JPS6372499A - Fused flux for submerged arc welding and its production - Google Patents

Fused flux for submerged arc welding and its production

Info

Publication number
JPS6372499A
JPS6372499A JP21655286A JP21655286A JPS6372499A JP S6372499 A JPS6372499 A JP S6372499A JP 21655286 A JP21655286 A JP 21655286A JP 21655286 A JP21655286 A JP 21655286A JP S6372499 A JPS6372499 A JP S6372499A
Authority
JP
Japan
Prior art keywords
flux
component
melt
metal
arc welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21655286A
Other languages
Japanese (ja)
Other versions
JPH0320317B2 (en
Inventor
Toyofumi Inukai
犬飼 豊文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP21655286A priority Critical patent/JPS6372499A/en
Publication of JPS6372499A publication Critical patent/JPS6372499A/en
Publication of JPH0320317B2 publication Critical patent/JPH0320317B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Nonmetallic Welding Materials (AREA)

Abstract

PURPOSE:To decrease hygroscopicity, to facilitate storage and control and to improve weldability by incorporating a specific ratio or above of metallic component grains having the grain size in a specific range into amorphous flux components. CONSTITUTION:Flux raw materials are adequately compounded and are heated to about 1300 deg.C to melt. While the materials are in the low-viscosity molten state of 1100-1250 deg.C, >=2.5% metallic components of 20-100 mesh grain size such as Mn, W, Co and Ni which can make chemical reaction and deoxidation reaction with a deposited metal are incorporated into said materials. The melt is thoroughly cooled to solidify after the incorporation of the metallic components therein. The solidified matter is then pulverized, by which the flux incorporated with the metallic components in the flux grains A is obtd. The weldability is improved by using the flux constituted in the above-mentioned manner.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、サブマージアーク溶接において使用するフラ
ックス、特に金属成分を含む溶成形フラックスとその製
造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a flux used in submerged arc welding, particularly a melt forming flux containing a metal component, and a method for producing the same.

[従来の技術とその問題点] サブマージアーク溶接は、溶接部の表面に予めフラック
スを散布しておき、その中に裸のワイヤを送給して行な
う溶接法である。このサブマージアーク溶接用フラック
スとして、従来より最も一般的に用いられている溶成形
フラックスは、フラックス原料である各種鉱物性物質を
1300℃前後もしくはそれ以上に加熱溶融して冷却し
た後、所要の粒度に粉砕して製ゼられたものであって、
組成が均一でかつ非晶質でガラス状をなしているので吸
湿性が殆どなく、保管上および使用上の取り扱い管理が
容易であるが、その反面、スラグ生成材であるフラック
ス成分のみよりなり、溶着金属の性質等に影響を与える
マンガン、コバルト、クロムその他の合金元素の金属成
分は殆ど含まれていない。これはフラックス原料粉末に
マンガンその他の合金元素の金属成分を添加しておいて
も、前記加熱溶融時の高温によって燃焼して殆ど残存し
ないからであり、金属成分を含有させることはできない
ものとされている。
[Prior Art and its Problems] Submerged arc welding is a welding method in which flux is previously spread on the surface of the welding part and a bare wire is fed into the flux. Melting flux, which is the most commonly used flux for submerged arc welding, is produced by heating and melting various mineral substances, which are flux raw materials, at around 1,300°C or higher, cooling them, and then forming them into the required particle size. It is made by crushing into
Since the composition is uniform, amorphous, and glass-like, it has almost no hygroscopicity and is easy to handle and manage during storage and use. It contains almost no metal components such as manganese, cobalt, chromium, and other alloying elements that affect the properties of the deposited metal. This is because even if metal components such as manganese or other alloying elements are added to the flux raw powder, they will burn due to the high temperature during heating and melting and almost no metal components will remain. ing.

そのため、この溶成形フラックスを使用する場合、溶着
金属の性質は母材の材質や溶接条件等に応じて選定され
組合せ使用されるワイヤによって決定されている。すな
わち溶着金属の化学成分の調整のための合金元素等の添
加はワイヤにより行なわれているが、ワイヤは製造ロフ
トも大きく、特に合金元素の金属成分の含有させた特殊
なワイヤの場合、その線引きも難しく、非常に高価なも
のとなっている。
Therefore, when using this melt forming flux, the properties of the weld metal are determined by the wires selected and used in combination depending on the material of the base material, welding conditions, etc. In other words, the addition of alloying elements to adjust the chemical composition of the weld metal is done using wire, but wire has a large manufacturing loft, and especially in the case of special wires containing metallic components of alloying elements, it is difficult to draw the wire. It is also difficult and extremely expensive.

