JPS6373004A - Steam turbine plant - Google Patents

Steam turbine plant

Info

Publication number
JPS6373004A
JPS6373004A JP21770086A JP21770086A JPS6373004A JP S6373004 A JPS6373004 A JP S6373004A JP 21770086 A JP21770086 A JP 21770086A JP 21770086 A JP21770086 A JP 21770086A JP S6373004 A JPS6373004 A JP S6373004A
Authority
JP
Japan
Prior art keywords
feed water
low
water heater
drain
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21770086A
Other languages
Japanese (ja)
Inventor
大貫 俊夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP21770086A priority Critical patent/JPS6373004A/en
Publication of JPS6373004A publication Critical patent/JPS6373004A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) この発明は、蒸気タービンプラントに係り、特に、複数
の給水加熱器の配置を改善して、給水加熱器のドレン系
統を合理化するに好適な蒸気クーピンプラントに131
する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a steam turbine plant, and in particular, improves the arrangement of a plurality of feedwater heaters and improves the drain system of the feedwater heaters. 131 for steam coupin plant suitable for rationalization
do.

(従来の技術) 一般に、第6図に示J’J、うに、復水器1からの復水
ポンプ3により圧送された復水は、複数の低圧給水加熱
器5によって加熱されて、給水ポンプ6へ導かれる。こ
れらの低IE給水)、+Il熱冴5は、復水ポンプ3の
側から順次第1低圧給水加熱器5A、第2低圧給水加熱
器5B、第3低圧給水加熱器5Cおよび第4低圧給水加
熱器5Dである。1り水は、蒸気タービンからの抽気、
および下流側に配設された低圧給水加熱器5からのドレ
ンによ−)で加熱される。
(Prior Art) Generally, as shown in FIG. Leads to 6. These low pressure feed water heaters), +Il Netsusa 5 are sequentially connected to the first low pressure feed water heater 5A, the second low pressure feed water heater 5B, the third low pressure feed water heater 5C, and the fourth low pressure feed water heater from the side of the condensate pump 3. It is a vessel 5D. 1) Water is extracted air from the steam turbine,
and the drain from the low-pressure feed water heater 5 disposed on the downstream side).

上記第1〜第4低圧給水加熱:’:j 5 A〜Dは、
1り水器本体ルiの上部に第7図に示?7’ J:うに
配設される。第1および第2低圧給水加熱器5△、Bは
鉛直方向上方のほぼ水平面内に並設される。また、第3
および第4低圧給水加熱器5C,Dは鉛直方向下方のほ
ぼ水平面内に並設される。
The above first to fourth low-pressure feed water heating:':j 5 A to D are
1. Shown in Figure 7 on the top of the main body of the water dispenser. 7' J: Placed in the sea urchin. The first and second low-pressure feed water heaters 5Δ, B are arranged side by side in a substantially horizontal plane vertically upward. Also, the third
The fourth low-pressure water heaters 5C and 5D are arranged vertically downward in a substantially horizontal plane.

ここで、第1低圧給水加熱器5Aの器内圧力が最も低く
、次にff12低圧給水加熱器5B、第3低圧給水加熱
2)5Cが順次導ぎ、第4低圧給水加熱:己5Dが最も
高い。したがって、第4低圧給水加熱器5Dのドレンは
、器内圧力差によってドレン配管を介し第3低圧給水加
熱器5Cへ導かれる。
Here, the internal pressure of the first low-pressure feed water heater 5A is the lowest, followed by the ff12 low-pressure feed water heater 5B, the third low-pressure feed water heater 2) 5C, and the fourth low-pressure feed water heater 5D is the lowest. expensive. Therefore, the drain from the fourth low-pressure feed water heater 5D is guided to the third low-pressure feed water heater 5C via the drain pipe due to the internal pressure difference.

また、第3低圧給水加熱器5Cのドレンも、器内圧力差
によってドレン配管を介し第2低圧給水加熱器5Bへ導
かれる。
Moreover, the drain of the third low-pressure feed water heater 5C is also guided to the second low-pressure feed water heater 5B via the drain pipe due to the pressure difference within the vessel.

ところが、第1低圧給水加熱器5Δと第2低圧給水加熱
器5Bとの器内圧力差が僅かであるため(例えばプラン
ト定格運転状態で約0.5Kq/cd)、これらの第1
 J3よび第2低圧給水加熱器5A。
However, since the internal pressure difference between the first low-pressure feed water heater 5Δ and the second low-pressure feed water heater 5B is small (for example, about 0.5 Kq/cd in the plant rated operating state), these first
J3 and second low pressure feed water heater 5A.

5Bを単にドレン配管で連結したのでは、第2低圧給水
加熱器5Bのドレンを第1低圧給水加熱器5Aにて回収
することができない。
5B are simply connected by drain piping, the drain from the second low pressure water heater 5B cannot be recovered by the first low pressure water heater 5A.

そのため、第2低圧給水加熱器5Bのドレンを第1低圧
給水加熱器5Aに導かず、直接復水器1へ排出すること
も考えられる。しかし、この場合には、第2低圧給水加
熱!5Bからの?:I温ドレンの有効利用が図られず、
プラントの熱効率を低下させることになる。例えば、1
100MW級の原子力発電プラントの試算では、相対値
で約2%の出力の低下に相当する。
Therefore, it is also possible to discharge the drain from the second low-pressure feed water heater 5B directly to the condenser 1 without guiding it to the first low-pressure feed water heater 5A. However, in this case, the second low pressure feed water heating! From 5B? :I temperature drain was not utilized effectively,
This will reduce the thermal efficiency of the plant. For example, 1
According to a trial calculation for a 100 MW class nuclear power plant, this corresponds to a relative reduction in output of about 2%.

そこで、第4図および第5図に示すように、ドレンタン
ク7を新たに設置し、第1低圧給水加熱器5Aのドレン
冷却器9を第1低圧給水加熱器5△とは別に設置したも
のが提案されている。なJ3、第4図および第5図中第
6図および第7図と同様な部分は同一符号を付ず。この
場合、ドレンタンク7は、第1〜第4低圧給水加熱器5
A〜Dに対し、垂直方向下方に設置される。また、この
ドレンタンク7のさらに下方にドレン冷却il!!i9
が設置される。
Therefore, as shown in FIGS. 4 and 5, a new drain tank 7 was installed, and the drain cooler 9 of the first low-pressure feed water heater 5A was installed separately from the first low-pressure feed water heater 5△. is proposed. J3, the same parts in FIGS. 4 and 5 as in FIGS. 6 and 7 are not given the same reference numerals. In this case, the drain tank 7 is the first to fourth low pressure water heaters 5.
It is installed vertically below A to D. In addition, there is a drain cooling unit further below this drain tank 7! ! i9
will be installed.

ドレンタンク7は、第2低圧給水加熱器5Bからのドレ
ンを導いてフラッシュ(蒸発)させた後、ドレン冷fJ
I器9へ導く。このドレンタンク7がバランス管11に
てドレン冷却器9に逆通されているため、第2低圧給水
加熱器5Bからのドレンは、ドレンタンク7内でフラッ
シュしてドレン冷fJl器9内のドレン温度とほぼ等し
くなる。このドレン冷7Jl器9内のドレンは、復水と
熱交換して復水を加熱した後、復水器1へ導かれる。
The drain tank 7 guides and flashes (evaporates) the drain from the second low-pressure feed water heater 5B, and then cools the drain fJ.
Lead to I device 9. Since this drain tank 7 is reversely connected to the drain cooler 9 through the balance pipe 11, the drain from the second low-pressure feed water heater 5B is flushed in the drain tank 7 and drained into the drain cooler fJl device 9. It becomes almost equal to the temperature. The drain in the drain cooling 7Jl device 9 exchanges heat with the condensate to heat the condensate, and then is led to the condenser 1.

しかしながら、ドレンタンク7やドレン冷741 器9
は復水2)1本体胴上部以外の場所に設置されるため、
そのための設置スペースが必要となる。また、これらの
機器7.9を各低圧給水加熱器5A〜Dに接続させるた
めのドレン配管も長大化する。
However, the drain tank 7 and drain cooler 741 container 9
Condensate 2) 1 Since it is installed in a place other than the upper part of the main body,
Installation space is required for this purpose. Moreover, the drain piping for connecting these devices 7.9 to each of the low-pressure feed water heaters 5A to D also becomes long.

故に、低圧給水加熱器のドレン系統が複雑化するという
欠点がある。
Therefore, there is a drawback that the drain system of the low-pressure feed water heater becomes complicated.

また、低圧給水加熱器のドレン系統が複雑化し、その据
付スペースが増大することから、蒸気タービン建屋の規
模も大ぎなものとなる。
Furthermore, the drain system of the low-pressure feed water heater becomes complicated and the installation space thereof increases, so the scale of the steam turbine building also becomes large.

