1779982C (en) Method of estimating friction properties of lubricant during rolling and drawing
Olsson et al. A quantitative lubricant test for deep drawing
Al-Samarai et al. The effect of surface roughness parameters on frictional properties of AlSi10Mg alloy
Trzepieciński et al. Assessment of frictional performance of deep drawing quality steel sheets used in automotive industry
Avdeenko et al. New Compositions of Metal-Working Coolants on Basis of Mono-and Diglycerides of Wastes
JPS5977337A (en) Friction testing device
Mitzel Friction in Metal-Forming Processes: Design of a Slidometer to Measure Friction in Sheet-Metal Forming
Sargent Jr et al. Laboratory evaluation of lubricants for cold rolling aluminum alloys
Avdeenko et al. New compositions of metal-working coolants for brass rolling

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees