JPS637191B2 - - Google Patents

Info

Publication number
JPS637191B2
JPS637191B2 JP12165980A JP12165980A JPS637191B2 JP S637191 B2 JPS637191 B2 JP S637191B2 JP 12165980 A JP12165980 A JP 12165980A JP 12165980 A JP12165980 A JP 12165980A JP S637191 B2 JPS637191 B2 JP S637191B2
Authority
JP
Japan
Prior art keywords
acid
tin
reaction
compounds
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12165980A
Other languages
Japanese (ja)
Other versions
JPS5746991A (en
Inventor
Ichiro Kijima
Ikuko Wakejima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Matsumoto Seiyaku Kogyo KK
Original Assignee
Matsumoto Seiyaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsumoto Seiyaku Kogyo KK filed Critical Matsumoto Seiyaku Kogyo KK
Priority to JP12165980A priority Critical patent/JPS5746991A/en
Publication of JPS5746991A publication Critical patent/JPS5746991A/en
Publication of JPS637191B2 publication Critical patent/JPS637191B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は新規な有機2価スズ化合物の製法、特
に2価スズカルボキシレート、又は、2価スズキ
レート化合物を、金属スズと相当する銅化合物を
反応させて合成する新規な合成法に係るものであ
る。 Sn−O−C結合を持つ有機スズ化合物は、2、
又は4価化合物が一般的に知られ、シリコン樹
脂、ウレタン樹脂の硬化触媒や塩化ビニル樹脂の
安定剤、油性塗料ドライヤー等として利用されて
いる。これらの化合物は、通常、塩化スズを出発
原料として使用し適当な脱酸剤を用いて合成され
ているが、キレート化合物、特に、β−ジケトン
キレートやβ−ケトエステルキレートは、生成物
が加水分解を受け易い為、無水系で反応を行なう
必要があり合成が容易ではなかつた。 この様な合成上の問題点は、2価、4価スズ化
合物共通であるが、最近特異な反応性の故に注目
されている2価スズ化合物の場合には、4価スズ
の混入を防ぐ等の配慮が必要であり、より合成が
難しかつた。 そこで、工業的な有用性を秘めている有機2価
スズ化合物を工業的に合成出来る様になれば、利
用価値が拡大出来ると考えられたので、研究した
結果、金属スズと相当する有機銅化合物から、直
接、有機2価スズ化合物を合成する新規な方法を
見い出して本発明に至つた。 かくして本発明は次の一般式 又は を有する有機銅化合物と金属スズを反応させて相
当する次の一般式 又は 〔上記各式中R1はOH、SH、NH2、OR4
COOH、COOR4のいずれかの置換基を持つか又
は持たないC1〜C22の炭化水素基、R2はC1〜C18
の炭化水素基、R3はC1〜C18の炭化水素基か又は
OR4で示される基であり、又ここでR4はC1〜C18
のアルキル基を示す〕 で示される有機2価スズ化合物を製造することか
らなる、有機2価スズ化合物の製法を提供するも
のである。 更に詳しく説明すれば、本発明の方法に用いら
れる有機銅化合物は、 〔式中、R1はC1〜C22の炭化水素でOH、SH、
NH2OR4の炭化水素基)COOH、COOR4等の置
換基を含むか、又は含まない基である。〕 で示される銅カルボキシレート、又は、そのキレ
ート及び、 〔式中、R2はC1〜C18の炭化水素基、R3はC1
C18の炭化水素基又は、OR4基である。〕 で示されるβ−ジケトン又はβ−テトエステルキ
レート類である。これらの化合物は、塩化銅、硫
酸銅、硝酸銅の様な銅塩や水酸化銅や、銅アルコ
キシドと、、又は−式に相当する有機金属化
合物を常法で反応させて容易に合成することが出
来る。 この様な化合物として−式では酢酸、酪酸、
オクタン酸、イソステアリン酸、ベヘニン酸、ア
クリル酸、メタクリル酸、イタコン酸、安息香
酸、トルイル酸、ケイヒ酸の様なモノカルボン
酸、マレイン酸、コハク酸、アジピン酸、ダイマ
ー酸、フタル酸、トリメリツト酸、ピロメリツト
酸の様な多価カルボン酸、又はその部分エステル
化物、グリコール酸、乳酸、クエン酸、酒石酸の
様なヒドロキシ酸、レブリン酸、ジベンゾフエノ
ンジカルボン酸、又は、ジベンゾフエノンテトラ
カルボン酸の様なケトカルボン酸、グリシン、ア
ラニン、フエニルアラニン、ロイシン、アスパラ
ギン酸、グルタミン酸、リジン、シスチン、メチ
オニン、セリン、スレオニン等のアミノ酸、p−
メトキシケイヒ酸、p−エトキシ安息香酸、4−
メトキシ酪酸の様なアルコキシカルボン酸から合
成される化合物が例示出来る。又、−式では、
アセチルセトン、ジベンゾイルメタン、ベンゾイ
ルアセトンの様なβジケトン類、アセト酢酸メチ
ル、アセト酢酸エチルの様なβ−ケトエステルか
ら合成される化合物を例示出来る。 これらの有機銅化合物と金属スズの反応は、 CuX2+Sn→SnX2+Cu(−式) 〔CuX2は又は式に相当する有機銅化合物、
またはSnX2は又は式に相当する有機スズ化
合物を示す〕 で示される反応であり、配位子交換反応であると
考えられている。 この反応で有機2価スズ化合物を合成する時、
金属スズはアルキル錫の合成の場合と同様、反応
試剤の接触面積を大きくして反応速度を高める事
が有利であるので、箔や粉末状にして用いる事が
望ましい。箔化又は、粉末化は常法で行なう事が
出来る。反応は、又は、−式の有機銅化合物
を直接反応させても良いが、より均一な反応を行
なわせる為、溶媒、例えばベンゼン、トルエン、
キシレン、デカリン、シクロヘキサン、n−ヘキ
サン、石油エーテル、トリクレン、パークロロオ
クタン、クロロベンゼンの様な炭化水素やハロゲ
ン化炭化水素、メタノール、エタノール、イソプ
ロパノール、オクタトル等のアルコール、ジブチ
ルエーテル、テトラヒドロフラン、ジオキサンの
様なエーテル、酢酸、酪酸、オクタン酸、酢酸ブ
チル、アジピン酸ジエチル、ジメチルフタル酸、
アセト酢酸メチル、アセト酢酸エチル等のエステ
ル、アセチルアセトン類等から選ばれた溶剤を用
いて行なう事が望ましい。 本願発明の反応(−式)は配位子交換反応で
あると考えられるので、反応は室温で行なえる
が、より短時間に完遂させる為には、加温する事
が望ましい。しかし生成する2価スズ化合物は、
150℃を越えると分離が激しくなるので、室温〜
160℃以下、特に150℃以下の温度で行なう事が有
利である。反応時間は、有機基の種類と温度と溶