(発明が解決しようとする問題点) 上述のように、従来の蒸気タービンプラントでは、熱効
率が低下したり、低圧給水加熱ニド(のドレン系統が複
雑化したり、タービン建屋が大望化ザる等の問題点があ
る。
(Problems to be Solved by the Invention) As mentioned above, in conventional steam turbine plants, there are problems such as a decrease in thermal efficiency, a complicated drain system for the low-pressure feed water heating tank, and an increase in the size of the turbine building. There is a problem.

この発明は、上記事実をと慮してなされたものであり、
給水加熱器のドレン系統の合理化を図るとともに、蒸気
タービン建屋の縮小化に寄与することができる蒸気ター
ビンプラントを提供することを目的とする。
This invention was made in consideration of the above facts,
It is an object of the present invention to provide a steam turbine plant that can rationalize a drain system of a feed water heater and contribute to downsizing of a steam turbine building.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) この発明は、復水器内部に器内圧力の異なっIこ複数の
給水加熱器を備え、上記復水器の復水を上記複数の給水
加熱器によって順次加熱するとともに、上記複数の給水
加熱器内のドレンを:H;内圧力の高い給水加熱器から
低い給水加熱器へ順次導くよう構成された蒸気タービン
プラントにJ3いて、器内圧力の最も低い給水加熱器が
器内圧力の次に低い給水加熱器の鉛直方向下方位置に配
置されたものである。
(Means for Solving the Problems) This invention includes a plurality of feed water heaters having different internal pressures inside a condenser, and the condensate of the condenser is sequentially heated by the plurality of feed water heaters. At the same time as heating, the drains in the plurality of feedwater heaters are: H; The heater is placed vertically below the feed water heater, which has the next lowest internal pressure.

(作用) したがって、この発明に係る蒸気タービンブラントは、
器内圧力の最も低い給水加熱器と器内圧力の次に低い給
水加熱器との間に静水頭差を確保して、器内圧力の次に
低い給水加熱器内のドレンを器内圧力の最も低い給水加
熱器へ容易に4くものである。
(Function) Therefore, the steam turbine blunt according to the present invention,
A hydrostatic head difference is secured between the feed water heater with the lowest internal pressure and the feed water heater with the next lowest internal pressure, and the drain in the feed water heater with the next lowest internal pressure is Easily the lowest feed water heater to four.

(実施例) 以下、この発明の実流例を図面に基づい゛C説明する。(Example) Hereinafter, an actual example of the present invention will be explained based on the drawings.

第1図(A)はこの発明に係る蒸気タービンプラントの
一実施例における低圧然気タービン、復水器および低圧
給水加熱器を一部を切り欠いて示す側面図である。第1
図(B)は第1図(A)のIB矢視図である。第3図は
この実施例の復水系統を示す系統図である。
FIG. 1(A) is a partially cutaway side view showing a low-pressure natural air turbine, a condenser, and a low-pressure feed water heater in an embodiment of a steam turbine plant according to the present invention. 1st
Figure (B) is a view taken along the IB arrow in Figure 1 (A). FIG. 3 is a system diagram showing the condensate system of this embodiment.

例えば原子力発電プラントでは、第1図(A)。For example, in a nuclear power plant, Fig. 1 (A).

(B)に示すように、低圧蒸気タービン21の下方に復
水器23が設置される。復水器21の外部ケーシング2
5J3よび復水器23の復水器本体+6127は、ター
ビン建屋26内に収納される。また、外部ケーシング2
5および復水器本体胴27間にエキスパンション29が
介在され、両部材25゜27の熱変形の差等が吸収され
る。
As shown in (B), a condenser 23 is installed below the low pressure steam turbine 21. External casing 2 of condenser 21
5J3 and the condenser main body +6127 of the condenser 23 are housed in the turbine building 26. In addition, external casing 2
5 and the condenser main body shell 27, an expansion 29 is interposed between the condenser body shell 27 and the difference in thermal deformation between the two members 25.degree. 27.

復水器本体胴27内の下部には、復水器水室31に接続
された復水器伝熱管333が多数本配設される。この復
水器伝熱管33内には、復水器水室31を経て海水が流
れる。上記低圧然気タービン21で仕事をした蒸気は復
水器伝熱管によって冷却され、復水器本体+127の下
部に溜る。復水器本体胴27の下部には復水器出口管3
5が取り付けられ、この復水;S出口管35が第3図に
示ず1(水系統の復水管37に接続される。
A large number of condenser heat transfer tubes 333 connected to the condenser water chamber 31 are disposed in the lower part of the condenser main body shell 27 . Seawater flows into the condenser heat transfer tube 33 via the condenser water chamber 31. The steam that has done work in the low-pressure natural air turbine 21 is cooled by the condenser heat exchanger tube, and is accumulated in the lower part of the condenser body +127. A condenser outlet pipe 3 is installed at the bottom of the condenser body shell 27.
5 is attached, and this condensate; S outlet pipe 35 is connected to the condensate pipe 37 of the water system (not shown in FIG. 3).