また、合金元素の金属成分を含むサブマージアーク溶接
用フラックスとしてはボンドフラックス(焼成形フラッ
クス)が知られている。このボンドフラックスは、フラ
ックス原料の鉱物性物質、脱酸剤、合金元素の粉末等を
固着材で造粒し、300〜500℃の温度で焼成するこ
とにより製せられたちので、溶着金属の化学成分の調整
やIg2酸作用および結晶組織の細粒化が比較的容易で
あり、使用適用範囲も広い等の長所を持っている反面、
製造コストが高い上に、前者のものに比して吸湿性が高
く保管等の管理が面倒であり、また繰返し使用によって
微粉化されてしまい、取り扱い難い等の欠点がある。
Further, bond flux (sintered flux) is known as a submerged arc welding flux containing a metal component of an alloying element. This bond flux is made by granulating flux raw materials such as mineral substances, deoxidizers, powders of alloying elements, etc. with a bonding agent, and firing it at a temperature of 300 to 500 degrees Celsius. Although it has the advantages of being relatively easy to adjust the ingredients, Ig2 acid action, and refine the crystal structure, and has a wide range of applications,
In addition to being expensive to manufacture, it is more hygroscopic than the former, making storage and other management troublesome, and it is difficult to handle as it becomes pulverized by repeated use.

なお、この発明者が提案しているフラックスの再生法(
特公昭52−40892号)を利用して、フラックス成
分の粒状体を核とし、その周囲に金属成分の粉末を付着
させることも考えられないではないが、この場合、核の
周囲に付着した金属成分がIli落し易く、使用上の取
り扱い管理が難しい上、金属成分の含有Mが不均一にな
るといった問題が生じる。
In addition, the flux regeneration method proposed by this inventor (
It is not inconceivable to use the method (Japanese Patent Publication No. 52-40892) to make the granular material of the flux component the core and attach powder of the metal component around it, but in this case, the metal component attached around the core The problem arises that the components are easily removed, difficult to handle and manage during use, and that the content of the metal component M becomes non-uniform.

上記に鑑み、本発明は、サブマージアーク溶接用フラッ
クスとして、使用、保管上の取り扱い管理が容易である
溶成形フラックスの長所をそのまま保持して、しかも合
金元素の金属成分を含有するボンドフラックスの長所を
も併せ持った溶成形フラックスとその製造方法を提供し
ようとするものである。
In view of the above, the present invention provides a flux for submerged arc welding that retains the advantages of melt-forming flux, which is easy to use, store, and handle, and also has the advantages of bonded flux, which contains metal components of alloying elements. The present invention aims to provide a melt-forming flux that also has the following features and a method for producing the same.

[問題点を解決するための手段] 本発明は、種々研究、検討を重ねた結果、金属成分をあ
る特定の粒度の粉粒にして、フラックス成分の溶融後の
冷却に段階において該粉粒をある条件のもとで吹込めば
、燃焼、溶解させることなくそのままフラックス成分中
に混在させ得ることを知見し、本発明はこの知見に基づ
いてなしたものである。
[Means for Solving the Problems] As a result of various studies and examinations, the present invention has been developed by forming the metal component into powder particles of a certain specific particle size, and by using the powder particles in the cooling stage after the flux component is melted. It was discovered that if it is blown under certain conditions, it can be mixed into the flux component as it is without being burned or dissolved, and the present invention was made based on this knowledge.

すなわち、上記の問題点を解決する本発明の溶成形フラ
ックスは、非晶質のフラックス成分に対し、粒度20〜
100メツシュの金属成分粉粒を2.5重量%以上混在
させてなることを特徴とするものである。
That is, the melt forming flux of the present invention that solves the above problems has a particle size of 20 to
It is characterized by containing 2.5% by weight or more of 100 mesh metal component powder particles.

また第2番目の発明は、上記の溶成形フラックスを製造
する方法であって、フラックス原料を加熱溶融した後の
冷却に際し、フラックス成分が未だ溶融状態にある間に
、このフラックス成分の溶湯に対して、粒度20〜10
0メツシュの金属成分の粉粒を高温加熱しておいて高圧
で吹き付けることにより2.5重量%以上混入させると
ともに、混入後直ちに冷却固化させ、これを所定粒度に
粉砕することを特徴とするものである。
The second invention is a method for producing the above-mentioned melt-molded flux, in which, when the flux raw material is heated and melted and then cooled, while the flux component is still in a molten state, the molten metal of the flux component is , particle size 20-10
It is characterized by mixing 2.5% by weight or more of metal component powder grains of 0 mesh by heating them at high temperature and spraying them under high pressure, and immediately cooling and solidifying them after mixing, and pulverizing this to a predetermined particle size. It is.

