JPS637260B2 - - Google Patents

Info

Publication number
JPS637260B2
JPS637260B2 JP56008366A JP836681A JPS637260B2 JP S637260 B2 JPS637260 B2 JP S637260B2 JP 56008366 A JP56008366 A JP 56008366A JP 836681 A JP836681 A JP 836681A JP S637260 B2 JPS637260 B2 JP S637260B2
Authority
JP
Japan
Prior art keywords
cylinder
injector
small
fuel
intake pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56008366A
Other languages
Japanese (ja)
Other versions
JPS57122160A (en
Inventor
Kohei Yamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP56008366A priority Critical patent/JPS57122160A/en
Publication of JPS57122160A publication Critical patent/JPS57122160A/en
Publication of JPS637260B2 publication Critical patent/JPS637260B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M69/00Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
    • F02M69/04Injectors peculiar thereto
    • F02M69/042Positioning of injectors with respect to engine, e.g. in the air intake conduit
    • F02M69/044Positioning of injectors with respect to engine, e.g. in the air intake conduit for injecting into the intake conduit downstream of an air throttle valve

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Supercharger (AREA)

Description

【発明の詳細な説明】 本発明は小排気量多気筒機関に過給機と燃料イ
ンジエクタを採用した場合の燃料供給装置に関す
るもので、1気筒当りの排気量が小さい機関でア
イドル時のように必要燃料流量が微少な場合にも
空燃比制御ができ、しかも過給により大出力が得
られるようにすることを目的としている。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fuel supply system for a small displacement multi-cylinder engine employing a supercharger and a fuel injector. The purpose is to be able to control the air-fuel ratio even when the required fuel flow rate is small, and to obtain large output through supercharging.

この種の過給機関には電子制御燃料噴射方式が
採用されており、その場合インジエクタが電磁弁
で開いている期間をパルス制御するようになつて
いる。ところがインジエクタを開くのに必要な有
効パルス幅には下限値が有る。すなわち微少噴射
量を得るためにパルス幅を下限値より下げると空
燃比制御が不可能になる。従つて1回の噴射当り
の噴射燃料流量には下限値があり、噴射量をそれ
以下にすることは現存のインジエクタを用いる場
合困難である。そのため、1気筒当りの排気量の
小さいエンジンにおけるアイドル時のように必要
燃料流量が微少な場合、従来のようにインジエク
タを各気筒に1個ずつ設ける方法では噴射量が過
大となり、空燃比制御が不可能になる。このこと
を第1図により説明すると、4気筒機関1の各気
筒に接続した吸気マニホールド2にはそれぞれ1
個のインジエクタ3とスロツトルバルブ4があ
り、インジエクタ3からは各気筒の上死点時に噴
射が行われるようになつている。5はエコライザ
チユーブ、6は過給機のコンプレツサに連通した
吸気管、7は排気マニホールドである。このよう
にインジエクタ3を各気筒に1個ずつ設けると、
インジエクタ3は2回転に2回の噴射を行なうの
に対し、対応する気筒は2回転に1回しか吸入行
程がないため必要燃料流量が微少なアイドル時に
は噴射量が過大となりやすく、各気筒の排気量を
一定値より小さくすることは不可能である。しか
も高負荷高回転時には1気筒当りの排気量を大幅
に上回る空気が押し込まれる(過給される)こと
になるためその空気流量にみあつた燃料流量を1
個のインジエクタでは賄いきれなくなる。従つて
1気筒当りの排気量が小さい機関でアイドル時の
ように必要燃料流量が微少な場合に最適の空燃比
制御を行ない、かつ高負荷高回転時に過給により
大出力を得ることは、現存のインジエクタを各気
筒1個ずつ設ける第1図の方式では不可能であ
る。
This type of supercharged engine employs an electronically controlled fuel injection system, in which the period during which the injector is open is controlled by pulses using a solenoid valve. However, there is a lower limit to the effective pulse width required to open the injector. That is, if the pulse width is lowered below the lower limit value in order to obtain a minute injection amount, air-fuel ratio control becomes impossible. Therefore, there is a lower limit to the amount of fuel injected per injection, and it is difficult to reduce the injection amount below this limit when using existing injectors. Therefore, when the required fuel flow rate is small, such as during idling in an engine with a small displacement per cylinder, the conventional method of providing one injector for each cylinder results in an excessive injection amount, making it difficult to control the air-fuel ratio. becomes impossible. To explain this with reference to FIG. 1, each intake manifold 2 connected to each cylinder of a four-cylinder engine 1 has one
There are two injectors 3 and a throttle valve 4, and the injector 3 injects each cylinder at its top dead center. 5 is an equalizer tube, 6 is an intake pipe communicating with the compressor of the supercharger, and 7 is an exhaust manifold. If one injector 3 is provided for each cylinder in this way,
Injector 3 injects twice every two revolutions, whereas the corresponding cylinder has an intake stroke only once every two revolutions, so the injection amount tends to be excessive at idle when the required fuel flow rate is small, and the exhaust gas of each cylinder It is not possible to reduce the quantity below a certain value. Moreover, at high loads and high rotations, air that significantly exceeds the displacement per cylinder is forced (supercharged), so the fuel flow rate corresponding to the air flow rate is reduced to 1.
This cannot be covered by just one injector. Therefore, in an engine with a small displacement per cylinder, it is currently impossible to perform optimal air-fuel ratio control when the required fuel flow rate is small, such as when idling, and to obtain large output through supercharging at high load and high rotation speeds. This is not possible with the system shown in FIG. 1, in which one injector is provided for each cylinder.

