JPS6372117A - X-ray exposure device - Google Patents

X-ray exposure device

Info

Publication number
JPS6372117A
JPS6372117A JP61215720A JP21572086A JPS6372117A JP S6372117 A JPS6372117 A JP S6372117A JP 61215720 A JP61215720 A JP 61215720A JP 21572086 A JP21572086 A JP 21572086A JP S6372117 A JPS6372117 A JP S6372117A
Authority
JP
Japan
Prior art keywords
ray
wafer
window
exposure
beryllium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61215720A
Other languages
Japanese (ja)
Inventor
Shigeo Moriyama
森山 茂夫
Takeshi Kimura
剛 木村
Shinji Kuniyoshi
伸治 国吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61215720A priority Critical patent/JPS6372117A/en
Publication of JPS6372117A publication Critical patent/JPS6372117A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70808Construction details, e.g. housing, load-lock, seals or windows for passing light in or out of apparatus

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To allow an exposure chamber to have an atmospheric pressure without destroying the vacuum of an X-ray source by composing a mechanism so that it may apply X-rays nearly uniformly to a part of a wafer to be irradiated with the X-ray with the movement of an X-ray transmission aperture or with X-ray scanning interlinked with the movement of the X-ray transmission aperture. CONSTITUTION:A beryllium aperture 9 has a structure where a flat opening 10 is covered by a beryllium film 11 of about 20mum thickness and a beam 6 is introduced into an atmospheric exposure part having a mask 7 and a wafer 8, thereby keeping a vacuum inside a vacuum container 3. Once the beryllium aperture 9 is moved with the movement interlinked with oscillation scanning of the beam 6, the whole pattern region of the mask 7 can be irradiated with the beam so as to expose the wafer 8. Even the beryllium thin film may withstand a differential pressure developed between a vacuum state and an atmospheric pressure by making each opening 10 of the beryllium aperture 9 smaller. As a result, even though an exposure chamber is at the atmospheric pressure, a high X-ray exposure intensity of illumination can be obtained and a highly practical X-ray exposure device can be formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体集積回路のパターンを転写するX線露光
装置に係り、特にシンクロトロン放射光をX線源とする
場合に好適なX線露光装置に関する0 〔従来の技術〕 半導体集積回路の製造工程の1つに、回路パターンをウ
ェハ上に形成する、いわゆるリソグラフィ一工程があり
、光学的な方法では解像できないサブミクロン領域の微
細な回路パターンの形成のためには、より波長の短かい
X線露光法が用いられる。露光原理は、マスクとウェハ
を近接させておいてマスク上からX線を照射する極めて
簡単なものであるが、高いスループットを得るためには
強力なX線源が必要となる。そのため、シンクロトロン
放射光を光源とするX線露光装置が考案されている。(
例えば、特開昭59−69927号参照) 〔発明が解決しようとする問題点〕 シンクトロン放射光を発生するリングは超高真空内で作
動させる必要があるが、逆にマスクは温度安定化のため
気体中にあることが望まれる。そのため従来は、上記リ
ング部とマスクおよびウェハが置かれる露光部をべIJ
 IJウム膜で真空的に仕切り、露光室内には数十To
rrのHeガスを流していた。べIJ IJウムはX線
を透過しやすい材料であるが、露光に用いられる10〜
20λ程度の波長を透過するためには膜厚は20μm程
度以下であることが必要である。他方、従来装置におけ
る上記ベリリウム窓の開口部の大きさは通常507〜7
0φ程度であり、これは回路パターンの露光に必要な露
光面積から決定される。この開口部の面積に対して膜厚
20μmでは到底大気圧に耐えることができず、やむを
得ず従来は数+Torrの圧力差として使用していた。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an X-ray exposure apparatus for transferring patterns of semiconductor integrated circuits, and is particularly suitable for X-ray exposure when synchrotron radiation is used as an X-ray source. 0 Related to Equipment [Prior Art] One of the manufacturing processes for semiconductor integrated circuits is a so-called lithography process in which a circuit pattern is formed on a wafer. To form a pattern, an X-ray exposure method with a shorter wavelength is used. The exposure principle is extremely simple, in which the mask and wafer are placed close to each other and X-rays are irradiated from above the mask, but in order to obtain high throughput, a powerful X-ray source is required. Therefore, an X-ray exposure apparatus using synchrotron radiation as a light source has been devised. (
(For example, see Japanese Patent Application Laid-open No. 59-69927.) [Problems to be solved by the invention] The ring that generates synchtron radiation must be operated in an ultra-high vacuum, but on the other hand, the mask requires temperature stabilization. Therefore, it is desirable that it be in gas. Therefore, conventionally, the ring part and the exposure part where the mask and wafer are placed are connected to the IJ.
The exposure chamber is vacuum-separated with an IJ film, and there are several tens of tons of space inside the exposure chamber.
He gas of rr was flowing. Beam IJ Ijium is a material that easily transmits X-rays, but it is
In order to transmit a wavelength of about 20λ, the film thickness needs to be about 20 μm or less. On the other hand, the size of the opening of the beryllium window in the conventional device is usually 507 to 7
It is approximately 0φ, and this is determined from the exposure area required for exposing the circuit pattern. With a film thickness of 20 μm for the area of this opening, it would be impossible to withstand atmospheric pressure, and conventionally it was unavoidable to use a pressure difference of several Torr.