[作 用] 上記の構成よりなる本発明の溶成形フラックスは、大部
分が非晶質つまりガラス状のフラックス成分よりなるた
め、組成が均一で吸湿性が殆どなく、またこのフラック
ス成分中に含有せる金属成分の粉粒は溶解せずにフラッ
クス成分中に一部あるいは全体が埋没した状態で略均−
に分散して混在しており、取り扱いにおいて脱落するこ
とがない。
[Function] The melt-forming flux of the present invention having the above-mentioned structure is mostly composed of an amorphous or glassy flux component, so the composition is uniform and there is almost no hygroscopicity, and the flux contained in this flux component is uniform. The powder particles of the metal component to be mixed are not dissolved but are partially or completely buried in the flux component, and are approximately uniform.
They are dispersed and mixed together, so they do not fall out during handling.

しかも金属成分が7ラツクス成分中に混在し含有してい
るため、ボンドフラックスと同様の性質を備え、溶着金
属に充分な合金成分を移行させることができ、これによ
って溶着金属の化学成分の調整が行なえる。
Moreover, since the metal components are mixed and contained in the 7-lux component, it has properties similar to bond flux, and it is possible to transfer sufficient alloy components to the weld metal, thereby making it possible to adjust the chemical composition of the weld metal. I can do it.

また上記の本発明の製造方法によると、フラックス成分
が溶融後冷却固化するまでの未だ溶融状態にある間に、
特に粒度20〜100メツシュの金属成分の粉粒を高温
加熱しておいて高圧で吹き付けるため、この金属成分の
粉粒は前記加熱によって高温のフラックス成分の溶湯と
なじみ易い状態となり、しかも前記吹き付けにより高速
でかつある程度分散して前記溶湯中に容易に入り込み、
確実に混入し得る。しがも前記混入後直ちに前記フラッ
クス成分を冷却固化させるので、前記金属成分の粉粒が
燃焼、溶解することもなく、フラックス成分中に略均−
に混在させることができる。
Further, according to the above manufacturing method of the present invention, while the flux component is still in a molten state until it is cooled and solidified after being melted,
In particular, the powder particles of the metal component with a particle size of 20 to 100 mesh are heated at high temperature and then sprayed under high pressure. easily enters the molten metal at high speed and to some extent dispersed;
It can definitely get mixed in. However, since the flux component is cooled and solidified immediately after being mixed in, the powder particles of the metal component are not burned or dissolved, and are almost uniformly mixed into the flux component.
can be mixed.

[実施例] 以下に本発明の実施例を図面に基いて説明する。[Example] Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明に係る粉粒状の溶成形フラックス(A)
の1粒子を拡大して示しており、(1)はフラックス原
料である各種鉱物性物質の溶成により主としてガラス状
をなす非晶質の7ラツクス成分を示しており、(2)は
前記フラックス成分(1)中に混在させた粉粒状の合金
元素の金属成分を示す。この金属成分(2)は、マンガ
ン、タングステン、コバルト、ニッケル、モリブデン、
アルミニウム、クロム、シリコン、鉄その他の溶着金属
に対し化学反応作用および脱酸作用を行ない得る各種合
金元素の金属よりなるもので、特に粒度20〜100メ
ツシュの粉粒にして、前記フラックス成分(1)に対し
2.5重間%以上で25重量%以下、特に好ましくは5
〜13重量%の割合で、粒子(A)内部や表面に分散し
て混在させている。この金属成分(2)の含有伍が前記
より少ないと、溶接の際の化学反応作用が充分に行なわ
れないことになり、また25重量%以上であるとフラッ
クス成分中に均一に混在させることが難しくなる。
Figure 1 shows powder-like melt-forming flux (A) according to the present invention.
(1) shows an amorphous 7 lux component that is mainly glass-like due to melting of various mineral substances that are flux raw materials, and (2) shows the amorphous 7 lux component of the flux. The metal component of the powdery alloy element mixed in component (1) is shown. This metal component (2) includes manganese, tungsten, cobalt, nickel, molybdenum,
It is made of metals of various alloying elements capable of chemically reacting and deoxidizing weld metals such as aluminum, chromium, silicon, iron, etc. It is made into powder particles with a particle size of 20 to 100 mesh, and the flux component (1 ), 2.5% by weight or more and 25% by weight or less, particularly preferably 5% by weight
It is dispersed and mixed inside and on the surface of the particle (A) at a ratio of ~13% by weight. If the content of this metal component (2) is less than the above, the chemical reaction effect during welding will not take place sufficiently, and if it is more than 25% by weight, it will not be possible to mix it uniformly in the flux component. It becomes difficult.