媒その他の因子で変動されるので、一様でない
が、30分〜20時間位で実質上終わらせる事が出来
る。 反応により、生成された有機2価スズ化合物
は、蒸留又は再結晶法で容易にかつ、純粋に単離
出来、同時に生成する銅粉末は、有機銅化合物の
合成原料として回収使用する事が出来る。 本願発明の方法によれば、取り扱い難く、又、
合成し難い無水二塩化スズやスズジアルコキシド
を出発原料として使用する必要がなく、高収率高
純度で容易に合成出来る銅化合物と金属スズから
出発して反応が行なえ、有機2価スズ化合物が得
られ、生成物は高品質であるので、樹脂硬化触
媒、有機反応触媒や無機材料の原料として工業的
に有効である。 以下に本発明の実施例を示す。 実施例 1 温度計、還流冷却管及び気密撹拌機を付設した
200mlの四ツ口フラスコに28〜100メツシユに粉砕
したスズ粉末9.6gとCu(C5H7O2211.5g及びキ
シレン100mlを計量し、撹拌しつつ、130℃に加熱
し、同温で2時間反応させて反応を終わらせた。 反応物を室温まで冷却したのち、ガラスフイル
ターで未反応スズと反応により析出した銅を別
して、得た液を減圧下で蒸留しキシレンを除去
した。残留物にn−ヘキサン50mlを加えて撹拌す
ると、緑青色の不溶物が微量析出したので、更に
これを別した。この析出物は、分析の結果未反
応のCu(C5H7O22であり、0.3gであつた。 未反応物を除去したn−ヘキサン溶液を常圧で
蒸留して、n−ヘキサンを除去し、残部を減圧蒸
留し、85〜89゜/1.5mmHgの無色透明液体12.5gを
得た。 生成物の分析値は、Sn;37.4%、C;38.0%、
H;3.10%、O;19.97%であり、Sn(C5H7O22
の分析値Sn;37.94%、C;38.38%、H;3.23%、
O;20.45%と良く一致したのでSn(C5H7O22
あると確認され、収率は88.7%であつた。この生
成物は、赤外分析の結果
The present invention relates to a novel method for producing organic divalent tin compounds, and in particular to a novel method for synthesizing divalent tin carboxylate or divalent tin chelate compounds by reacting metallic tin with a corresponding copper compound. be. Organotin compounds with Sn-O-C bonds are 2,
Alternatively, tetravalent compounds are generally known and are used as curing catalysts for silicone resins and urethane resins, stabilizers for vinyl chloride resins, oil-based paint driers, and the like. These compounds are usually synthesized using tin chloride as a starting material and an appropriate deoxidizing agent, but chelate compounds, especially β-diketone chelates and β-ketoester chelates, are difficult to synthesize by hydrolyzing the product. Because it is easily susceptible to oxidation, it is necessary to carry out the reaction in an anhydrous system, making it difficult to synthesize. These synthetic problems are common to divalent and tetravalent tin compounds, but in the case of divalent tin compounds, which have recently attracted attention due to their unique reactivity, there are problems such as preventing the contamination of tetravalent tin. Therefore, the synthesis was more difficult. Therefore, it was thought that if it were possible to industrially synthesize organic divalent tin compounds, which have industrial utility, the utility value could be expanded.As a result of research, we found that organic copper compounds equivalent to metal tin were found. Therefore, we discovered a new method for directly synthesizing organic divalent tin compounds, leading to the present invention. Thus, the present invention is based on the following general formula or The following general formula is obtained by reacting an organocopper compound with metal tin with or [In each of the above formulas, R 1 is OH, SH, NH 2 , OR 4 ,
A C 1 to C 22 hydrocarbon group with or without a substituent of COOH or COOR 4 , R 2 is a C 1 to C 18
is a hydrocarbon group, R 3 is a C 1 to C 18 hydrocarbon group, or
A group represented by OR 4 , where R 4 is C 1 to C 18
The present invention provides a method for producing an organic divalent tin compound, which comprises producing an organic divalent tin compound represented by the following. To explain in more detail, the organocopper compound used in the method of the present invention is [In the formula, R 1 is a C 1 to C 22 hydrocarbon, such as OH, SH,
