JPS637205B2 - - Google Patents

Info

Publication number
JPS637205B2
JPS637205B2 JP55036371A JP3637180A JPS637205B2 JP S637205 B2 JPS637205 B2 JP S637205B2 JP 55036371 A JP55036371 A JP 55036371A JP 3637180 A JP3637180 A JP 3637180A JP S637205 B2 JPS637205 B2 JP S637205B2
Authority
JP
Japan
Prior art keywords
weight
hydrogenated
polyhydroxybutadiene
liquid rubber
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55036371A
Other languages
Japanese (ja)
Other versions
JPS56133327A (en
Inventor
Norimoto Moriwaki
Kyoshi Hani
Shigeru Kubota
Shohei Eto
Akira Fukami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3637180A priority Critical patent/JPS56133327A/en
Publication of JPS56133327A publication Critical patent/JPS56133327A/en
Publication of JPS637205B2 publication Critical patent/JPS637205B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Polyurethanes Or Polyureas (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は、䟋えば泚型や含浞あるいはコヌテむ
ングが容易にでき、しかも硬化埌は優れたゎム匟
性ず高床の電気絶瞁性および難燃性を有する液状
ゎム難燃性組成物に関するものである。 埓来、モヌルド倉成噚や倉圧噚などの電気機噚
においお攟電が起るず、絶瞁物ずしお䜿甚された
有機物が分解しお炭玠質の析出物を生じ、これが
逐には䜎抵抗導電路を圢成しお電気機噚を早期に
砎壊させる原因ずな぀おいる。 たた、これらの電気機噚は、高枩、高湿曎には
塵埃の倚い雰囲気等皮々の環境䞋で長期的に䜿甚
されるのが通垞であるため、トラツキング砎壊を
起す事もある。さらには突発の短絡事故のアヌク
から燃焌事故を起すこずもある。 埓぀お、絶瞁材料ずしお䜿甚されるモヌルド材
料は、䞊述したような事故を防止するため、高床
の電気絶瞁性を有し、か぀耐アヌク性、耐トラツ
キング性、難燃性を有するこずが芁求されおい
る。 これらの芁求特性を満足させる方法ずしおは通
垞䜿甚されるモヌルド材料、䟋えば゚チレンプロ
ピレンタヌポリマヌ、ブチルゎム等の匟性材料、
゚ポキシ暹脂、䞍飜和ポリ゚ステル暹脂等の熱硬
化性暹脂に難燃性充填剀ずしお氎和アルミナ
Al2O3、BH2Oを混入させた組成物を甚いる方
法が公知である。さらには、ハロゲン系の添加型
難燃剀を䜵甚する組成物なども公知である。しか
しこれらの方法は氎和アルミナや難燃剀を倚量に
配合しなければ効果が期埅できないばかりでな
く、電気特性の著しい䜎䞋をきたすおそれがあ
る。 たた、䞊述した゚ポキシ暹脂や䞍飜和ポリ゚ス
テル暹脂は液状で成圢加工ができる䜜業性の優れ
たモヌルド材料であるが、硬化物の耐アヌク性や
耐トラツキング性が䜎く、しかも耐加氎分解性が
悪いため屋倖での䜿甚や高枩高湿の環境䞋での
䜿甚は制限されおいるのが珟状である。䞀方、匟
性材料であるEPTゎムやブチルゎムは高床の絶
瞁性ず皮々の環境に察しお安定であるため奜適な
モヌルド材料ず蚀える。 しかし、EPTゎムやブチルゎムは非垞に分子
量が倧きく流動性が悪いため、適甚に際し高枩、
高圧を必芁ずし、圧瞮成圢、抌出成圢、トランス
フアヌ成圢法等によ぀お電気機噚の補造を行なわ
なければならない。 䞊蚘のような成圢方法で電気機噚の補造を行な
぀た堎合、高枩、高圧による埋蟌物の倉圢やズレ
が起぀たり、たよ、ゎムの流動性が悪いため、コ
むルの局間や䞀次コむルず二次コむルなどの絶瞁
スペヌスにゎムが完党に泚入されずに絶瞁䞍良を
起すこずが倚い。 これらの絶瞁䞍良を防止する目的で埓来は成圢
前に埋蟌物の圧力に察する補匷や充分な絶瞁凊理
を斜こさなければならない欠点を有しおいた。 さらに高枩、高圧でモヌルドを行なうため高䟡
な装眮ず金型を必芁ずし、゚ネルギヌの消費量も
倚くなるため補造プロセス䞊奜たしい方法ずは蚀
えなか぀た。 埌述の本発明に甚いる液状ゎムは䞻剀ずしおポ
リヒドロキシブタゞ゚ン重合䜓の氎玠添加物の硬
化剀ずしお䞀般匏(2)で瀺される化合物を甚いるた
め、分子鎖を延長硬化反応させる結合はりレ
タン結合
The present invention relates to a liquid rubber flame-retardant composition that can be easily cast, impregnated, or coated, and has excellent rubber elasticity, high electrical insulation properties, and flame retardancy after curing. Conventionally, when electrical discharge occurs in electrical equipment such as molded transformers and transformers, organic materials used as insulators decompose and form carbonaceous precipitates, which in turn form low-resistance conductive paths. This causes premature destruction of electrical equipment. Furthermore, since these electrical devices are normally used for long periods of time in various environments such as high temperature, high humidity, and dusty atmospheres, tracking failure may occur. Furthermore, a combustion accident may occur from an arc caused by a sudden short circuit accident. Therefore, molding materials used as insulating materials are required to have a high degree of electrical insulation, as well as arc resistance, tracking resistance, and flame retardancy in order to prevent accidents such as those mentioned above. ing. As a method to satisfy these required characteristics, commonly used molding materials such as ethylene propylene terpolymer, elastic materials such as butyl rubber,
A method is known that uses a composition in which hydrated alumina (Al 2 O 3 , BH 2 O) is mixed as a flame-retardant filler into a thermosetting resin such as an epoxy resin or an unsaturated polyester resin. Furthermore, compositions that use halogen-based additive flame retardants are also known. However, these methods not only cannot be expected to be effective unless a large amount of hydrated alumina or flame retardant is blended, but also may cause a significant deterioration of electrical properties. In addition, the above-mentioned epoxy resins and unsaturated polyester resins are liquid molding materials that can be molded and have excellent workability, but the cured products have low arc resistance and tracking resistance, as well as poor hydrolysis resistance. Currently, there are restrictions on use outdoors and in environments with high temperatures and humidity. On the other hand, EPT rubber and butyl rubber, which are elastic materials, are suitable molding materials because they have a high degree of insulation and are stable in various environments. However, EPT rubber and butyl rubber have very large molecular weights and poor fluidity, so they cannot be used at high temperatures or
Electrical equipment requires high pressure and must be manufactured by compression molding, extrusion molding, transfer molding, etc. When manufacturing electrical equipment using the above-mentioned molding method, the embedded material may be deformed or misaligned due to high temperatures and pressures, and the fluidity of the rubber may be poor, causing gaps between the coil layers and the primary coil. In many cases, rubber is not completely injected into the insulation space of the secondary coil, etc., resulting in insulation failure. In order to prevent these insulation defects, conventional moldings have had the disadvantage of requiring reinforcement against the pressure of the embedded material and sufficient insulation treatment before molding. Furthermore, since molding is performed at high temperature and high pressure, expensive equipment and molds are required, and energy consumption is also large, so this method cannot be said to be preferable in terms of the manufacturing process. The liquid rubber used in the present invention, which will be described later, uses a compound represented by the general formula (2) as a curing agent for hydrogenated polyhydroxybutadiene polymer as a main ingredient, so the bond that extends the molecular chain (curing reaction) is a urethane bond.