上記のごとく、従来はべIJ IJウム窓の制約から露
光室を大気圧とすることができなかったが、前述したよ
うにマスクの温度制御、ウェハの真空チャック機構の適
用性およびウェハ交換時のハンドリングの問題などを考
慮した場合には、露光室を大気圧にすることが不可欠と
なる。
As mentioned above, in the past, it was not possible to maintain the exposure chamber at atmospheric pressure due to the limitations of the wafer window. When considering handling issues, it is essential to maintain the exposure chamber at atmospheric pressure.

本発明は上記問題を解決するためになされたものであり
、X線源の真空度を損うことなく露光室を大気圧にし得
る技術を提供するものである。
The present invention has been made to solve the above-mentioned problems, and provides a technique that can bring the exposure chamber to atmospheric pressure without impairing the degree of vacuum of the X-ray source.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の上記目的はX線源と、X純マスクおよびウェハ
を有する露光部と、該X線源と露光部を真空的に遮断し
てX線を透過するX線透過窓を有するX線露光装置にお
いて、上記X線透過窓はX純マスク及びウェハにX線が
照射される部分よりも小さい面積のX線透過部を有し、
X線透過窓の動き又はX線の走査とX線透過窓の動きに
よりウェハのXIfMが照射されるべき部分に略均等に
X線を照射するように構成することにより達成される。
The above-mentioned object of the present invention is to provide an X-ray exposure system having an X-ray source, an exposure section having an X-pure mask and a wafer, and an X-ray transmission window that vacuum-blocks the X-ray source and the exposure section and transmits the X-rays. In the apparatus, the X-ray transmitting window has an X-ray transmitting portion having an area smaller than a portion where the X-pure mask and the wafer are irradiated with X-rays;
This is achieved by configuring the XIfM irradiation area of the wafer to be approximately uniformly irradiated with X-rays by moving the X-ray transmission window or by scanning the X-rays and moving the X-ray transmission window.

本発明の好ましい実施襲様によればX線透過窓はX線ビ
ームの形状に合うベリリウムのX緑透過部を有し、X線
ビームの走査に連動してX線透過窓を移動するように構
成され、又はX線透過窓は〔作用〕 上記の構成によればX線のXiマスクおよびウェハへの
露光に影響を与えることなくX線透過部の面積を大気圧
との差圧に耐え得るまで小さくすることができるので、
X、B源の真空度を損うことなく露光部を大気圧になし
得る。
According to a preferred embodiment of the present invention, the X-ray transparent window has an X-green transparent portion made of beryllium that matches the shape of the X-ray beam, and the X-ray transparent window is moved in conjunction with the scanning of the X-ray beam. [Function] According to the above structure, the area of the X-ray transmitting part can withstand the pressure difference between the atmospheric pressure and the atmospheric pressure without affecting the exposure of X-rays to the Xi mask and wafer. It can be made as small as
The exposure area can be brought to atmospheric pressure without impairing the degree of vacuum of the X and B sources.

〔実施例〕〔Example〕

以下、本発明を実施例を用いて詳細に説明する。 Hereinafter, the present invention will be explained in detail using examples.