また、フラックス成分(1)中に金属成分(2)を混在
させた上記のフラックスは次のようにして製造すること
ができる。
Further, the above flux in which the metal component (2) is mixed in the flux component (1) can be produced as follows.

第2図はその製造過程を示しており、まず従来の溶成形
フラックスと同様に、各種フラックス原料を適当に配合
して、これを1300℃前侵あるいはそれ以上に加熱溶
融する。この溶融後の冷却に際し、フラックス成分が1
100℃〜1250℃程度の未だ比較的低粘度の溶融状
態にある間に、このフラックス成分の溶湯に対して、上
記した粒度20〜100メツシュの金属成分の粉粒を、
予め高温加熱して水分等の異物を除去し高温の前記溶湯
になじみ易くした上で、圧縮空気を利用した噴射手段に
より高圧で吹き付けて混入させる。前記金属成分粉粒の
加熱温度は、金属成分の種類等によっても異なるが、通
常500〜600℃程度が好適であり、また吹き付は圧
力は8〜10に9/cri程度が前記粉粒を溶湯中に容
易に埋没させ得て好適である。
FIG. 2 shows the manufacturing process. First, in the same way as conventional melt-forming flux, various flux raw materials are appropriately blended, and this is heated and melted to 1300° C. or higher. During cooling after this melting, the flux component is 1
While the flux component is still in a molten state with a relatively low viscosity at about 100°C to 1250°C, powder particles of the metal component with a particle size of 20 to 100 mesh are added to the molten flux component.
The molten metal is heated to a high temperature in advance to remove foreign substances such as water to make it more compatible with the high-temperature molten metal, and then mixed in by spraying at high pressure using an injection means using compressed air. The heating temperature of the metal component powder particles varies depending on the type of metal component, etc., but it is usually suitable to be about 500 to 600°C, and the pressure of spraying is about 8 to 10:9/cri to heat the powder particles. It is suitable because it can be easily buried in molten metal.

なお前記金属成分粉粒の吹き付けは、フラックス成分の
溶湯を湯槽から冷却槽へと徐々に流し出しながら、湯口
近傍において前記流出溶湯に対して行なうもので、特に
こうして金属成分粉粒を吹き付けた後の溶湯を一対のロ
ーラにより挟圧して板状にして流すと、溶湯表面に付着
した状態の粉粒も溶湯内に完全に押し込むことができ、
より一層好適に実施できる。
The above-mentioned spraying of the metal component powder particles is carried out on the outflowing molten metal near the sprue while the molten metal containing the flux component is gradually flowing out from the hot water tank to the cooling tank. When the molten metal is squeezed between a pair of rollers to form a plate and flowed, the particles attached to the surface of the molten metal can be completely pushed into the molten metal.
It can be implemented even more favorably.

そして前記吹き付は混入後、前記金属成分の粉粒が溶解
、沈澱してしまわないように直ちにフラックス成分を冷
部槽に落し込んで完全に冷却固化させる。その模これを
適当な粒度に粉砕、整粒すればよい。
After the spraying, the flux component is immediately dropped into a cooling tank to completely cool and solidify the flux component so that the powder particles of the metal component do not dissolve or precipitate. The material may be crushed and sized to an appropriate particle size.

こうして得られた溶成形フラックスは、前記金属成分(
2)の粉粒がフラックス粒子(^)の内部に埋没しある
いは表面において一部が埋没した状態で全体に分散して
混在していることになり、上記本発明の溶成形フラック
スを容易に製造することができる。
The melt-forming flux thus obtained is the metal component (
The powder particles of 2) are buried inside the flux particles (^) or are partially buried on the surface and are dispersed and mixed throughout, making it easier to produce the melt-molded flux of the present invention. can do.