【匏】で䞻鎖の骚栌はメチレ ン鎖で぀ながるポリオレフむン構造ずなる。 ただし、R1R2R3は䜎玚アルキル基を瀺
しは〜の敎数を瀺す。 このようなポリオレフむンの難燃化は、通垞酞
化アンチモンや有機ハロゲン系化合物やリン酞゚
ステル化合物を添加する方法や、暹脂に塩化ビニ
ルをブレンドもしくは共重合させる方法がずられ
おいる。 しかし、これらの方法は酞化アンチモンやリン
酞゚ステル化合物自䜓が有毒であるずか、燃焌時
にハロゲス系ガスを発生するずか、難燃剀の皮類
や配合量によ぀お、電気特性や機械特性を䜎䞋さ
せるなどの問題を含んでいる。 たた、別の難燃化方法ずしお、結晶氎を含んだ
無機化合物を充填させる方法があるが、この堎合
十分な難燃性を埗るためには盞圓量の無機化合物
を混入しなければならないため、暹脂の機械的性
質が著しく䜎䞋する。したが぀お、ポリオレフむ
ン暹脂の難燃化は甚途によ぀お前者および埌者の
難燃化方法が適宜ずされおいるが、ただただ倚く
の問題を残しおいる。 このように、埓来液状ゎムに察しおあくたで䜎
粘床ずポツトラむフの長いこずが芁求される䞀方
難燃剀の毒性や暹脂の物性䜎䞋が問題ずな぀おお
り、適正な難燃化方法が確立されおいないのが実
情である。 本発明は、䞊蚘欠点に鑑みなされたもので、高
枩、高圧を必芁ずしない真空泚型や含浞プロセス
によ぀おあらゆる電気機噚の補造ができ、しかも
硬化埌は極めおすぐれた匟性を有し、さらには難
燃性、耐アヌク性、耐トラツキング性のすぐれた
液状ゎム難燃性組成物を埗るため鋭意研究を重ね
た結果、本発明を完成するに到぀たのである。 すなわち本発明の骚子は、ポリヒドロキシブタ
ゞ゚ン重合䜓の氎玠添加物ずビスヒドロキシ化合
物の混合物の硬化剀ずしお䞊蚘䞀般匏(2)で瀺され
るむ゜シアネヌト化合物によ぀お構成された液状
ゎムに察しお、氎和アルミナず氎酞化マグネシり
ムを特定の範囲内で配合するこずにより液状ゎム
の最倧の利点である泚型䜜業性や含浞䜜業性を䜎
䞋させるこずなく、しかも硬化物の難燃性、電気
絶瞁性、耐アヌク性、耐トラツキング性、耐氎
性、耐熱性のすぐれた液状ゎム難燃性組成物を埗
たものである。 本発明に甚いるポリヒドロキシブタゞ゚ン重合
䜓の氎玠添加物ずしおは、分子圓り氎酞基数を
平均1.5個以䞊有し、奜たしくは1.7〜5.0個有する
ものである。特に重合䜓鎖に結合からなる
ブタゞ゚ン残基が60重量以䞊存圚するものが奜
たしく、さらに奜たしくは䞊蚘ブタゞ゚ン残基が
60重量以䞊づありか぀スチレン残基が40重量
以䞋のものが甚いられる。䞊蚘ブタゞ゚ン残基が
60重量以䞋では耐熱性が満足し埗るほど十分で
はなく、ゎム匟性も乏しいものずなる。䞀方スチ
レン残基が40重量以䞊では匟性が䞍十分ずな
る。 このポリヒドロキシブタゞ゚ン重合䜓の氎玠添
加物の具䜓䟋ずしおは、―ブタゞ゚ンのホ
モポリマヌたたはブタゞ゚ンに察しおスチレンや
アクリロニトリル、メタクリル酞、ビニルトル゚
ン酢酞ビニルなどのビニル系モノマヌが50重量
以䞋存圚する共重合䜓を通垞の方法で氎玠添加し
たものがある。たた、ポリヒドロキシブタゞ゚ン
重合䜓の氎玠添加物に混合するビスヒドロキシ化
合物ずしおは、䞋蚘構造匏(1)で瀺される二䟡のア
ルコヌル 䜆し、匏䞭は炭玠数〜の䜎玚アルキル
基を瀺す。 を甚いるこずができ、䟋えば―む゜プロピ
リデン―ビス―プニレン―オキシ―ゞ゚
タノヌルや―む゜プロピリデン―ビス
―プニレン―オキシゞ――プロパノヌル、
―む゜プロピリデン―ビス―プニレ
ン―オキシ―ゞブタノヌルなどが垂販されおい
る。これらは単独で又は二皮以䞊を䜵甚しお甚い
るこずができる。 該、ビスヒドロキシ化合物の配合割合は、前蚘
ポリヒドロキシブタゞ゚ン重合䜓の氎玠添加物
100重量郚に察し〜40重量郚配合するこずによ
り本発明の目的を達成するこずができる。 ビスヒドロキシ化合物の配合量が重量郚以䞋
の堎合、硬化物の耐熱性ず機械的性質が䜎䞋する
ため奜たしくない。 たた、40重量郚以䞊では、硬化物の匟性が著し
く䜎䞋し、氞久䌞びが倧きくなるため、ビスヒド
ロキシ化合物は䞊蚘の範囲が奜適である。さらに
本発明を実斜するにあたり、必須成分の硬化剀で
あるむ゜シアネヌト化合物は䞋蚘構造匏(1)で瀺さ
れるむ゜シアネヌト 䜆し、匏䞭R1R2R3は䜎玚アルキル基を
瀺し、は〜の敎数を瀺す。 あるいは、該む゜シアネヌトずグリコヌルの付
加物であるむ゜シアネヌトプレポリマヌを適宜甚
いるこずができる。 䞊蚘匏(1)で瀺されるむ゜シアネヌトは、䞀般の
む゜シアネヌト化合物䟋えば、―トル゚ン
ゞむ゜シアネヌトや4′―ゞプニルメタンゞ
む゜シアネヌトに比べ掻性氎玠に察する反応性が
䜎いため、前蚘ポリヒドロキシブタゞ゚ン重合䜓
の氎玠添加物ず前蚘ビスヒドロキシ化合物の硬化
剀ずしお甚いるず、可䜿時間が長くなり泚型や含
浞時の䜜業性は倧幅に向䞊する。 しかし、䞊蚘む゜シアネヌトは前蚘ポリヒドロ
キシブタゞ゚ン重合䜓の氎玠添加物単独の硬化剀
ずしお甚いた堎合、硬化物の湿熱劣化特性や耐熱
性が十分でないため、本発明の目的から逞脱す
る。芳銙族む゜シアネヌトを硬化剀ずしお甚いる
ず䞊蚘欠点を改良できるが、可䜿時間が極端に短
かくなるため䜜業性が䜎䞋する。 しかしながら、本発明によるポリヒドロキシブ
タゞ゚ン重合䜓の氎玠添加物ずピスヒドロキシ化
合物の䞊蚘特定割合の混合物に察し、䞊蚘䞀般匏
(2)で瀺されるむ゜シアネヌトを硬化剀ずしお䞊蚘
氎玠添加物ずピスヒドロキシ化合物からなる混合
物の氎酞基圓量に察し、む゜シサネヌト基ずし
お、0.9〜1.3圓量に盞圓する量、即ち10〜51重量
郚配合するこずによ぀お䞊蚘欠点が䞀掃されるの
である。硬化剀であるむ゜シアネヌトが䞊蚘範囲
内を倖れるず加熱硬化埌、粘着性のある硬化物や
非垞に匟性の劣぀た硬化物しか埗られないため奜
たしくない。 さらに、本発明に甚いる氎和アルミナは、䞀般
匏Al2O3・3H2Oで瀺される無機化合物で垂販品
を適宜甚いるこずができる。氎和アルミナは前述
した液状ゎムの硬化物の熱分解枩床250℃付近
から始たり玄400℃で急激に分解するの前段階
で埐々に結晶氎を攟出玄200℃より開始する
ため液状ゎムの難燃剀ずしお奜適である。さらに
本発明に甚いる氎酞化マグネシりムは、䞀般匏
MgOH2で瀺され、これもたた垂販品を適宜甚
いるこずができる。氎酞化マグネシりムは玄300
℃から結晶氎の攟出が始たり、350℃付近で完党
に結晶氎が攟出されるため、液状ゎムの難燃剀ず
しお最も効果的に難燃効果を瀺す。 本発明に甚いる難燃剀は、前述したような毒性
は党く心配なく、しかも安䟡であり、液状ゎムの
難燃剀ずしお奜適であるが、䞡者の難燃剀はいず
れも単独で甚いるこずはできない。 䟋えば氎和アルミナ単独の堎合、液状ゎムに十
分な難燃性を䞎える量を配合するず、硬化物の匟
性は著しく䜎䞋し、䌞びが非垞に少なくなる。 たた、氎酞化マグネシりム単独の堎合には䞻剀
の粘床が著しく増加し、泚型や含浞䜜業性の劣぀
たコンパりンドずなり硬化物の匷床も䜎䞋する。 本発明者らは、このような液状ゎムの難燃剀ず
しお氎和アルミナおよび氎酞化マグネシりムを単
独で甚いるこずはできないが、液状ゎムの熱分解
特性および硬化物の補匷性を十分考慮した特定の
割合で、䞡者の難燃剀を配合するこずによ぀お、
本発明の目的を十分達成できるず蚀う新たな事実
を芋いだしたのである。 本発明を実斜するための氎和アルミナず氎酞化
マグネシりムの奜適な割合は、液状ゎムの䞻剀す
なわちポリヒドロキシブタゞ゚ン重合䜓の氎玠添
加物100重量郚に察しお、氎和アルミナ60〜150重
量郚ず氎酞化マグネシりムを〜50重量郚の範囲
内で䞡者を配合する。この範囲を倖れるず液状ゎ
ムの硬化物の難燃性が十分でなか぀たり、泚型や
含浞䜜業性および硬化物々性が著しく䜎䞋するた
め奜たしくない。次に本発明を具䜓的に説明する
ため、参考䟋、実斜䟋に぀いお述べるが本発明は
これらの参考䟋、実斜䟋のみに限定されるもので
はない。 参考䟋  ポリヒドロキシブタゞ゚ン重合䜓であるPoly
BD―45Mアヌコ瀟補、―トランス
60モル―シス20モル―ビニ
ル20モル氎酞基䟡44120、ラネヌニツケ
ル觊媒10およびゞオキサン100をのオヌ
トクレヌブに入れ氎玠圧10Kgcm2反応枩床80℃
で氎玠化を行ないポリヒドロキシブタゞ゚ン重合
䜓の氎玠添加物氎添率95を埗た。 参考䟋  ポリヒドロキシブタゞ゚ン重合䜓であるPoly
BDCS―15アヌコ瀟補―トランス60モ
ル―シス20モル―ビニル20
モル氎酞基䟡42ブタゞ゚ン察スチレン75察
25重量比の共重合䜓100を参考䟋ず同様
にしお氎玠添加を行ないポリヒドロキシブタゞ゚
ン重合䜓の氎玠添加物氎添率98を埗た。 参考䟋  ポリヒドロキシブタゞ゚ン重合䜓である
NISSOPBG―2000日本曹達瀟補、―
ビニル90モル、―結合10モル、氎酞基
䟡58100を参考䟋ず同様にしお氎玠添加を
行ないポリヒドロキシブタゞ゚ン重合䜓の氎玠添
加物氎添率98を埗た。 実斜䟋  参考䟋で埗たポリヒドロキシブタゞ゚ン重合
䜓の氎玠添加物100ず―む゜プロピリデ
ン―ビス―プニレン―オキシゞ――プ
ロパノヌル10、氎和アルミナ昭和電工瀟補ハ
むゞラむト―31125、氎酞化マグネシりム
協和化孊瀟補、キスマ4AF25およびカヌボ
ンブラツクを容噚にずり、80℃で加熱撹拌を
行な぀た埌、充填剀やカヌボンブラツクを均䞀に
分散させるため本ロヌルを甚いお混緎を行ない
シヌト状の混緎物を埗た。 該混緎物を300℃のビヌカにずり90℃のオむル
バスで加熱させた。次いで―む゜シアネヌトメ
チル――トリメチルシクロヘキシルむ
゜シアネヌト15.2を加え混合し、90℃に達した
時点初期粘床51ポンズから1000ポむズに達す
るたでの時間を蚈枬した。その時間は27分であ぀
た。 たた、䞊蚘ず同様にしお調補した混合液を90℃
で撹拌脱泡した埌、ポリプロピレン補の型に泚入
した。 泚入埌、型を150℃×時間加熱し、20cm×20
cm×0.2cmの硬化シヌトを埗た。この硬化シヌト
の機械的特性匕匵匷床、䌞び、電気的特性
䜓積固有抵抗、耐アヌク性、耐トラツキング性
燃焌性および耐氎性耐熱性に぀いお調べた。こ
れらの枬定結果を第衚に瀺す。
In [Formula], the main chain skeleton is a polyolefin structure connected by methylene chains. (However, R 1 , R 2 , and R 3 represent lower alkyl groups, and n represents an integer of 1 to 4.) Flame retardation of such polyolefins is usually done using antimony oxide, organic halogen compounds, or phosphate esters. Methods of adding compounds and methods of blending or copolymerizing vinyl chloride with resin have been used. However, these methods have problems such as the fact that the antimony oxide and phosphate ester compounds themselves are toxic, that they generate halogen gases when burned, and that the type and amount of flame retardant used can degrade electrical and mechanical properties. contains the problem of Another flame retardant method is to fill the product with an inorganic compound containing water of crystallization, but in this case a considerable amount of the inorganic compound must be mixed in to obtain sufficient flame retardancy. The mechanical properties of the resin are significantly reduced. Therefore, although the former and latter flame retardant methods are considered appropriate for making polyolefin resins flame retardant depending on the application, many problems still remain. As described above, conventional liquid rubbers are required to have low viscosity and long pot life, but the toxicity of flame retardants and deterioration of the physical properties of resins have become problems, and an appropriate flame retardant method has not been established. That is the reality. The present invention was developed in view of the above-mentioned drawbacks, and allows manufacturing of all kinds of electrical equipment by vacuum casting and impregnation processes that do not require high temperatures or high pressures, and has extremely excellent elasticity after curing. As a result of intensive research to obtain a liquid rubber flame retardant composition with excellent flame retardancy, arc resistance, and tracking resistance, the present invention was completed. That is, the gist of the present invention is to apply water to a liquid rubber composed of an isocyanate compound represented by the above general formula (2) as a curing agent for a mixture of a hydrogenated polyhydroxybutadiene polymer and a bishydroxy compound. By blending Japanese alumina and magnesium hydroxide within a specific