本発明は多気筒機関において、ピストンが同時
に上死点へ到達する気筒を1群として、その吸気
管集合部上流側に1個のインジエクタを設置し、
アイドル低負荷時の燃料供給を行なうようにす
る。この方法によると、上死点ごとに噴射を行な
つても、噴射燃料はマニホールド内に滞留するこ
となく1回転ごとに所定の気筒内へ吸入される形
になるため、1気筒当りの排気量を下げることが
可能となる。例えば4気筒機関において本発明の
方式を用いた場合、必要なインジエクタの数は2
個となる。1個のインジエクタで賄える最小排気
量を仮りに150c.c.とすると、従来のように1気筒
に1個のインジエクタを設ける方式では4気筒機
関の最小排気量は600c.c.であるが、本発明の場合
最小排気量はその半分の300c.c.まで下げることが
できる。同様に6気筒の場合は450c.c.となる。
In a multi-cylinder engine, the present invention sets cylinders whose pistons reach top dead center at the same time as one group, and installs one injector on the upstream side of the intake pipe gathering part,
Fuel is supplied during idle and low load. According to this method, even if the injection is performed at every top dead center, the injected fuel will not remain in the manifold and will be sucked into the specified cylinder every revolution, so the displacement per cylinder will be reduced. It becomes possible to lower the For example, when using the method of the present invention in a 4-cylinder engine, the number of required injectors is 2.
Become an individual. Assuming that the minimum displacement that can be covered by one injector is 150 c.c., the minimum displacement of a 4-cylinder engine with the conventional method of providing one injector per cylinder is 600 c.c. In the case of the present invention, the minimum displacement can be reduced to half that amount, 300c.c. Similarly, in the case of 6 cylinders, it will be 450c.c.

しかし高負荷高回転時には空気流量の増加に見
合つた大量の燃料を供給する必要があるが、前記
インジエクタ(メインインジエクタ)のみでは燃
料供給量が不足する。そこで補助インジエクタを
高負荷高回転用として新たに設け、燃料供給不足
を補う必要がある。
However, at high loads and high rotations, it is necessary to supply a large amount of fuel commensurate with the increase in air flow rate, but the amount of fuel supplied by the injector (main injector) alone is insufficient. Therefore, it is necessary to newly install an auxiliary injector for high-load, high-speed use to compensate for the lack of fuel supply.

第2図は実施例を示しており、第2図において
第1図中の符号と同一符号は対応部分である。排
気マニホールド7は過給機10のタービン11の
排気ガス入口12に接続している。13は排気ガ
ス出口である。タービン11で駆動されるコンプ
レツサ14の加圧空気出口15は吸気管6を経て
エコライザチユーブ5へ接続している。16は空
気入口である。
FIG. 2 shows an embodiment, and in FIG. 2, the same reference numerals as those in FIG. 1 indicate corresponding parts. The exhaust manifold 7 is connected to the exhaust gas inlet 12 of the turbine 11 of the supercharger 10 . 13 is an exhaust gas outlet. A pressurized air outlet 15 of a compressor 14 driven by a turbine 11 is connected to an equalizer tube 5 via an intake pipe 6. 16 is an air inlet.

ピストンが同時に上死点へ到達する第2気筒と
第3気筒に連通するマニホールド18(第1群)
の吸気管集合部18aにメインインジエクタ19
と補助インジエクタ20が配置されている。又ピ
ストンが同時に上死点へ到達する第1気筒と第4
気筒に連通したマニホールド21(第2群)の吸
気管集合部21aにも同サイズ(同仕様)のメイ
ンインジエクタ19と補助インジエクタ20が配
置されている。機関1の各気筒の爆発間隔は180゜
の位相差を備えている。メインインジエクタ19
は低負荷、低回転数域を担当するインジエクタ
で、機関1の1回転ごとに1回上死点時に噴射す
るようタイミングが定められており、1回の噴射
当りの噴射燃料流量は小さい。これに対し補助イ
ンジエクタ20は高負荷、高回転数域を担当する
もので、吸入空気量により高負荷、高回転中であ
ることが検出され、吸入空気量が一定値以上に増
加すると上死点で噴射するように電子制御され
る。両インジエクタ19,20は同じサイズのも
のでもよい。
Manifold 18 (first group) communicating with the second and third cylinders whose pistons reach top dead center at the same time
The main injector 19 is attached to the intake pipe gathering portion 18a of the
and an auxiliary injector 20 are arranged. Also, the pistons of the first and fourth cylinders reach top dead center at the same time.
A main injector 19 and an auxiliary injector 20 of the same size (same specifications) are also arranged in the intake pipe gathering portion 21a of the manifold 21 (second group) communicating with the cylinders. The explosion interval of each cylinder of engine 1 has a phase difference of 180°. Main injector 19
The injector is in charge of low load and low rotational speed ranges, and the timing is determined so that it injects once at top dead center for every revolution of the engine 1, and the injected fuel flow rate per injection is small. On the other hand, the auxiliary injector 20 is in charge of high load and high rotation speed ranges, and detects high load and high rotation speed based on the amount of intake air, and when the amount of intake air increases above a certain value, the top dead center It is electronically controlled to inject. Both injectors 19, 20 may be of the same size.

低負荷、低回転数域で運転中には、メインイン
ジエクタ19のみから燃料が噴射される。吸気管
集合部18aに着目すると、上死点においてメイ
ンインジエクタ19から噴射された燃料はその時
吸入行程にある気筒(第2気筒又は第3気筒)に
直ちに吸入され、次に噴射された燃料は他方の気
筒に直ちに吸入される。すなわち集合部18aで
噴射された燃料は吸気マニホールド18内に滞留
することなく、1回転に1回ずつ噴射の都度第2
気筒又は第3気筒に交互に吸入される。従つて第
1図に示す従来の場合に比べて各気筒に吸入され
る燃料の量はメインインジエクタ19と第1図の
インジエクタ3が同仕様の場合は1/2に減少する。
このため第2図の場合、各気筒の最小排気量を従
来の半分まで下げることができる。高負荷高回転
中には吸入空気量が急激に増加するため、補助イ
ンジエクタ20が動作を開始し、各気筒にはメイ
ンインジエクタ19と補助インジエクタ20の1
回分の合計噴射量の燃料が吸入されることにな
り、過給による大出力を得ることが可能になる。
During operation in a low load and low rotational speed range, fuel is injected only from the main injector 19. Focusing on the intake pipe gathering portion 18a, the fuel injected from the main injector 19 at top dead center is immediately sucked into the cylinder (second cylinder or third cylinder) that is in the intake stroke at that time, and the next injected fuel is It is immediately drawn into the other cylinder. In other words, the fuel injected at the collecting part 18a does not stay in the intake manifold 18, and is injected once per rotation into the second injected fuel.
It is alternately inhaled into the cylinder or the third cylinder. Therefore, compared to the conventional case shown in FIG. 1, the amount of fuel taken into each cylinder is reduced to 1/2 when the main injector 19 and the injector 3 shown in FIG. 1 have the same specifications.
Therefore, in the case of FIG. 2, the minimum displacement of each cylinder can be reduced to half of the conventional one. During high-load, high-speed rotation, the amount of intake air increases rapidly, so the auxiliary injector 20 starts operating, and each cylinder has one of the main injector 19 and the auxiliary injector 20.
The total amount of fuel for each injection is taken in, making it possible to obtain large output through supercharging.