復水管37には、復水器23の側がら順次復水ポンプ3
9、a′T1低圧給水加熱器41A、第2低圧給水加熱
器41B、第3低圧給水加熱器41Gおよび第4低圧給
水加熱器41D並びに給水ポンプ43が配設される。復
水ポンプ39は、復水器23からの復水を第1〜第4低
圧給水加熱器41A−Dへ圧送するものである。また、
給水ポンプ43は、第4低圧給水加熱器41Dからの(
(水を給水として、図示しない高圧給水加熱器および原
子炉等へ導くものである。ざらに、第1〜第4低圧給水
加熱器41Δ〜Dは、復水を順次加熱するものである。
The condensate pump 3 is installed in the condensate pipe 37 sequentially from the side of the condenser 23.
9, a'T1 A low pressure feed water heater 41A, a second low pressure feed water heater 41B, a third low pressure feed water heater 41G, a fourth low pressure feed water heater 41D, and a water feed pump 43 are provided. The condensate pump 39 pumps condensate from the condenser 23 to the first to fourth low-pressure feed water heaters 41A-D. Also,
The feed water pump 43 receives (from the fourth low pressure feed water heater 41D)
(Water is supplied as water and guided to a high-pressure feedwater heater, a nuclear reactor, etc. (not shown). Roughly speaking, the first to fourth low-pressure feedwater heaters 41Δ to D sequentially heat condensate.

第1〜第4低圧給水加熱器41A〜Dは、第1図(A)
、(B)に示すように復水器本体胴27内の上部に配設
される。第2図に拡大して示すように、器内圧力の最も
低い第1低圧給水加熱器41Aは鉛直方向下方位置に、
器内圧力の次に低い第2低圧給水加熱器41Bは胴方向
土方位置にそれぞれ設置される。また、器内圧力が最も
高い第4低圧給水加熱器410は第2低圧給水加熱器4
1Bの真下に、器内圧力の次に高い第3低圧給水加熱f
i410は第1低圧給水加熱B41Aの真上にそれぞれ
設置される。したがって、第1および第4低圧給水加熱
7&41Δ、Dと第2 J3よび第3低圧給水加熱器4
1B、Cとに鉛直方向の位置差Hffi設定される。こ
の差1−1が静水頭差になる。
The first to fourth low pressure water heaters 41A to 41D are shown in FIG. 1(A).
, is disposed at the upper part of the condenser main body shell 27 as shown in (B). As shown in an enlarged view in FIG. 2, the first low-pressure feed water heater 41A, which has the lowest internal pressure, is located at a lower position in the vertical direction.
The second low-pressure feed water heaters 41B, which have the next lowest internal pressure, are installed at positions in the trunk direction. Further, the fourth low pressure feed water heater 410 having the highest internal pressure is the second low pressure feed water heater 4.
Directly below 1B, there is a third low-pressure feed water heating f that is the next highest after the internal pressure.
i410 are respectively installed directly above the first low pressure feed water heating B41A. Therefore, the first and fourth low pressure feed water heaters 7 & 41Δ, D and the second J3 and third low pressure feed water heaters 4
A vertical position difference Hffi is set between 1B and 1C. This difference of 1-1 is the hydrostatic head difference.

例えば1100MW級の原子力発電プラントでは、器内
圧力は、第4低圧給水加熱器41Dが杓11.6に9部
cm、第3低圧給水加熱Z41Cが約2゜9 Kg /
 ci、第2低圧給水加熱器41Bが約1.OR3/ 
ci 、第1低圧給水加熱m41Aが約0.5に9/c
dであり、また位置差1」は約2.5mである。
For example, in a 1100 MW class nuclear power plant, the internal pressure of the fourth low-pressure feed water heater 41D is 9 parts cm, and the third low-pressure feed water heater Z41C is approximately 2°9 kg /
ci, the second low pressure water heater 41B is about 1. OR3/
ci, the first low pressure water supply heating m41A is approximately 0.59/c
d, and the position difference 1'' is approximately 2.5 m.