range, the greatest advantages of liquid rubber, such as casting workability and impregnation workability, are not reduced, and the cured product has excellent flame retardancy, electrical insulation, A liquid rubber flame retardant composition with excellent arc resistance, tracking resistance, water resistance, and heat resistance was obtained. The hydrogenated polyhydroxybutadiene polymer used in the present invention has an average number of hydroxyl groups of 1.5 or more per molecule, preferably 1.7 to 5.0. In particular, it is preferable that the polymer chain contains 60% by weight or more of butadiene residues consisting of 1,4 bonds, and more preferably that the above-mentioned butadiene residues are present in the polymer chain.
Contains 60% by weight or more and 40% by weight of styrene residue.
The following are used: The above butadiene residue is
If it is less than 60% by weight, the heat resistance will not be sufficient and the rubber elasticity will be poor. On the other hand, if the styrene residue is 40% by weight or more, the elasticity will be insufficient. A specific example of a hydrogenated product of this polyhydroxybutadiene polymer is a 1,3-butadiene homopolymer or a vinyl monomer such as styrene, acrylonitrile, methacrylic acid, vinyltoluene or vinyl acetate in an amount of 50% by weight based on butadiene.
The following copolymers are hydrogenated using a conventional method. In addition, as a bishydroxy compound to be mixed with the hydrogenated product of polyhydroxybutadiene polymer, a dihydric alcohol represented by the following structural formula (1) is used. (However, in the formula, R represents a lower alkyl group having 2 to 4 carbon atoms.) For example, 1,1-isopropylidene-bis(P-phenylene-oxy)-diethanol or 1,1-isopropylidene-bis(P-phenylene-oxy)-diethanol can be used. Redenbis (P
-phenylene-oxy)di-2-propanol,
1,1-isopropylidene-bis(P-phenylene-oxy)-dibutanol and the like are commercially available. These can be used alone or in combination of two or more. The blending ratio of the bishydroxy compound is the hydrogenated product of the polyhydroxybutadiene polymer.
The object of the present invention can be achieved by adding 5 to 40 parts by weight per 100 parts by weight. If the amount of the bishydroxy compound is less than 5 parts by weight, it is not preferable because the heat resistance and mechanical properties of the cured product will deteriorate. Further, if the amount is 40 parts by weight or more, the elasticity of the cured product will be significantly lowered and the permanent elongation will be increased, so it is preferable that the bishydroxy compound be in the above range. Further, in carrying out the present invention, the isocyanate compound which is an essential curing agent is an isocyanate compound represented by the following structural formula (1). (However, in the formula, R 1 , R 2 , and R 3 represent lower alkyl groups, and n represents an integer of 1 to 4.) Alternatively, an isocyanate prepolymer that is an adduct of the isocyanate and glycol may be used as appropriate. can. The isocyanate represented by the above formula (1) has lower reactivity with active hydrogen than general isocyanate compounds such as 2,4-toluene diisocyanate and 4,4'-diphenylmethane diisocyanate, so the polyhydroxybutadiene polymer When the hydrogenated compound and the bishydroxy compound