以上説明したように本発明によると、小排気量
過給機関におけるアイドル低負荷域から高負荷高
回転域までの燃料供給が可能になる。従つて従来
と同一出力がより小排気量にて取り出し得ること
になり、機械損失、燃料消費率、走行性能の改善
がなされる。又多気筒化によるボアの小径化が可
能となり、それによるノツク限界の向上、圧縮比
の向上、理論熱効率の向上、燃費向上が可能とな
る。本発明の効果を更に具体的に説明すると、本
発明においては各気筒が必要燃料流量の微少な小
排気量である小排気量多気筒過給火花点火機関に
おいてインジエクタとしてパルス制御電磁弁形式
のものが採用されている場合を対象としており、
このような場合にはインジエクタを開くのに必要
な有効パルス幅には下限値があり、微少噴射量を
得るためにパルス幅を下限値より下げると空燃比
制御が不可能になるという特殊な事情がある。こ
の対策として本発明の燃料供給装置は、同時に上
死点へ到達し180度の位相差を有する2気筒の吸
気管を1群とし、各群の吸気管集合部上流にパル
ス制御電磁弁式の1個の低負荷低回転数域用メイ
ンインジエクタ19及び1個以上の高負荷高回転
数域用補助インジエクタ20を設け、各集合部の
上流側を順次共通のエコライザチユーブ5と1本
の吸気管6を介して過給機コンプレツサ14の加
圧空気出口15に接続し、各気筒入口近傍の吸気
管にスロツトルバルブ4を設けたことを特徴とし
ている。このようにしたため例えば吸気管集合部
18aでは、上死点においてメインインジエクタ
19から噴射された燃料はその時吸入行程にある
一方の気筒に直ちに吸入され、次に噴射された燃
料は他方の気筒に直ちに吸入される。即ち集合部
18aで噴射された燃料は吸気マニホールド18
内に滞留することなく、1回転に1回ずつ噴射の
都度一方又は他方の気筒へと交互に吸入される。
しかもスロツトルバルブ4がメインインジエクタ
19の下流側の各気筒入口近傍ごとに設けてある
ため、メインインジエクタ19、補助インジエク
タ20から噴射された燃料粒子がスロツトルバル
ブ4で絞られた吸気管部分を通過する際に霧化が
促進され、特にスロツトルバルブ4の開度が少な
い低負荷低回転数域での霧化が促進され、必要燃
料流量の微少な小排気量機関のアイドル時にも、
燃焼が安定する。吸気管集合部18a,21aの
上流側には供給のエコライザチユーブ5が配置さ
れ、各吸気管集合部18a,21aはそれぞれ2
気筒を分担するので、吸気管集合部18a,21
a内における吸気流の停止期間が短縮し(従来の
ものに比べて1/2になり)、これにともないエコラ
イザチユーブ5内の空気流も流動停止の頻度が減
少して円滑になり、特に小排気量多気筒機関に均
一な燃料供給が可能となる。過給により高負荷高
回転時の吸気量が増加した場合にも、吸気管集合
部18a,21a内における吸気の流動停止の頻
度が減少することから、所望の高出力が得やすく
なる。
As explained above, according to the present invention, fuel can be supplied from an idle low load range to a high load high speed range in a small displacement supercharged engine. Therefore, the same output as before can be obtained with a smaller displacement, resulting in improvements in mechanical loss, fuel consumption rate, and driving performance. In addition, it becomes possible to reduce the diameter of the bore by increasing the number of cylinders, thereby improving the knock limit, improving the compression ratio, improving theoretical thermal efficiency, and improving fuel efficiency. To explain the effects of the present invention more specifically, in the present invention, a pulse control solenoid valve type injector is used as an injector in a small displacement multi-cylinder supercharged spark ignition engine in which each cylinder has a small displacement with a very small required fuel flow rate. This applies to cases where
In such cases, there is a lower limit to the effective pulse width required to open the injector, and there is a special situation in which air-fuel ratio control becomes impossible if the pulse width is lowered below the lower limit in order to obtain a minute injection amount. There is. As a countermeasure against this, the fuel supply system of the present invention has two cylinders' intake pipes that reach top dead center at the same time and have a phase difference of 180 degrees as one group, and a pulse control solenoid valve type is installed upstream of the intake pipe gathering part of each group. One