なお前記の金属成分(2)の粉粒の粒度があまり細かい
と、フラックス成分の加熱温度で溶解することになり、
またあまり粗粒であると粘性のあるフラックス成分(1
)中に混入できないことになるので、上記のように粒度
20〜100メツシュの粉粒にしておくのがよい。
Note that if the particle size of the metal component (2) is too fine, it will melt at the heating temperature of the flux component.
Also, if the particles are too coarse, the flux component is viscous (1
), it is best to use powder particles with a particle size of 20 to 100 mesh as described above.

上記のようにして製造された溶成形フラックスは、その
粒子(A)の大部分が非晶質の7ラツクス成分よりなる
ものであるから、組成が均一で吸゛湿性が殆どなく、そ
の保管、使用上の取り扱い管理が容易である。しかもフ
ラックス成分(1)のみでなく、合金元素の金属成分(
2)を含有しているので、従来のボンドフラックスと同
様に、肉盛り溶接の場合にも?IW金属へ充分に合金成
分を移行せしめ得るとともに、溶着金属の化学成分の調
整がこのフラックス自体により行なえ、従来のフラック
ス成分のみよりなる溶成形フラックスを使用する場合の
ように、これと組合せ使用されるワイヤとして合金元素
の金属成分を含む特殊なものを使用する必要がなく、安
価なワイヤを使用でき、しかも良好な溶接が行なえる。
The melt-molded flux produced as described above has a uniform composition and almost no moisture absorption, since most of its particles (A) are composed of amorphous 7-lux components, and its storage and Easy to handle and manage during use. Moreover, not only the flux component (1) but also the metal component of the alloying element (
2), so it can be used for overlay welding just like conventional bond flux. In addition to being able to sufficiently transfer the alloy components to the IW metal, the chemical components of the weld metal can be adjusted by this flux itself, and it can be used in combination with a conventional melt-forming flux consisting only of flux components. There is no need to use a special wire containing a metal component of an alloying element, an inexpensive wire can be used, and moreover, good welding can be performed.

[発明の効果] 上記したように本発明の溶成形フラックスは、溶成形フ
ラックスとしての使用、管理面の容易性という長所と、
金属成分を含むボンドフラックスの長所とを併有し、吸
湿性をほとんど有さず、使用および保管上の取り扱い管
理がボンドフラックスよりもはるかに容易である。しか
も、フラックス自体で溶着金属の性質および化学成分の
調整を行なえるので、緻密な良質の溶接を行なうことが
でき、溶接性および使用適用範囲が広く、特に従来のよ
うに溶着化学成分の調整をワイヤに委ねる必要もないの
で、高価なワイヤを使用する必要もない。
[Effects of the Invention] As described above, the melt forming flux of the present invention has the advantages of ease of use and management as a melt forming flux, and
It has the advantages of bonded flux containing metal components, has almost no hygroscopicity, and is much easier to use and handle during storage than bonded flux. Moreover, since the flux itself can adjust the properties and chemical composition of the weld metal, it is possible to perform dense, high-quality welding, and the weldability and application range is wide. Since there is no need to rely on wires, there is no need to use expensive wires.

さらに本発明の製造方法によれば、上記したように、金
属成分を原料としてフラックス原料に配合しておくので
はなく、フラックス成分の溶解後冷却固化るまでの未だ
溶融状態にある間に、特定粒度の粉粒にした金属成分を
高温加熱しておいて高圧で吹き付は混入させ、直ちに冷
却固化させるものであるから、前記金属成分の粉粒を燃
焼、溶解させることなくそのままフラックス成分中に容
易にして確実に混在させることができ、従って非晶質の
7ラツクス成分中に金属成分を含有した上記のごとき優
れた効果を有する溶成形フラックスを、従来の金属成分
を含むボンドタイプフラックスよりも容易かつ安価に製
造、提供できる。
Furthermore, according to the manufacturing method of the present invention, as described above, instead of blending the metal component into the flux raw material as a raw material, a specific Since the metal component is pulverized into powder with a certain particle size and heated at high temperature and mixed with high pressure, it is immediately cooled and solidified. It is possible to easily and reliably mix the melt-forming flux, which contains metal components in the amorphous 7-lux component and has the above-mentioned superior effects, compared to conventional bond type fluxes containing metal components. It can be manufactured and provided easily and inexpensively.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示すフラックスの1粒子を示
す拡大断面図、第2図は本発明フラックスの製造過程の
示す工程図である。 (A)・・・溶成形フラックスの粒子、(1)・・・フ
ラックス成分、(2)・・・金属成分。
FIG. 1 is an enlarged sectional view showing one particle of a flux showing an example of the present invention, and FIG. 2 is a process diagram showing the manufacturing process of the flux of the present invention. (A) Particles of melt forming flux, (1) Flux component, (2) Metal component.