are used as a curing agent, the pot life is extended and the workability during casting and impregnation is greatly improved. However, when the above-mentioned isocyanate is used as a curing agent for the hydrogenated polyhydroxybutadiene polymer alone, the cured product does not have sufficient moist heat deterioration characteristics or heat resistance, which deviates from the purpose of the present invention. The use of aromatic isocyanate as a curing agent can improve the above-mentioned drawbacks, but the pot life becomes extremely short, resulting in a decrease in workability. However, for the mixture of the hydrogenated polyhydroxybutadiene polymer and the pishydroxy compound in the above specific ratio according to the present invention,
The isocyanate represented by (2) is used as a curing agent in an amount corresponding to 0.9 to 1.3 equivalents of isocyanate groups, that is, 10 to 51 parts by weight, per equivalent of hydroxyl groups in the mixture consisting of the hydrogenated compound and the pishydroxy compound. This eliminates the above drawbacks. If the isocyanate used as a curing agent is outside the above range, it is not preferable because after heat curing, only a sticky cured product or a cured product with very poor elasticity will be obtained. Furthermore, the hydrated alumina used in the present invention is an inorganic compound represented by the general formula Al 2 O 3 .3H 2 O, and commercially available products can be used as appropriate. Hydrated alumina gradually releases water of crystallization (starts at about 200°C) before the thermal decomposition temperature of the cured liquid rubber (starts around 250°C and decomposes rapidly at about 400°C). Suitable as a flame retardant for rubber. Furthermore, the magnesium hydroxide used in the present invention has the general formula
It is represented by Mg(OH) 2 , and commercially available products can also be used as appropriate. Magnesium hydroxide is about 300
The release of water of crystallization begins at 350°C and is completely released at around 350°C, so it exhibits the most effective flame retardant effect as a flame retardant for liquid rubber. The flame retardant used in the present invention is free from toxicity as described above, is inexpensive, and is suitable as a flame retardant for liquid rubber, but neither of the two flame retardants can be used alone. For example, in the case of hydrated alumina alone, if it is added to the liquid rubber in an amount that provides sufficient flame retardancy, the cured product will have significantly lower elasticity and very little elongation. Furthermore, when magnesium hydroxide is used alone, the viscosity of the base agent increases significantly, resulting in a compound with poor casting and impregnation workability, and the strength of the cured product is also reduced. Although it is not possible to use hydrated alumina and magnesium hydroxide alone as flame retardants for such liquid rubber, the present inventors have determined that hydrated alumina and magnesium hydroxide cannot be used alone as flame retardants for such liquid rubber, but they can be used in specific proportions that fully consider the thermal decomposition characteristics of liquid rubber and the reinforcing properties of cured products. By combining both flame retardants,
A new fact has been discovered that shows that the object of the present invention can be fully achieved. A suitable ratio of hydrated alumina and magnesium hydroxide for carrying out the present invention is 60 to 150 parts by weight of hydrated alumina to 100 parts by weight of the hydrogenated material of the liquid rubber main ingredient, that is, polyhydroxybutadiene polymer. Both are blended with magnesium hydroxide in a range of 5 to 50 parts by weight. Outside this range, the cured product of the liquid rubber may not have sufficient flame retardancy, or the casting and impregnating workability and properties of the cured product may be significantly reduced, which is not preferable. Next, in order to specifically explain the present invention, reference examples and examples will be described, but the present invention is not limited only to these reference examples and examples. Reference example 1 Poly, which is a polyhydroxybutadiene polymer
BDR-45M (manufactured by Arco, 1,4-trans
60 mol%, 1,4-cis 20 mol%, 1,2-vinyl 20 mol%, hydroxyl value 44) 120 g, Raney nickel catalyst 10 g and dioxane 100 g were placed in autoclave 1, hydrogen pressure 10 Kg/cm 2 , reaction temperature 80 ℃
Hydrogenation was carried out to obtain a hydrogenated polyhydroxybutadiene polymer (hydrogenation rate: 95%). Reference example 2 Poly, which is a polyhydroxybutadiene polymer
BDCS-15 (Arco 1,4-trans 60 mol%, 1,4-cis 20 mol%, 1,2-vinyl 20
Mol%, hydroxyl value 42, butadiene to styrene 75 pairs
25 (weight ratio)) was hydrogenated in the same manner as in Reference Example 1 to obtain a hydrogenated polyhydroxybutadiene polymer (hydrogenation rate 98%). Reference example 3 Polyhydroxybutadiene polymer
NISSOPBG-2000 (manufactured by Nippon Soda Co., Ltd., 1,2-
100 g of vinyl (90 mol%, 1,4-bond 10 mol%, hydroxyl value 58) was hydrogenated in the same manner as in Reference Example 1 to obtain a hydrogenated polyhydroxybutadiene polymer (hydrogenation rate 98%). . Example 1 100 g of the hydrogenated polyhydroxybutadiene polymer obtained in Reference Example 1, 10 g of 1,1-isopropylidene-bis(P-phenylene-oxy)di-2-propanol, and hydrated alumina (manufactured by Showa Denko) Place 125 g of Hygilite H-31), 25 g of magnesium hydroxide (Kisuma 4AF, manufactured by Kyowa Kagaku Co., Ltd.), and 3 g of carbon black in a container, heat and stir at 80°C, and then uniformly disperse the filler and carbon black. Therefore, kneading was performed using three rolls to obtain a sheet-like kneaded product. The kneaded material was placed in a beaker at 300°C and heated in an oil bath at 90°C. Next, 15.2 g of 3-isocyanate methyl-3,5,5-trimethylcyclohexyl isocyanate was added and mixed, and the time from the time the temperature reached 90°C (initial viscosity 51 lbs.) to the time the viscosity reached 1000 poises was measured. The time was 27 minutes. In addition, the mixture prepared in the same manner as above was heated to 90°C.
After stirring and defoaming, the mixture was poured into a polypropylene mold. After pouring, heat the mold at 150℃ for 1 hour and make a 20cm x 20
A cured sheet measuring cm x 0.2 cm was obtained. Mechanical properties (tensile strength, elongation) and electrical properties (volume resistivity, arc resistance, tracking resistance) of this cured sheet
The flammability, water resistance, and heat resistance were investigated. The results of these measurements are shown in Table 1.

【衚】【table】

【衚】 実斜䟋 〜 実斜䟋〜で埗たポリヒドロキシブタゞ゚ン
重合䜓の氎玠添加物ずビスヒドロキシ化合物、氎
和アルミナ、氎酞化マグネシりム、カヌボンブラ
ツクを第衚に瀺した配合量で実斜䟋ず同様の
方法で混緎し、シヌト状の混緎物を埗た。該混緎
物に―む゜シアネヌトメチル――ト
リメチルシクロヘキシルむ゜シアネヌトを第衚
に瀺した配合量で実斜䟋ず同様の方法で加えお
粘床倉化を枬定した。たた同様に硬化シヌトも䜜
成し硬化物々性の枬定も行な぀た。これらの枬定
結果を第衚に瀺す。
[Table] Examples 2 to 9 Hydrogenated products of the polyhydroxybutadiene polymers obtained in Examples 1 to 3, bishydroxy compounds, hydrated alumina, magnesium hydroxide, and carbon black were mixed in the amounts shown in Table 2. The mixture was kneaded in the same manner as in Example 1 to obtain a sheet-like kneaded product. 3-Isocyanate methyl-3,5,5-trimethylcyclohexyl isocyanate was added to the kneaded product in the amount shown in Table 2 in the same manner as in Example 1, and the change in viscosity was measured. Cured sheets were also prepared in the same manner and the properties of the cured materials were measured. The results of these measurements are shown in Table 2.

【衚】 第衚に瀺した通り、本発明による液状ゎム難
燃性組成物は、ポリヒドロキシブタゞ゚ン重合䜓
の氎玠添加物100重量郚ず䞀般匏(1)で瀺されるビ
スヒドロキシ化合物〜40重量郚の混合物に察
し、難燃性充填剀ずしお氎和アルミナ60〜150重
量郚、氎酞化マグネシりム〜50重量郚の範囲で
䞡者の充填剀を配合したものを䞻剀ずし、硬化剀
ずしお䞀般匏(2)で瀺される特定のむ゜シアネヌト
化合物を甚いるこずにより、泚型たたは含浞䜜業
が十分可胜な粘床ずポツトラむフをも぀液状ゎム
組成物が埗られる。この組成物の硬化物はその䞀
䟋を第衚、第衚に瀺す通り、電気絶瞁性、耐
アヌク性、耐トラツキング性、耐氎性、耐熱性、
難燃性にすぐれたゎム匟性䜓であり、その工業的
䟡倀は極めお倧である。
[Table] As shown in Table 2, the liquid rubber flame retardant composition according to the present invention contains 100 parts by weight of a hydrogenated polyhydroxybutadiene polymer and 5 to 40 parts by weight of a bishydroxy compound represented by the general formula (1). The main ingredient is a mixture of 60 to 150 parts by weight of hydrated alumina as a flame retardant filler and 5 to 50 parts by weight of magnesium hydroxide, and a curing agent of the general formula By using the specific isocyanate compound shown in (2), a liquid rubber composition having a viscosity and pot life sufficient for casting or impregnation operations can be obtained. Examples of the cured product of this composition are shown in Tables 1 and 2, which show electrical insulation, arc resistance, tracking resistance, water resistance, heat resistance,
It is a rubber elastic body with excellent flame retardancy, and its industrial value is extremely large.