第1図に本発明の一実施例を示す。リング部から放射さ
れたX線は偏平な帯状ビーム2となって真空容器3内を
進行し、反射鏡4に入射する。反射鏡4は紙面に垂直な
回転軸5のまわりを回転振動し、反射ビーム6をマスク
7とウェハ8に対して振動的に走査する。べIJ IJ
ウム窓9は第2図に示すごとく偏平な開口部10を厚さ
20μm程度のべ+71Jウム膜11でおおった構造を
しており、真空容器3の真空を保ちながらビーム6をマ
スク7、ウェハ8が置かれている大気圧露光部にまで導
く。上記偏平開口部10の形状はシンクロトロンビーム
6の軸上断面形状と一致させである。上記べIJ ll
lラム9の材料自体は十分に厚いべIJ IJウム板で
も良いし、X線を遮光できる材料ならば何でも良い。
FIG. 1 shows an embodiment of the present invention. The X-rays emitted from the ring section become a flat, band-shaped beam 2 that travels inside the vacuum container 3 and enters a reflecting mirror 4. The reflecting mirror 4 rotates and vibrates around a rotation axis 5 perpendicular to the plane of the drawing, and vibrates and scans the reflected beam 6 over the mask 7 and wafer 8. Be IJ IJ
As shown in FIG. 2, the wafer window 9 has a structure in which a flat opening 10 is covered with a 71J wafer film 11 having a thickness of approximately 20 μm, and the beam 6 is directed through the mask 7 and the wafer while maintaining the vacuum of the vacuum chamber 3. 8 is placed in the atmospheric pressure exposure section. The shape of the flat aperture 10 is made to match the axial cross-sectional shape of the synchrotron beam 6. The above IJ ll
The material of the ram 9 itself may be a sufficiently thick aluminum plate, or any material that can block X-rays may be used.

上記べIJ IJウム窓9をビーム6の振動走査に連動
させて動かせば、マスク7のパターン領域全体を照射し
、ウェハ8を露光することができる。べIJ IJウム
窓9の上下動は反射鏡4の回転と連動させれば良く、機
械的連結のほかに、電気信号を用いて連動させても良い
。真空を保ちながらべIJ 11ウム窓9の上下動を行
うため、べIJ IJウム窓9と真空容器3との間はベ
ローズ12で結ぶ。
By moving the beam window 9 in conjunction with the vibration scanning of the beam 6, the entire pattern area of the mask 7 can be irradiated and the wafer 8 can be exposed. The vertical movement of the window 9 may be linked with the rotation of the reflecting mirror 4, and may be linked using electrical signals in addition to mechanical linkage. In order to move the bellows window 9 up and down while maintaining a vacuum, the bellows 12 is connected between the bellows window 9 and the vacuum vessel 3.

上記のような構成とすることにより、開口部の小さな窓
を用いながら広い露光面積を得ることができ、結局、膜
厚の薄い窓としながら大きな差圧に耐えることができる
。具体例を挙げれば、開口部10のスリット幅を0.7
5mm、ベリリウム膜厚を20人mとすれば1気圧の差
圧に耐えることができる。このべIJ IJウムの膜厚
20μmに対するX線の透過率は波長によっても異るが
、波長12人の場合には透過率は約15%程度となる。
With the above configuration, it is possible to obtain a wide exposure area while using a window with a small opening, and as a result, it is possible to withstand a large differential pressure even though the window has a thin film thickness. To give a specific example, the slit width of the opening 10 is 0.7
If the thickness of the beryllium film is 5 mm and the thickness of the beryllium film is 20 m, it can withstand a pressure difference of 1 atm. The transmittance of X-rays for a film thickness of 20 μm varies depending on the wavelength, but in the case of 12 wavelengths, the transmittance is about 15%.

べIJ IJウム膜の厚さをさらに薄くしてX線の透過
率を向上し得る発明について以下説明する。
An invention that can improve the transmittance of X-rays by further reducing the thickness of the film will be described below.

第3図に示すごとく、ベリリウム窓のスリット状開口部
を1つの開口とせず、さらに小さな傾斜した小スリット
12を規則正しく多数配列し、全体として1つの偏平状
の窓と見えるように形成する。上記小スリット群の裏か
らX線ビームを当てながらマスク7とウェハ8に対して
矢印13の方向に走査することにより、あたかも単一の
スリットで走査した場合と同様にウェハ8を露光するこ
とができる。
As shown in FIG. 3, the slit-shaped opening of the beryllium window is not made into one opening, but a large number of smaller slanted slits 12 are arranged regularly, and the whole is formed to look like one flat window. By scanning the mask 7 and wafer 8 in the direction of the arrow 13 while applying the X-ray beam from behind the small slit group, the wafer 8 can be exposed in the same way as when scanning with a single slit. can.