Claims (1)

【特許請求の範囲】 1、溶成形フラックスであつて、非晶質のフラックス成
分中に、粒度20〜100メッシュの金属成分粉粒を2
.5重量%以上混在せしめてなることを特徴とするサブ
マージアーク溶接用溶成形フラックス。 2、フラックス原料を加熱溶融した後の冷却に際し、フ
ラックス成分が未だ溶融状態にある間に、このフラック
ス成分の溶湯に対し、粒度20〜100メッシュの金属
成分の粉粒を高温加熱しておいて高圧で吹き付けること
により2.5重量%以上混入させるとともに、直ちに冷
却固化させ、これを所定粒度に粉砕することを特徴とす
るサブマージアーク溶接用溶成形フラックスの製造方法
。 3、金属成分粉粒の混入量がフラックス成分に対し2.
5〜25重量%である特許請求の範囲第2項記載のサブ
マージアーク溶接用溶成形フラックスの製造方法。
[Scope of Claims] 1. A melt-molding flux in which metal component powder particles with a particle size of 20 to 100 mesh are added to an amorphous flux component.
.. A melt forming flux for submerged arc welding characterized by containing 5% by weight or more. 2. When cooling after heating and melting the flux raw material, while the flux component is still in a molten state, powder particles of a metal component with a particle size of 20 to 100 mesh are heated at high temperature to the molten metal of the flux component. A method for producing melt-formed flux for submerged arc welding, which comprises mixing in 2.5% by weight or more by spraying at high pressure, immediately cooling and solidifying it, and pulverizing it to a predetermined particle size. 3. The amount of metal component powder mixed with the flux component is 2.
The method for producing a melt forming flux for submerged arc welding according to claim 2, wherein the content is 5 to 25% by weight.
JP21655286A 1986-09-12 1986-09-12 Fused flux for submerged arc welding and its production Granted JPS6372499A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21655286A JPS6372499A (en) 1986-09-12 1986-09-12 Fused flux for submerged arc welding and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21655286A JPS6372499A (en) 1986-09-12 1986-09-12 Fused flux for submerged arc welding and its production

Publications (2)

Publication Number Publication Date
JPS6372499A true JPS6372499A (en) 1988-04-02
JPH0320317B2 JPH0320317B2 (en) 1991-03-19

Family

ID=16690223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21655286A Granted JPS6372499A (en) 1986-09-12 1986-09-12 Fused flux for submerged arc welding and its production

Country Status (1)

Country Link
JP (1) JPS6372499A (en)

Also Published As

Publication number Publication date
JPH0320317B2 (en) 1991-03-19

Similar Documents

Publication Publication Date Title
US20200001406A1 (en) Micro/nano particle reinforced composite solder and preparation method therefor
KR100741600B1 (en) Powder composition comprising aggregates of iron powder and additives and a flow agent and a process for its preparation
US5378294A (en) Copper alloys to be used as brazing filler metals
TWI343295B (en)
CN100352596C (en) Lead-free soft brazing alloy containing mixed rare earth and production thereof
US3246981A (en) Homogenous ductile nickel base alloy weld deposit and method for producing same
JPH03173729A (en) Copper alloy for use as brazing metal filler
JPS6372499A (en) Fused flux for submerged arc welding and its production
CN109454361A (en) A kind of low-hygroscopicity submerged-arc welding sintered flux and preparation method thereof
US3185599A (en) Process of producing welding fluxes
US2950184A (en) Process for preparing powdered silversolder compositions
JPH05185281A (en) Submerged arc flux and its manufacture
US2888342A (en) Process of making a bonded exothermic composition
JP4171779B2 (en) Method for producing oxide-dispersed steel
JPH0732189A (en) Composite power material for powder plasma welding
US1065855A (en) Process of manufacturing alloys.
JPH1140862A (en) Manufacture of cobalt antomonide thermoelectric material
JPH03201577A (en) Manufacture of bi-sb-ti-se thermoelectric semiconductor material
JPS61104040A (en) Manufacture of magnetic al alloy
JP2001239394A (en) Raw material for sub-merged arc welding material
JP3160468B2 (en) Alloy powder and compact using the same
JPH05222479A (en) Sintered aluminum alloy and its production
JPS62263902A (en) Production of pulverized metallic powder
JPH03151192A (en) Flux composition for brazing al material
JPH02155592A (en) Solder for glass

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees