JPS637243B2 - - Google Patents

Info

Publication number
JPS637243B2
JPS637243B2 JP57184986A JP18498682A JPS637243B2 JP S637243 B2 JPS637243 B2 JP S637243B2 JP 57184986 A JP57184986 A JP 57184986A JP 18498682 A JP18498682 A JP 18498682A JP S637243 B2 JPS637243 B2 JP S637243B2
Authority
JP
Japan
Prior art keywords
hot water
state
power generation
low
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57184986A
Other languages
Japanese (ja)
Other versions
JPS5976130A (en
Inventor
Keijiro Yamaoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP18498682A priority Critical patent/JPS5976130A/en
Publication of JPS5976130A publication Critical patent/JPS5976130A/en
Publication of JPS637243B2 publication Critical patent/JPS637243B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Description

【発明の詳細な説明】 この発明は、熱水と低沸点媒体液とを用いた熱
水貯蔵発電装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a hot water storage power generation device using hot water and a low boiling point medium liquid.

昼間と夜間との電力需要の差を少なくしてピー
クロード発電を達成させるために、あるいは非定
常排熱を定常電力とするために、発明者らはさき
に昭和56年特許願第114274号として、発電設備か
らの蒸気とか廃ガスにより温水を加熱し、これに
よつて得た熱水をタンクに貯蔵しておき、ピーク
ロード時にこの熱水を回転分離式熱水タービンを
含む発電設備に供給して、効率の高いピークロー
ド発電を可能にすると共に、非定常排熱を効率良
く定常電力に交換することを可能にした熱水貯蔵
発電装置を提案した。そしてこの既提案において
は、従来のアキユムレータ方式とか蒸気タービン
のみのサイクルよりも優れた結果を得ることが実
証されたが、一方、この場合は水を媒体液とする
サイクルであるために得られる効率に限界があつ
た。またそこでこのサイクル効率を高めるため
に、水を低沸点媒体液に代えることが考えられる
が、高価な低沸点媒体液を充分な量だけ使用する
のはコスト的に引き合わないものであつた。
In order to achieve peak load power generation by reducing the difference in power demand between daytime and nighttime, or to convert unsteady waste heat into steady power, the inventors first proposed the patent application No. 114274 in 1982. , hot water is heated using steam or waste gas from power generation equipment, the hot water obtained by this is stored in a tank, and during peak load times this hot water is supplied to power generation equipment including a rotary separation hot water turbine. We proposed a hot water storage power generation system that enables highly efficient peak load power generation and efficiently exchanges unsteady waste heat into steady power. In this existing proposal, it has been demonstrated that better results can be obtained than the conventional accumulator system or a cycle using only a steam turbine. There was a limit to this. In order to improve this cycle efficiency, it has been considered to replace water with a low-boiling point liquid medium, but it has not been cost-effective to use a sufficient amount of the expensive low-boiling point medium liquid.

この発明は従来のこのような欠点に鑑み、熱エ
ネルギの大量貯蔵に熱水を利用し、かつ貯蔵され
た熱エネルギを低沸点媒体液に熱交換させた上
で、この低沸点媒体液によるトータルフロー発電
を行なうようにし、これによつて高効率のピーク
ロード発電を可能にしたものである。
In view of these conventional drawbacks, the present invention utilizes hot water to store a large amount of thermal energy, heat-exchanges the stored thermal energy with a low-boiling point medium liquid, and then uses this low-boiling point medium liquid to generate a total The system uses flow power generation, which enables highly efficient peak load power generation.

以下、この発明に係わる発電システムの一実施
例につき、添付図面を参照して詳細に説明する。
Hereinafter, one embodiment of the power generation system according to the present invention will be described in detail with reference to the accompanying drawings.

第1図はこの実施例によるシステム構成を示し
ており、この第1図において、は温水2と熱水
3とを移動隔壁4により区分して貯蔵する併温型
貯蔵タンクであり、移動隔壁4は温水2と熱水3
とのそれぞれ比重の中間をもつ断熱材により形成
されていて、自身の浮力によりこれらの温水2域
と熱水3域とを区分し、温水2と熱水3との需給
バランスに対応して移動するようになつている。
Fig. 1 shows the system configuration according to this embodiment, and in Fig. 1, numeral 1 denotes a co-heated storage tank in which hot water 2 and hot water 3 are separated and stored by a movable partition wall 4; 4 is hot water 2 and hot water 3
It is formed of an insulating material with a specific gravity between the two, and separates these hot water areas 2 and 3 using its own buoyancy, and moves according to the supply and demand balance of hot water 2 and hot water 3. I'm starting to do that.