ところで、各低圧給水加熱器41A〜Dは、給水加熱器
本体調内の上部に配設されて復水を流ず給水加熱器伝熱
管と、給水加熱器本体+!、i内の下部に設けられたド
レン冷却部と、給水加熱器本体134の下部でドレン冷
却部に隣接され、後)ホのドレン配管45D、C,Bの
接続部近傍に設けられたフラッシュ部とを有して構成さ
れる。
By the way, each of the low-pressure feed water heaters 41A to 41D is disposed at the upper part of the feed water heater main body so that no condensate flows through the feed water heater heat transfer tube and the feed water heater main body +! , a drain cooling part provided at the lower part of i, and a flash part adjacent to the drain cooling part at the lower part of the feed water heater main body 134, and near the connection part of the drain pipes 45D, C, and B of (rear) e. It is composed of:

第4低圧給水加熱鼎41Dのドレン冷却部は、第4ドレ
ン配管45Dを介して第3低圧給水加熱器41Cの給水
加熱器本体1)1に接続される。第3低圧給水加熱器4
1Gのドレン冷に1部は、第3ドレン配管45Gを介し
て第2低圧給水加熱器41Bの給水加熱器本体)1に接
わ°Cされる。第2低圧給水加熱器/11Bのドレン冷
IJI部は、第3ドレン配管45Bを介して第1低圧給
水加熱器41Δの給水加熱器本体胴に接続される。
The drain cooling part of the fourth low-pressure feedwater heating pipe 41D is connected to the feedwater heater main body 1) 1 of the third low-pressure feedwater heater 41C via a fourth drain pipe 45D. Third low pressure water heater 4
A portion of the 1G drain is cooled by contacting the feedwater heater main body 1 of the second low-pressure feedwater heater 41B via the third drain pipe 45G. The drain cooling IJI portion of the second low pressure feed water heater/11B is connected to the feed water heater main body barrel of the first low pressure feed water heater 41Δ via the third drain pipe 45B.

第4および第3低圧給水加熱器41D、C(Qm内圧ノ
J4に基づき、第4ドレン配管45Dを介して、第4低
圧給水加熱器/11D内のドレンが第3低圧給水加熱器
41Gに回収される。同様に、第3および第4低圧給水
加熱器41C,[3の器内圧力差に基づき、第3ドレン
配管45Gを介して、第3低圧給水加熱器/IIC内の
ドレンが第2低圧給水加熱器41Bに回収される。また
、第2および第1低圧給水加熱器41B、Δの器内圧)
〕差と、第2および第1低圧給水加熱器41B、Aの位
置差(静水頭差)1−1とに基づき、第2ドレン配管4
5Bを介して、第2低圧給水加熱器41B内のドレンが
第1低圧給水加熱器41Aに回収される。
Fourth and third low-pressure feed water heaters 41D, C (based on Qm internal pressure J4, drain in the fourth low-pressure feed water heater/11D is recovered to the third low-pressure feed water heater 41G via the fourth drain pipe 45D) Similarly, based on the internal pressure difference between the third and fourth low-pressure feedwater heaters 41C and 3, the drain in the third low-pressure feedwater heater/IIC is drained to the second through the third drain pipe 45G. The internal pressure of the second and first low pressure feed water heaters 41B and Δ) is recovered to the low pressure feed water heater 41B.
] Based on the difference and the positional difference (static head difference) 1-1 between the second and first low-pressure feed water heaters 41B and A, the second drain pipe 4
5B, the drain in the second low pressure feed water heater 41B is recovered to the first low pressure feed water heater 41A.

前述の第3、第2 J3よび第1低圧給水加熱器41C
,B、へのフラッシュ部は、それぞれ第4、第3、第2
ドレン配管45D、C,Bから導かれたドレンをフラッ
シュ(蒸発)させるものである。
The aforementioned third, second J3 and first low pressure water heater 41C
, B, are the fourth, third, and second flash sections, respectively.
This is to flash (evaporate) the drain led from the drain pipes 45D, C, and B.

ドレンはこのフラッシュ部を通った後、給水伝熱管の外
側を流れ落ちる。さらに、前述の給水加熱器本体ル4に
は蒸気タービンからの油気が流入され、給水加熱器伝熱
管の外側に導かれる。したがって、これらの抽気および
仙の低圧給水加熱器から導かれたドレンによって、給水
加熱器伝熱管を流れる復水が加熱される。
After passing through this flash section, the condensate flows down the outside of the feed water heat exchanger tube. Furthermore, oil from the steam turbine flows into the feedwater heater main body 4, and is guided to the outside of the feedwater heater heat exchanger tube. Therefore, these bleed air and condensate directed from the low pressure feedwater heater heat the condensate flowing through the feedwater heater heat exchanger tubes.