main injector 19 for low-load, low-speed range and one or more auxiliary injector 20 for high-load, high-speed range are provided, and the upstream side of each gathering part is sequentially connected to a common equalizer tube 5 and one equalizer tube 5. It is characterized in that it is connected to a pressurized air outlet 15 of a supercharger compressor 14 via an intake pipe 6, and a throttle valve 4 is provided in the intake pipe near the inlet of each cylinder. For example, in the intake pipe gathering portion 18a, the fuel injected from the main injector 19 at top dead center is immediately drawn into one cylinder that is in the intake stroke at that time, and the next injected fuel is injected into the other cylinder. Inhaled immediately. That is, the fuel injected at the collecting portion 18a is transferred to the intake manifold 18.
The fuel does not remain in the cylinder, but is alternately drawn into one or the other cylinder each time it is injected once per revolution.
Moreover, since the throttle valve 4 is provided near the inlet of each cylinder on the downstream side of the main injector 19, the fuel particles injected from the main injector 19 and the auxiliary injector 20 are throttled by the throttle valve 4 into the intake pipe. Atomization is promoted when the engine passes through the engine, and atomization is promoted especially in the low load and low rotational speed range where the opening of the throttle valve 4 is small, and even when the engine is idling with a small displacement engine where the required fuel flow rate is minute. ,
Combustion becomes stable. A supply equalizer tube 5 is arranged upstream of the intake pipe collection parts 18a, 21a, and each intake pipe collection part 18a, 21a has two
Since the cylinders are shared, the intake pipe gathering parts 18a and 21
The suspension period of the intake air flow in the equalizer tube 5 has been shortened (half compared to the conventional one), and as a result, the air flow in the equalizer tube 5 has become smoother with fewer flow stops. Enables uniform fuel supply to small displacement multi-cylinder engines. Even when the amount of intake air increases during high-load, high-speed rotation due to supercharging, the frequency at which the flow of intake air stops within the intake pipe gathering portions 18a and 21a decreases, making it easier to obtain the desired high output.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の方式を示す平面略図、第2図は
本発明による装置の平面略図である。1……4気
筒機関、18……第1群マニホールド、19……
メインインジエクタ、20……補助インジエク
タ、21……第2群マニホールド。
FIG. 1 is a schematic plan view showing a conventional system, and FIG. 2 is a schematic plan view of an apparatus according to the present invention. 1...4-cylinder engine, 18...1st group manifold, 19...
Main injector, 20... Auxiliary injector, 21... Second group manifold.

Claims (1)

【特許請求の範囲】[Claims] 1 各気筒が必要燃料流量の微少な小排気量であ
る小排気量多気筒過給火花点火機関において、同
時に上死点へ到達し180度の位相差を有する2気
筒の吸気管を1群とし、各群の吸気管集合部上流
にパルス制御電磁弁式の1個の低負荷低回転数域
用メインインジエクタ19及び1個以上の高負荷
高回転数域用補助インジエクタ20を設け、各集
合部の上流側を順次共通のエコライザチユーブ5
と1本の吸気管6を介して過給機コンプレツサ1
4の加圧空気出口15に接続し、各気筒入口近傍
の吸気管にスロツトルバルブ4を設けたことを特
徴とする小型過給火花点火機関の燃料供給装置。
1. In a small-displacement multi-cylinder supercharged spark-ignition engine in which each cylinder has a small displacement with a very small required fuel flow rate, the intake pipes of two cylinders that reach top dead center at the same time and have a phase difference of 180 degrees are grouped as one group. , one pulse-controlled solenoid valve-type main injector 19 for low-load, low-speed range and one or more auxiliary injectors for high-load, high-speed range 20 are provided upstream of the intake pipe collection part of each group. A common equalizer tube 5 is installed on the upstream side of the section.
and the turbocharger compressor 1 via one intake pipe 6.
4. A fuel supply system for a small supercharged spark ignition engine, characterized in that a throttle valve 4 is connected to the pressurized air outlet 15 of No. 4 and provided in the intake pipe near the inlet of each cylinder.
JP56008366A 1981-01-21 1981-01-21 Fuel supply device for small supercharge spark ignition engine Granted JPS57122160A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56008366A JPS57122160A (en) 1981-01-21 1981-01-21 Fuel supply device for small supercharge spark ignition engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56008366A JPS57122160A (en) 1981-01-21 1981-01-21 Fuel supply device for small supercharge spark ignition engine

Publications (2)

Publication Number Publication Date
JPS57122160A JPS57122160A (en) 1982-07-29
JPS637260B2 true JPS637260B2 (en) 1988-02-16

Family

ID=11691234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56008366A Granted JPS57122160A (en) 1981-01-21 1981-01-21 Fuel supply device for small supercharge spark ignition engine

Country Status (1)

Country Link
JP (1) JPS57122160A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007262996A (en) * 2006-03-29 2007-10-11 Denso Corp Fuel injector for internal combustion engine
JP2007292058A (en) * 2006-03-29 2007-11-08 Denso Corp Fuel injection control device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007262996A (en) * 2006-03-29 2007-10-11 Denso Corp Fuel injector for internal combustion engine
JP2007292058A (en) * 2006-03-29 2007-11-08 Denso Corp Fuel injection control device
JP4615535B2 (en) * 2006-03-29 2011-01-19 株式会社デンソー Fuel injection control device

Also Published As

Publication number Publication date
JPS57122160A (en) 1982-07-29

Similar Documents

Publication Publication Date Title
US4732117A (en) Two-cycle internal combustion engine
US4831993A (en) Method of operating carburetted dual-fuel engines with diesel pilot oil injection
US5765372A (en) Lean burn engine for automobile
US5865153A (en) Engine control system and method
JP3172232B2 (en) Engine combustion control device
US4732118A (en) Two-cycle internal combustion engine
US4732116A (en) Two-cycle internal combustion engine
US5121733A (en) Air intake system for supercharged engine
WO2002025080A1 (en) Lean-burn variable compression ratio engine
EP0249129B1 (en) Two-cycle internal combustion engine
JPH0323327A (en) Supercharging type gasoline internal combustion engine
JPS597548Y2 (en) Internal combustion engine fuel supply system
US6438956B1 (en) Method of operating an internal-combustion engine, and internal-combustion engine
US6513484B1 (en) Boosted direct injection stratified charge gasoline engines
JP3153283B2 (en) Engine with mechanical supercharger
JPS637260B2 (en)
JPH10274070A (en) Cylinder injection type engine with mechanical supercharger
US4781154A (en) Two-cycle internal combustion engine
JP3384579B2 (en) Engine with turbocharger
JPH06173821A (en) Fuel injection device for engine
JP2647131B2 (en) Intake device for turbocharged diesel engine
JPH10274072A (en) Cylinder injection type engine with supercharger
JPH0410343Y2 (en)
JP6344406B2 (en) Turbocharged engine
JP3427396B2 (en) Intake device for engine with mechanical supercharger