上記のごとく1つの開口部の面積を小さくすることによ
り、ベリリウム膜の厚みを小さくしても強度を保つこと
ができ、X線の透過率を向上させることができる。例え
ば小スリット12の幅dをtooamとした場合、1気
圧に耐えるためのべIJ IJウム膜の厚みはわずか2
〜3μmで足りる。
By reducing the area of one opening as described above, strength can be maintained even if the thickness of the beryllium film is reduced, and X-ray transmittance can be improved. For example, if the width d of the small slit 12 is tooam, the thickness of the base film to withstand 1 atm is only 2
~3 μm is sufficient.

この厚みにおけるべIJ IJウム膜の波長12人に対
する透過率は80%以上であり、極めて損失が少い露光
光学系を実現できる。
The transmittance of the aluminum film at this thickness for 12 wavelengths is 80% or more, and an exposure optical system with extremely low loss can be realized.

小スリット12の形状および配列ピッチなどは、ウェハ
に照射される積算露光量のムラの許容量によって決める
。べIJ IJウム窓の走査速度が等速である場合には
、走介方向13における各小スリット12の長さの和が
等しくなるように、小スリット12の平面形状を決めれ
ば良い。例えば夏型なとでも容易に実現できる。
The shape, arrangement pitch, etc. of the small slits 12 are determined depending on the allowable amount of unevenness in the cumulative exposure amount applied to the wafer. When the scanning speed of the window is constant, the planar shape of the small slits 12 may be determined so that the sum of the lengths of the small slits 12 in the scanning direction 13 is equal. For example, it can be easily realized even if it is a summer style.

本発明のさらに他の実施例を第4図により説明する。べ
IJ IJウム窓9は第4図にその半断面を示すごとく
、多数の開口部10に厚さ10〜2゜μm程度のべIJ
 IJウム膜11を貼りつけた構造をしており、この開
口部10でX線を透過させると同時に、真空的には完全
に遮断する働らきをする。
Still another embodiment of the present invention will be described with reference to FIG. As shown in the half cross-section of FIG.
It has a structure in which an IJ film 11 is pasted, and this opening 10 allows X-rays to pass therethrough, while at the same time having the function of completely blocking the vacuum.

窓9と真空容器3の間はベローズ12で結合されている
。上記窓9を固定したままX線ビーム6を走査させて露
光した場合には、窓9の遮光部分の影がウェハ8上に転
写されてしまうが、本発明では窓9を高速に振動させ、
窓9の遮光部の影を平均的に分散させる。その結果、ウ
ェハ8上には照度ムラなく、マスク7のパターンが転写
されることになる。
The window 9 and the vacuum container 3 are connected by a bellows 12. If exposure is performed by scanning the X-ray beam 6 with the window 9 fixed, the shadow of the light-shielding portion of the window 9 will be transferred onto the wafer 8, but in the present invention, the window 9 is vibrated at high speed,
The shadow of the light shielding part of the window 9 is evenly dispersed. As a result, the pattern of the mask 7 is transferred onto the wafer 8 without uneven illumination.

上記のようにべIJ IJウム窓9の各開口部10を小
さなものとすることにより、薄いベリリウム膜でも大気
圧との差圧に耐えることができる。例えば、開孔を直径
100μmの円とした場合、ベリリウム膜の厚さは2〜
3μmもあれば強度的には十分である。この膜厚では波
長10〜12人のX線を80%以上透過する。その結果
、露光室を大気圧としながら、高いX線露光照度が得ら
れ、きわめて実用性の高いX線露光装置が実現できる。
By making each opening 10 of the beryllium window 9 small as described above, even a thin beryllium film can withstand the pressure difference from atmospheric pressure. For example, if the opening is a circle with a diameter of 100 μm, the thickness of the beryllium film is 2 to
A thickness of 3 μm is sufficient for strength. With this film thickness, more than 80% of X-rays with wavelengths of 10 to 12 people are transmitted. As a result, high X-ray exposure illuminance can be obtained while keeping the exposure chamber at atmospheric pressure, making it possible to realize an extremely practical X-ray exposure apparatus.

小さな開口10の形状および配列ピッチは窓9全体の振
動形態を考慮して決める必要がある。すなわち、透過し
たX線の積算量がどの場所でも均一となるようにすれば
良いが、配列ピッチに対して振動振幅が十分に大きい、
例えば10ピッチ程度あればほとんど照度ムラはなくな
る。振動の形態は上下、左右方向に動かす必要があり、
例えば円を描くように回転振動をさせても良い。またラ
ンダム振動としても良い。
The shape and arrangement pitch of the small openings 10 must be determined in consideration of the vibration form of the window 9 as a whole. In other words, the cumulative amount of transmitted X-rays should be uniform at all locations, but the vibration amplitude may be sufficiently large relative to the array pitch.
For example, if there are about 10 pitches, there will be almost no unevenness in illuminance. The form of vibration needs to move vertically and horizontally.
For example, rotational vibration may be made in a circular manner. Alternatively, random vibration may be used.

べIJ IJウム窓9の製作法には種々の方法がある。There are various methods of manufacturing the window 9.

十分に厚いべIJ IJウム板を開口部のみエツチング
して、わずかな厚みが残るようにしても良いし、貫通さ
せておいてべIJ IJウム薄膜を接着させても良い。
A sufficiently thick aluminum plate may be etched only at the opening so that a slight thickness remains, or it may be penetrated and the aluminum thin film bonded thereto.

後者の場合、大気圧側に薄膜が置かれるようにセットす
れば、接着部の引張強度はほとんど必要とされない。
In the latter case, if the thin film is placed on the atmospheric pressure side, the tensile strength of the bonded portion is hardly required.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によればマスクとウェハを大
気中において露光することが可能となり、X線透過部を
小さくすることが可能であるためX線透過部の部材を薄
くすることが可能であるので高いX線の透過率を得るこ
とができる。
As described above, according to the present invention, it is possible to expose the mask and wafer in the atmosphere, and the X-ray transmitting part can be made smaller, so the members of the X-ray transmitting part can be made thinner. Therefore, high X-ray transmittance can be obtained.

その結果、高いスループットを得られると共にマスクの
温度制御が容易に行え、またウェハの真空チャッキング
も可能となる。ざらにウェハの交換も大気中のみですむ
ため、装置構成も簡略化できるなど、多くの利点を生み
出す。
As a result, high throughput can be obtained, mask temperature can be easily controlled, and wafers can be vacuum chucked. Since wafers can only be exchanged in the atmosphere, the system has many advantages, such as simplifying the equipment configuration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原理を示すX線露光装置の側面図、第
2図は本発明の一実施例を示すべIJ IJウム窓の正
面図と側面図、第3図は本発明の他の実施例を示す小ス
リットを多数配列したベリリウム窓の正面図、第4図は
本発明のさらに他の実施例を示すべIJ IJウム窓の
斜視図である。 l・・・シンクロトロン・リング、2・り・X線ビーム
4・・・反射鏡、7・・・マスク、8・・・ウェハ、9
・・・ベリリウム窓、12・・・ベローズ、11・・・
ベリリウム膜。 )、
FIG. 1 is a side view of an X-ray exposure apparatus showing the principle of the present invention, FIG. 2 is a front view and side view of a beam window showing an embodiment of the invention, and FIG. FIG. 4 is a front view of a beryllium window in which a large number of small slits are arranged, showing an embodiment of the present invention, and FIG. 4 is a perspective view of a beryllium window showing still another embodiment of the present invention. l... Synchrotron ring, 2... X-ray beam 4... Reflector, 7... Mask, 8... Wafer, 9
... Beryllium window, 12... Bellows, 11...
Beryllium film. ),

Claims (1)

【特許請求の範囲】 1、X線源と、X線マスクおよびウェハを有する露光部
と、該X線源と露光部を真空的に遮断してX線を透過す
るX線透過窓を有するX線露光装置において、上記X線
透過窓はX線マスク及びウェハにX線が照射される部分
よりも小さい面積のX線透過部を有し、X線透過窓の動
き又はX線の走査とX線透過窓の動きによりウェハのX
線が照射されるべき部分に略均等にX線を照射するよう
に構成したことを特徴とするX線露光装置。 2、特許請求の範囲第1項記載のものにおいて、上記X
線透過窓はX線のビーム形状に合うX線透過部を有し、
X線のビームの走査に連動してX線透過窓を移動させる
ように構成したことを特徴とするX線露光装置。 3、特許請求の範囲第2項記載のものにおいて、上記X
線透過窓のX線透過部はX線透過窓の移動方向に対して
斜めに構成された複数のX線透過開口部から構成された
ことを特徴とするX線露光装置。 4、特許請求の範囲第1項記載のものにおいて、上記X
線透過窓は複数のX線透過開口部を有し、該X線透過窓
はX線進行方向と直交する面内に振動するように構成さ
れたことを特徴とするX線露光装置。
[Claims] 1. An X-ray device having an X-ray source, an exposure section having an X-ray mask and a wafer, and an X-ray transmission window that vacuum-blocks the X-ray source and the exposure section and transmits the X-rays. In the radiation exposure apparatus, the X-ray transmission window has an X-ray transmission part with an area smaller than the area where the X-ray mask and the wafer are irradiated with X-rays, and the movement of the X-ray transmission window or the scanning of X-rays and the Due to the movement of the line-transmitting window, the X of the wafer
An X-ray exposure apparatus characterized in that the X-ray exposure apparatus is configured to irradiate X-rays substantially uniformly onto a portion to be irradiated with X-rays. 2. In the thing described in claim 1, the above-mentioned X
The radiation-transmitting window has an X-ray transmission part that matches the shape of the X-ray beam,
An X-ray exposure apparatus characterized in that an X-ray transmission window is configured to move in conjunction with scanning of an X-ray beam. 3. In the thing described in claim 2, the above-mentioned X
An X-ray exposure apparatus characterized in that the X-ray transmitting section of the X-ray transmitting window is composed of a plurality of X-ray transmitting openings arranged obliquely with respect to the moving direction of the X-ray transmitting window. 4. In the thing described in claim 1, the above-mentioned X
An X-ray exposure apparatus, characterized in that the radiation transmission window has a plurality of X-ray transmission openings, and the X-ray transmission window is configured to vibrate in a plane perpendicular to the direction in which X-rays travel.
JP61215720A 1986-09-16 1986-09-16 X-ray exposure device Pending JPS6372117A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61215720A JPS6372117A (en) 1986-09-16 1986-09-16 X-ray exposure device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61215720A JPS6372117A (en) 1986-09-16 1986-09-16 X-ray exposure device

Publications (1)

Publication Number Publication Date
JPS6372117A true JPS6372117A (en) 1988-04-01

Family

ID=16677061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61215720A Pending JPS6372117A (en) 1986-09-16 1986-09-16 X-ray exposure device

Country Status (1)

Country Link
JP (1) JPS6372117A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011212706A (en) * 2010-03-31 2011-10-27 Ngk Insulators Ltd Ultrathin film beryllium foil and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011212706A (en) * 2010-03-31 2011-10-27 Ngk Insulators Ltd Ultrathin film beryllium foil and method for producing the same

Similar Documents

Publication Publication Date Title
US6038279A (en) X-ray generating device, and exposure apparatus and semiconductor device production method using the X-ray generating device
JPH0582417A (en) Reduced projection type x-ray lithography device
JPS63283022A (en) Method and apparatus for changing projection scale of x-ray lithography
KR920001171B1 (en) X-ray lithographic system
JPS6372117A (en) X-ray exposure device
US5548625A (en) Method for parallel multiple field processing in X-ray lithography
JPH07254539A (en) Electron beam exposure device
JPH0353200A (en) Production of x-ray exposing device
JPS62150720A (en) Surface treatment equipment applying radiation light
JPS62150718A (en) Surface treatment equipment using radiant-light
JP3618853B2 (en) X-ray generator, and exposure apparatus and device production method using the same
JPH1138193A (en) X-ray illumination optical system and x-ray exposure device
JPH0570296B2 (en)
JPS60240125A (en) Exposing method
JPS5915380B2 (en) Fine pattern transfer device
US4569068A (en) X-Ray Lithography apparatus
JP2697264B2 (en) Exposure processing equipment
JPS61168917A (en) Exposing method and exposing apparatus
JPH10289867A (en) X-ray exposure device and manufacture of the device
JPH0834132B2 (en) Radiation transmitting window and method of attaching radiation transmitting thin film in radiation transmitting window
JPH04230900A (en) Irradiation device of synchrotron radiation and x-ray aligner
JPH02234498A (en) Scanning device for synchrotron radiation
JP3058603B2 (en) Beamline for X-ray lithography
JPH04112523A (en) Transcription of fine pattern by synchrotron radiation
JPH05337671A (en) Laser beam machine