第1但L[給水加熱器41Δのドレン冷却部は、第1ド
レン配管45Aを介して復水器23の復水器フラッシュ
ボックス47に接続される。この復水器フラッシュボッ
クス47は、第1図(△)。
The drain cooling section of the first feed water heater 41Δ is connected to the condenser flash box 47 of the condenser 23 via the first drain pipe 45A. This condenser flash box 47 is shown in FIG. 1 (△).

(B)に示すように、復水器本体用27の下部外側に配
設され、第1低圧給水加熱器41△のドレン冷却器から
のドレンなフラッシュ(蒸発)ざUて復水器本体胴27
の下部へ導く。
As shown in (B), the drain flash (evaporation) from the drain cooler of the first low-pressure feed water heater 41△ is disposed outside the lower part of the condenser main body 27, and the condenser main body body 27
Lead to the bottom of.

なお、第2図申付号49B、49G、49Dはそれぞれ
ドレン水位調節弁であり、それぞれ第2低圧給水加熱器
41B、第3低圧給水加熱器41C1第4低圧給水加熱
器41Dのドレン水位を制御しながらドレンを流1°も
のである。
Note that notification numbers 49B, 49G, and 49D in Figure 2 are drain water level control valves, respectively, which control the drain water levels of the second low-pressure feed water heater 41B, the third low-pressure feed water heater 41C, and the fourth low-pressure feed water heater 41D, respectively. While doing so, drain the drain 1°.

したがって、上記実施例によれば、第1および第2低圧
給水加熱器41A、13間の静水頭差1−1 a3よび
これらの低圧給水加熱器における若干の器内圧力差に基
づいて、第2低圧給水加熱器41Bのドレン冷却部内の
ドレンを第1低圧給水加熱器41Aの給水加熱器本体胴
に導いたことから、従来のJ、うにドレンタンク7(第
5および6図)を設置したり、ドレン冷IJl器9(第
5および6図)を別置する必要がない。そのため、低圧
給水加熱器のドレン系統を簡素化することができ、その
合理化を図ることができる。特に、改良沸騰水型原子炉
(−ABWR)においてその効果が著しい。
Therefore, according to the above embodiment, the second low pressure Since the drain in the drain cooling section of the feed water heater 41B was led to the feed water heater main body barrel of the first low pressure feed water heater 41A, a conventional J, sea urchin drain tank 7 (Figs. 5 and 6) was installed, There is no need to separately install the drain cooling IJl device 9 (FIGS. 5 and 6). Therefore, the drain system of the low-pressure feed water heater can be simplified and its rationalization can be achieved. The effect is particularly remarkable in the improved boiling water reactor (-ABWR).

また、低圧給水加熱器のドレン系統が簡素化できること
から、機器設置スペースや配管スペースを小さくするこ
とができ、蒸気タービン建屋を縮小化することができる
Furthermore, since the drain system of the low-pressure feedwater heater can be simplified, the equipment installation space and piping space can be reduced, and the steam turbine building can be downsized.

また、給水加熱器本体I(の直径は、第1低圧給水加熱
器が最大で、第2、第3、第4低圧給水加熱器の順に小
さく形成される。そこで、第2低圧給水加熱器41[3
が第1低圧給水加熱器41Aの真上でなく、第1低圧給
水加熱器41Aに対し鉛直方向隣り合う側、つまり第2
図において第1低圧給水加熱器41Δの斜め上方に設置
されたことから、低圧給水加熱2i41A−Dの設置ス
ペースを小さくすることができる。その結果、復水器2
3の高さを増加させることがなく、ひいては建屋スペー
スも増大させることがない。
In addition, the diameter of the feed water heater main body I (is the largest in the first low pressure feed water heater, and is formed smaller in the order of the second, third, and fourth low pressure feed water heaters. Therefore, the second low pressure feed water heater 41 [3
is not directly above the first low-pressure feed water heater 41A, but on the side vertically adjacent to the first low-pressure feed water heater 41A, that is, the second
In the figure, since they are installed obliquely above the first low-pressure feed water heater 41Δ, the installation space for the low-pressure feed water heaters 2i41A-D can be reduced. As a result, condenser 2
No. 3 height is increased, and the building space is also not increased.

なお、上記実流例では、第1低圧給水加熱器41Aの真
上に第3低圧給水加熱器41Gを、第2低圧給水加熱器
41[3の真下に第4低圧給水加熱i541 Dを設置
するものにつき説明したが、これらの第3および第4低
圧給水加熱器41C,Dの位置を逆にしてもよい。
In the above actual flow example, the third low-pressure feedwater heater 41G is installed directly above the first low-pressure feedwater heater 41A, and the fourth low-pressure feedwater heater i541D is installed directly below the second low-pressure feedwater heater 41[3]. However, the positions of the third and fourth low-pressure water heaters 41C and 41D may be reversed.