そして貯蔵タンクに貯蔵された温水2は、ポ
ンプ6によつて適宜の加熱部、この場合は火力、
原子力発電設備からの抽気蒸気とか、その他の廃
熱を熱源とする加熱部7により加熱されて熱水3
となり、同貯蔵タンクに貯蔵される。しかして
この貯蔵されている温度T1の熱水3はポンプ8
により熱交換器9に流入して熱交換をなし、温度
T2の温水2となつて貯蔵タンクに還流する。
The hot water 2 stored in the storage tank 1 is then transferred to an appropriate heating section by a pump 6, in this case a thermal power source.
Hot water 3 is heated by a heating section 7 that uses extracted steam from nuclear power generation equipment or other waste heat as a heat source.
and is stored in the same storage tank 1 . However, the hot water 3 at a temperature T 1 stored in the lever is pumped 8
flows into the heat exchanger 9 for heat exchange, and the temperature
It becomes hot water 2 of T 2 and returns to the storage tank 1 .

また10は発電システムであつて、歯車等を介
して連結された気体タービン11と、二相流ター
ビン12と、発電機13とからなり、気体タービ
ン11には外部冷却水による復水器14が附設さ
れている。
Reference numeral 10 denotes a power generation system, which includes a gas turbine 11, a two-phase flow turbine 12, and a generator 13, which are connected via gears, etc. The gas turbine 11 is equipped with a condenser 14 using external cooling water. It is attached.

ここで前記二相流タービン12が、第2図に符
号12a1,12a2で示す2段二相流タービンであ
る場合には、第4図の状態図に示すように、発電
システム10からの状態Aの低温低沸点媒体液
は、ポンプ15により状態Bに昇圧された上で、
前記熱交換器9の第1加熱部16で状態Cに加熱
され、この状態Cの高温低沸点媒体液が、まず第
1段二相流タービン12a1に供給されて、状態E1
の気体と状態I1の液体とに分離され、この二相流
タービン12a1により状態C−D1の熱落差相当
分の発電を行なう。そして前記状態I1の液体は次
に第2二相流タービン12a2に供給されて、状態
E2の気体と状態I2の液体とに分離され、この二相
流タービン12a2により状態I1−D2の熱落差相当
分の発電を行なう。ついで前記状態E1の気体は
再度前記熱交換器9の第2加熱部17により状態
Fに加熱された上で気体タービン11に、かつ状
態E2の気体はそのまま蒸気タービン11にそれ
ぞれ供給され、この気体タービン11により状態
F−G1およびE2−G2の熱落差相当分の発電を行
なうのであり、このためタービン11は混圧ター
ビンとなるもので、タービン11からの排出は復
水器14により状態Hの液体となり、この状態H
の液体は二相流タービン12a2からの状態I2の液
体と混合されて当切の状態Aの液体に戻り、この
サイクルを繰り返す。また前記二相流タービン1
2が、第3図に符号12b1で示す1段二相流ター
ビンである場合には、同様に第5図の状態図に示
した通りであつて、前記した状態Cの高温低沸点
媒体液が二相流タービン12b1に供給されて、状
態Eの気体と状態Iの液体とに分離され、この二
相流タービン12b1により状態C−Dの熱落差相
当分の発電を行ない、状態Eの気体は前記と同様
に状態Fまで加熱された上で気体タービン11に
供給され、この気体タービン11により状態F−
Dの熱落差相当分の発電を行なつたのち、復水器
14を経た状態Hの液体と二相流タービン12b1
を経た状態Iの液体とは混合されて状態Aの液体
に戻り、ここでもこのサイクルを繰り返すのであ
る。
Here, when the two-phase flow turbine 12 is a two-stage two-phase flow turbine shown by reference numerals 12a 1 and 12a 2 in FIG. 2, as shown in the state diagram of FIG. The low-temperature, low-boiling medium liquid in state A is pressurized to state B by the pump 15, and then
The high-temperature, low-boiling point medium liquid heated to state C in the first heating section 16 of the heat exchanger 9 is first supplied to the first stage two-phase flow turbine 12a 1 to reach state E 1 .
The two-phase flow turbine 12a 1 generates power corresponding to the heat drop in the state C- D 1 . The liquid in the state I1 is then supplied to the second two-phase flow turbine 12a2 , and the liquid in the state
The gas is separated into a gas in E 2 and a liquid in state I 2 , and the two-phase flow turbine 12a 2 generates power corresponding to the heat drop in states I 1 -D 2 . Then, the gas in the state E 1 is heated again to the state F by the second heating section 17 of the heat exchanger 9 and then supplied to the gas turbine 11, and the gas in the state E 2 is supplied as it is to the steam turbine 11, respectively. This gas turbine 11 generates electricity equivalent to the heat drop in the states F-G 1 and E 2 -G 2. Therefore, the turbine 11 becomes a mixed pressure turbine, and the exhaust from the turbine 11 is transferred to the condenser. 14, it becomes a liquid in state H, and this state H
The liquid is mixed with the liquid in state I 2 from the two-phase flow turbine 12a 2 to return to the liquid in state A, and the cycle repeats. Further, the two-phase flow turbine 1
2 is a single-stage two-phase flow turbine shown by reference numeral 12b1 in FIG. 3, it is also as shown in the phase diagram of FIG. is supplied to the two-phase flow turbine 12b 1 and separated into a gas in state E and a liquid in state I, and the two-phase flow turbine 12b 1 generates power corresponding to the heat drop in state C-D, and the state E The gas is heated to state F in the same manner as described above and then supplied to the gas turbine 11, which changes it to state F-
After generating electricity equivalent to the heat drop D, the liquid in state H passes through the condenser 14 and the two-phase flow turbine 12b 1
The liquid in state I that has passed through is mixed and returns to the liquid in state A, and this cycle is repeated here as well.

なお因みに前記温度T1の熱水をそのまゝ二相
流タービン発電システムに供給させる場合を第6
図に示すと、状態C′(温度T1)の熱水が二相流タ
ービンにて状態D′に膨張し、この状態C′−D′の
熱落差相当分の発電を行ない、状態I′の液体と状
態E′の蒸気とに分離され、状態E′の蒸気は必要に
応じて状態F′に加熱された上で蒸気タービンに供
給され、この蒸気タービンにて状態G′に膨張し、
この状態F′−G′の熱落差相当分の発電を行ない、
復水された状態H′の液体と状態I′の液体とが混合
されて状態A′(温度T2)の温水となり、このサイ
クルを繰り返すことになる。
Incidentally, the case where the hot water at the temperature T 1 is directly supplied to the two-phase turbine power generation system is referred to as the sixth example.
As shown in the figure, hot water in state C' (temperature T 1 ) expands to state D' in a two-phase flow turbine, generates electricity equivalent to the heat drop in state C' - D', and in state I' The steam is separated into liquid in state E′ and steam in state E′, and the steam in state E′ is heated to state F′ as necessary and then supplied to a steam turbine, where it is expanded to state G′.
Generate electricity equivalent to the heat drop in this state F′-G′,
The condensed liquid in state H' and the liquid in state I' are mixed to form hot water in state A' (temperature T 2 ), and this cycle is repeated.

以上詳述したようにこの発明によるときは、熱
貯蔵のために水を媒体液として使用し、発電のた
めには効率の高い低沸点媒体液を使用してトータ
ルフロー発電を行なわせるようにしたから、ピー
クロード発電、ならびに非定常排熱回収などを一
層効率よく実施することができる。また温水と熱
水とを併温型貯蔵タンクに貯蔵させるようにした
から、蓄積需給のアンバランスを高効率かつ単純
な構成により平滑化できると共に、熱水−低沸点
媒体液の熱交換器は、液体−液体間の熱交換であ
るために伝熱面積が小さくてすみ、その構造も簡
単であるなどの特長を有するものである。
As detailed above, according to the present invention, water is used as a liquid medium for heat storage, and a highly efficient low-boiling liquid medium is used for power generation, allowing total flow power generation to be performed. Therefore, peak load power generation and unsteady waste heat recovery can be carried out more efficiently. In addition, since hot water and hot water are stored in a co-temperature type storage tank, the unbalance between accumulated supply and demand can be smoothed out with high efficiency and a simple configuration, and the heat exchanger for hot water and low boiling point medium liquid can be , because the heat exchange is performed between liquids, the heat transfer area is small, and the structure is simple.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例構成を示すシステ
ムフロー図、第2図および第4図は各別例による
二相流タービンの構成図、第3図および第5図は
第2図および第4図に対応する作動説明図、第6
図は従来例での作動説明図である。 1……貯蔵タンク、2……温水、3……熱水、
4……移動隔壁、7……加熱部、9……熱交換
器、10……発電システム、11……気体タービ
ン、12……二相流タービン、13……発電機、
14……復水器、16,17……加熱部。
FIG. 1 is a system flow diagram showing the configuration of one embodiment of the present invention, FIGS. 2 and 4 are configuration diagrams of two-phase flow turbines according to different examples, and FIGS. Operation explanatory diagram corresponding to Fig. 4, No. 6
The figure is an explanatory diagram of the operation in a conventional example. 1...Storage tank, 2...Hot water, 3...Hot water,
4... Moving bulkhead, 7... Heating section, 9... Heat exchanger, 10 ... Power generation system, 11... Gas turbine, 12... Two-phase flow turbine, 13... Generator,
14... Condenser, 16, 17... Heating section.

Claims (1)

【特許請求の範囲】[Claims] 1 温水と熱水とをその中間比重の断熱性移動隔
壁で区分して貯蔵する貯蔵タンクと、この貯蔵タ
ンクの温水側および熱水側に連結され外部熱源に
より温水を熱水に加熱する加熱部と、二相流ター
ビンおよび気体タービンを含み低沸点媒体液によ
り作動される発電システムと、前記貯蔵タンクの
熱水側および温水側に連結され熱水と前記発電シ
ステムの低沸点媒体液とを熱交換させる熱交換器
とを備え、この熱交換器は、低温低沸点媒体液を
加熱し高温低沸点媒体液として前記二相流タービ
ンに送る第1加熱部と、二相流タービンで得られ
た気体を加熱して気体タービンに送る第2加熱部
とから構成されていることを特徴とする熱水貯蔵
発電装置。
1. A storage tank that stores hot water and hot water separated by an insulating movable partition wall with an intermediate specific gravity, and a heating section that is connected to the hot water side and the hot water side of this storage tank and heats the hot water to hot water using an external heat source. a power generation system operated by a low-boiling medium liquid including a two-phase flow turbine and a gas turbine; and a power generation system connected to the hot water side and the hot water side of the storage tank for heating the hot water and the low-boiling medium liquid of the power generation system. a first heating section that heats a low-temperature, low-boiling point medium liquid and sends it to the two-phase flow turbine as a high-temperature, low-boiling point medium liquid; A hot water storage power generation device comprising a second heating section that heats gas and sends it to a gas turbine.
JP18498682A 1982-10-21 1982-10-21 Hot water storage generating apparatus Granted JPS5976130A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18498682A JPS5976130A (en) 1982-10-21 1982-10-21 Hot water storage generating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18498682A JPS5976130A (en) 1982-10-21 1982-10-21 Hot water storage generating apparatus

Publications (2)

Publication Number Publication Date
JPS5976130A JPS5976130A (en) 1984-05-01
JPS637243B2 true JPS637243B2 (en) 1988-02-16

Family

ID=16162793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18498682A Granted JPS5976130A (en) 1982-10-21 1982-10-21 Hot water storage generating apparatus

Country Status (1)

Country Link
JP (1) JPS5976130A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5512219A (en) * 1978-07-12 1980-01-28 Toshiba Corp Waste heat using system in electrical machine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5512219A (en) * 1978-07-12 1980-01-28 Toshiba Corp Waste heat using system in electrical machine

Also Published As

Publication number Publication date
JPS5976130A (en) 1984-05-01

Similar Documents

Publication Publication Date Title
JP4607116B2 (en) Method and apparatus for obtaining heat from multiple heat sources
US4838027A (en) Power cycle having a working fluid comprising a mixture of substances
Smith Development of the trilateral flash cycle system: Part 1: Fundamental considerations
EP2275649B1 (en) Thermoelectric energy storage system with an intermediate storage tank and method for storing thermoelectric energy
US4009575A (en) Multi-use absorption/regeneration power cycle
EP2241737B1 (en) Thermoelectric energy storage system having two thermal baths and method for storing thermoelectric energy
EP2157317B2 (en) Thermoelectric energy storage system and method for storing thermoelectric energy
US4030303A (en) Waste heat regenerating system
RU95358U1 (en) DEVICE FOR IMPLEMENTING A THERMODYNAMIC CYCLE PROCESS
US8266908B2 (en) Multi-heat source power plant
KR102263742B1 (en) Thermodynamic cycle apparatus and method
WO2011045282A2 (en) Thermoelectric energy storage system having an internal heat exchanger and method for storing thermoelectric energy
JP2015518935A (en) Pressure power unit
CN108731303B (en) Heat-pump-type replaces energy storage for power supply method and device
JPS61149507A (en) Heat recovery device
CN110118147A (en) A method of converting liquid position for expansion work can export technique function
CN107288834A (en) A kind of solar energy overlapping Rankine cycle electricity generation system with different Heat release modes
US4393657A (en) Method for recovering waste heat as motive power
JPS637243B2 (en)
Kaplan Organic rankine cycle configurations
US4691523A (en) Thermodynamic process for a practical approach to the Carnot cycle
WO1991007573A2 (en) Heat conversion into mechanical work through absorption-desorption
JPS622128B2 (en)
WO2002101206A1 (en) Stratified vapor generator
CN219081667U (en) Carnot battery energy storage and CO2 super-transcritical power cycle combined power generation system