Claims (1)

【特蚱請求の範囲】  ポリヒドロキシブタゞ゚ン重合䜓の氎玠添加
物100重量に察し、䞀般匏(1)で瀺されるビスヒ
ドロキシ化合物〜40重量郚、氎和アルミナ60〜
150重量郚、氎酞化マグネシりム〜50重量郚、
および硬化剀ずしお、(2)匏で瀺されるむ゜シアネ
ヌト化合物を配合したこずを特城ずする液状ゎム
難燃性組成物。 ただし、匏䞭は炭玠数〜のアルキル基
を瀺す。 ただし、匏䞭R1R2及びR3は䜎玚アルキ
ル基を瀺し、は〜の敎数を瀺す。  ポリヒドロキシブタゞ゚ン重合䜓の氎玠添加
物ずしお、重合䜓鎖に結合からなるブタゞ
゚ン残基が60重量以䞊存圚するポリヒドロキシ
ブタゞ゚ン重合䜓の氎玠添加物を甚いたこずを特
城ずする特蚱請求の範囲第項蚘茉の液状ゎム難
燃性組性物。  ポリヒドロキシブタゞ゚ン重合䜓の氎玠添加
物ずしお、重合䜓鎖にブタゞ゚ン残基が60重量
以䞊存圚し、か぀スチレン残基が40重量以䞋存
圚するポリヒドロキシブタゞ゚ン重合䜓の氎玠添
加物を甚いたこずを特城ずする特蚱請求の範囲第
項蚘茉の液状ゎム難燃性組成物。  ポリヒドロキシブタゞ゚ン重合䜓の氎玠添加
物ずビスヒドロキシ化合物よりなる混合物の氎酞
基圓量に察し、む゜シアネヌト基ずしお、0.9〜
1.3圓量に盞圓する量の硬化剀を配合しおなる特
蚱請求の範囲第項ないし第項の䜕れかに蚘茉
の液状ゎム難燃性組成物。
[Claims] 1. 5 to 40 parts by weight of a bishydroxy compound represented by general formula (1), 60 to 60 parts by weight of hydrated alumina, based on 100% by weight of hydrogenated polyhydroxybutadiene polymer.
150 parts by weight, 5 to 50 parts by weight of magnesium hydroxide,
and a liquid rubber flame retardant composition comprising an isocyanate compound represented by formula (2) as a curing agent. (However, in the formula, R represents an alkyl group having 2 to 4 carbon atoms.) (However, in the formula, R 1 , R 2 , and R 3 represent a lower alkyl group, and n represents an integer of 1 to 4.) 2 As a hydrogenated product of a polyhydroxybutadiene polymer, 1, The liquid rubber flame-retardant composition according to claim 1, characterized in that a hydrogenated product of a polyhydroxybutadiene polymer containing 60% by weight or more of butadiene residues consisting of 4 bonds is used. 3 As a hydrogenated product of polyhydroxybutadiene polymer, 60% by weight of butadiene residues are added to the polymer chain.
2. The liquid rubber flame retardant composition according to claim 1, which uses a hydrogenated polyhydroxybutadiene polymer containing styrene residues of 40% by weight or less. 4 0.9 to 0.9 to 0.9 to 0.9 to 0.9 to 0.9 to 0.9 to 0.9 to 0.9 as isocyanate groups to the hydroxyl equivalent of a mixture consisting of a hydrogenated product of a polyhydroxybutadiene polymer and a bishydroxy compound.
The liquid rubber flame retardant composition according to any one of claims 1 to 3, which contains a curing agent in an amount equivalent to 1.3 equivalents.
JP3637180A 1980-03-22 1980-03-22 Flame-retardant liquid rubber composition Granted JPS56133327A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3637180A JPS56133327A (en) 1980-03-22 1980-03-22 Flame-retardant liquid rubber composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3637180A JPS56133327A (en) 1980-03-22 1980-03-22 Flame-retardant liquid rubber composition

Publications (2)

Publication Number Publication Date
JPS56133327A JPS56133327A (en) 1981-10-19
JPS637205B2 true JPS637205B2 (en) 1988-02-16

Family

ID=12467972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3637180A Granted JPS56133327A (en) 1980-03-22 1980-03-22 Flame-retardant liquid rubber composition

Country Status (1)

Country Link
JP (1) JPS56133327A (en)

Also Published As

Publication number Publication date
JPS56133327A (en) 1981-10-19

Similar Documents

Publication Publication Date Title
CA1182241A (en) Vegetable oil extended polyurethane systems
US4355130A (en) Polyalphaolefin extended polyurethane systems
JPS60173011A (en) Polymer composition
EP0270094B1 (en) Flame retardant thermoplastic polyurethane resin composition
JPS637205B2 (en)
JPS6155521B2 (en)
JPS6245266B2 (en)
JPH0346005B2 (en)
JPS6314729B2 (en)
US4376840A (en) Flame retardant liquid rubber composition
JPS5853650B2 (en) Curable polymer composition
JPS5887118A (en) Asphalt composition
CA1187236A (en) Polyalphaolefin extended polyurethane systems
US4067843A (en) Granular phenolic urethane molding compounds
JPS5910687B2 (en) Curable polymer composition
JP3694595B2 (en) Method of kneading isoprene / isobutylene / divinylbenzene terpolymer rubber
JPS603406B2 (en) liquid rubber composition
JPS5910688B2 (en) Curable polymer composition
JPS6315932B2 (en)
JPH0616766A (en) Liquid polymer composition
JPS5853651B2 (en) Curable polymer composition
JPH1025413A (en) Flame-retardant liquid polymer composition
JPS5825327B2 (en) Koukasei Gomuso Seibutsu
JPS60215012A (en) Sealing composition for electrical insulation
JPS61296017A (en) Flame-retardant insulating material