さらに、第1低圧給水加熱器41△の真上に第2低圧給
水加熱器41Bを設置したものであってもよい。この場
合には、前記実施例に比べ建屋スペースが若干増大する
が、低圧給水加熱器のドレン系統を合理化することがで
きるとともに、従来例に比べ悪気タービン建屋を縮小化
することができる。
Furthermore, the second low pressure water heater 41B may be installed directly above the first low pressure water heater 41Δ. In this case, although the building space is slightly increased compared to the previous embodiment, the drain system of the low pressure feed water heater can be rationalized, and the bad air turbine building can be downsized compared to the conventional example.

(発明の効果) 以上のように、この発明に係る蒸気タービンプラントに
よれば、器内圧力の最も低い給水加熱に;が:S内圧力
の次に低い給水加熱器の鉛直方向下方位置に配置された
ことから、両給水加熱器間に静水頭差を確保することが
でき、器内Ji力の次に低い給水加熱器内のドレンを器
内圧力の最も低い給水加熱器へ容易に導くことができる
。その結果、給水加熱器のドレン系統を合理化させるこ
とができるとともに、タービン建屋の縮小化に寄与でき
るという効果を奏する。
(Effects of the Invention) As described above, according to the steam turbine plant according to the present invention, for heating the feed water with the lowest internal pressure; As a result, a hydrostatic head difference can be secured between both feedwater heaters, and the drain in the feedwater heater, which has the second lowest internal pressure after the internal pressure, can be easily guided to the feedwater heater with the lowest internal pressure. Can be done. As a result, it is possible to rationalize the drain system of the feed water heater, and it is possible to contribute to downsizing of the turbine building.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(△)はこの発明に係る蒸気タービンプラントの
一実施例における低圧蒸気タービン、復水器J3よび低
圧給水加熱器を一部切り欠いて示す側面図、第1図(B
)は第1図(A)のIB矢視図、第2図はこの実施例に
おける低圧給水加熱器のドレン系統を示す管路図、第3
図はこの実施例の復水系統を示す系統図、第4図は従来
の蒸気タービンプラントにおける復水系統を示す系統図
、第5図は第4図の低圧給水加熱器のドレン系統を示す
系統図、第6図は従来の伯の蒸気タービンプラントにJ
′31ノる復水系統を示す系統図、第7図は第6図の低
圧給水加熱器の配置図である。 21・・・低圧蒸気タービン、23・・・復水器、41
A・・・第1低圧給水加熱器、41[3・・・第2低I
[給水加熱器、45B・・・第2ドレン配管、H・・・
第1 J3よび第2低圧給水加熱器の位置差。 出願人代理人   波 多 野   久第3図 第4図 第5図 手続7111正古(自発) 昭和61年10月−L3日 特許庁長官  黒 1)明 雄 殿 1、事件の表示 昭11]61年特許ff11217700号2、発明の
名称 蒸気タービンプラント 3、補正をする者 事件との関係  特許出願人 (307)  株式会社 東  芝 4、代理人 〒105 東京都港区西新橋三丁目4番1号 5、補正の対象 図  面 6、補正の内容 第1図(B)を添付図面の通り訂正する。
FIG. 1 (△) is a partially cutaway side view showing a low-pressure steam turbine, condenser J3, and low-pressure feed water heater in an embodiment of a steam turbine plant according to the present invention; FIG.
) is a view taken in the direction of the IB arrow in FIG. 1 (A), FIG.
Figure 4 is a system diagram showing the condensate system of this embodiment, Figure 4 is a system diagram showing the condensate system in a conventional steam turbine plant, and Figure 5 is a system diagram showing the drain system of the low-pressure feed water heater in Figure 4. Figure 6 shows the conventional steam turbine plant
Figure 7 is a system diagram showing the condensate system of '31. Figure 7 is a layout diagram of the low pressure feed water heater of Figure 6. 21...Low pressure steam turbine, 23...Condenser, 41
A... 1st low pressure water heater, 41 [3... 2nd low I
[Feed water heater, 45B...Second drain pipe, H...
Difference in position between the first J3 and the second low pressure feed water heater. Applicant's agent Hisashi Hatano Figure 3 Figure 4 Figure 5 Procedure 7111 Masako (spontaneous) October 1985 - L3 Commissioner of the Patent Office Kuro 1) Akio Tono 1, Indication of the case 1989] 61 Patent FF11217700 No. 2, Name of the invention Steam turbine plant 3, Relationship with the amended case Patent applicant (307) Toshiba Corporation 4, Agent Address: 3-4-1 Nishi-Shinbashi, Minato-ku, Tokyo 105 5. Drawings subject to amendment 6. Details of amendment Figure 1 (B) will be corrected as shown in the attached drawing.

Claims (1)

【特許請求の範囲】 1、復水器内部に器内圧力の異なつた複数の給水加熱器
を備え、上記復水器の復水を上記複数の給水加熱器によ
つて順次加熱するとともに、上記複数の給水加熱器内の
ドレンを器内圧力の高い給水加熱器から低い給水加熱器
へ順次導くよう構成された蒸気タービンプラントにおい
て、器内圧力の最も低い給水加熱器が器内圧力の次に低
い給水加熱器の鉛直方向下方位置に配置されたことを特
徴とする蒸気タービンプラント。 2、器内圧力の最も低い給水加熱器は器内圧力の次に低
い給水加熱器の鉛直方向に隣り合う側に設置された特許
請求の範囲第1項記載の蒸気タービンプラント。
[Claims] 1. A plurality of feed water heaters having different internal pressures are provided inside the condenser, and the condensate of the condenser is sequentially heated by the plurality of feed water heaters, and the In a steam turbine plant configured to sequentially guide condensate in multiple feedwater heaters from a feedwater heater with a high internal pressure to a feedwater heater with a low internal pressure, the feedwater heater with the lowest internal pressure is placed next to the internal pressure. A steam turbine plant characterized in that the plant is located vertically below a low feedwater heater. 2. The steam turbine plant according to claim 1, wherein the feedwater heater with the lowest internal pressure is installed on a side vertically adjacent to the feedwater heater with the next lowest internal pressure.
JP21770086A 1986-09-16 1986-09-16 Steam turbine plant Pending JPS6373004A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21770086A JPS6373004A (en) 1986-09-16 1986-09-16 Steam turbine plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21770086A JPS6373004A (en) 1986-09-16 1986-09-16 Steam turbine plant

Publications (1)

Publication Number Publication Date
JPS6373004A true JPS6373004A (en) 1988-04-02

Family

ID=16708354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21770086A Pending JPS6373004A (en) 1986-09-16 1986-09-16 Steam turbine plant

Country Status (1)

Country Link
JP (1) JPS6373004A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002364807A (en) * 2001-06-07 2002-12-18 Toshiba Plant Kensetsu Co Ltd Method for installing supply water heater
US9708936B2 (en) 2012-10-11 2017-07-18 Mitsubishi Hitachi Power Systems, Ltd. Condenser

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002364807A (en) * 2001-06-07 2002-12-18 Toshiba Plant Kensetsu Co Ltd Method for installing supply water heater
US9708936B2 (en) 2012-10-11 2017-07-18 Mitsubishi Hitachi Power Systems, Ltd. Condenser

Similar Documents

Publication Publication Date Title
US4552208A (en) Heat actuated system for circulating heat transfer fluids
KR101022164B1 (en) Passive secondary loop condensation system for light water reactor
JPS6186682A (en) Nuclear reactor device
US5217682A (en) Passive indirect shutdown cooling system for nuclear reactors
JP4636906B2 (en) Nuclear power generation system
US20160102926A1 (en) Vertical multiple passage drainable heated surfaces with headers-equalizers and forced circulation
JPS60155801A (en) Steam generator
US6128901A (en) Pressure control system to improve power plant efficiency
US2970811A (en) Self protecting air heater
JPS6373004A (en) Steam turbine plant
US7540905B2 (en) Deaerating and degassing system for power plant condensers
JPH03221702A (en) Duplex type heat exchanger for waste heat recovery
JPS62165193A (en) Nuclear reactor steam generating plant
US3292372A (en) Steam power generating plant
US3151461A (en) Means for removing non-condensible gases from boiler feedwater in a power plant
GB2204988A (en) Control of reactor coolant flow path during reactor decay heat removal
JPH02252906A (en) Modified freezing preventing air-cooled steam condenser
JPH08184691A (en) Heat valve of heat exchange controller
US3802498A (en) Shell and tube heat exchanger with central conduit
JPH0474601B2 (en)
CN111508624A (en) Cooling system
Berezinets et al. Heat recovery steam generators of binary combined-cycle units
JP2691064B2 (en) Steam turbine power plant
US11808524B2 (en) Power plant cooling systems
JP2923122B2 (en) Drain recovery equipment for nuclear power plants