Hydrocarbon group (NH 2 OR 4 ) A group that may or may not contain substituents such as COOH and COOR 4 . ] Copper carboxylate or its chelate represented by [In the formula, R 2 is a C 1 to C 18 hydrocarbon group, and R 3 is a C 1 to C 18 hydrocarbon group.
It is a C 18 hydrocarbon group or an OR 4 group. ] These are β-diketones or β-tetoester chelates shown in the following. These compounds can be easily synthesized by reacting copper salts such as copper chloride, copper sulfate, and copper nitrate, copper hydroxide, copper alkoxide, or organometallic compounds corresponding to the formula - in a conventional manner. I can do it. Such compounds include acetic acid, butyric acid,
Monocarboxylic acids such as octanoic acid, isostearic acid, behenic acid, acrylic acid, methacrylic acid, itaconic acid, benzoic acid, toluic acid, cinnamic acid, maleic acid, succinic acid, adipic acid, dimer acid, phthalic acid, trimellitic acid , polyhydric carboxylic acids such as pyromellitic acid, or partial esterified products thereof, hydroxy acids such as glycolic acid, lactic acid, citric acid, tartaric acid, levulinic acid, dibenzophenone dicarboxylic acid, or dibenzophenone tetracarboxylic acid. amino acids such as ketocarboxylic acids, glycine, alanine, phenylalanine, leucine, aspartic acid, glutamic acid, lysine, cystine, methionine, serine, threonine, p-
Methoxycinnamic acid, p-ethoxybenzoic acid, 4-
Examples include compounds synthesized from alkoxycarboxylic acids such as methoxybutyric acid. Also, in the − expression,
Examples include compounds synthesized from β-diketones such as acetylacetone, dibenzoylmethane, and benzoylacetone, and β-ketoesters such as methyl acetoacetate and ethyl acetoacetate. The reaction between these organocopper compounds and metal tin is CuX 2 +Sn→SnX 2 +Cu (-formula) [CuX 2 is or an organocopper compound corresponding to the formula,
or SnX 2 represents an organic tin compound corresponding to the formula] This reaction is considered to be a ligand exchange reaction. When synthesizing organic divalent tin compounds through this reaction,
As with the synthesis of alkyl tin, it is advantageous to increase the reaction rate by increasing the contact area of the reaction reagent, so it is desirable to use metal tin in the form of foil or powder. Foil formation or powder formation can be carried out by conventional methods. Alternatively, the organic copper compound of formula - may be reacted directly, but in order to make the reaction more uniform, a solvent such as benzene, toluene,
Hydrocarbons and halogenated hydrocarbons such as xylene, decalin, cyclohexane, n-hexane, petroleum ether, trichlene, perchlorooctane, chlorobenzene, alcohols such as methanol, ethanol, isopropanol, octator, dibutyl ether, tetrahydrofuran, dioxane, etc. ether, acetic acid, butyric acid, octanoic acid, butyl acetate, diethyl adipate, dimethyl phthalate,
It is preferable to use a solvent selected from esters such as methyl acetoacetate and ethyl acetoacetate, and acetylacetones. Since the reaction (-formula) of the present invention is considered to be a ligand exchange reaction, the reaction can be carried out at room temperature, but in order to complete the reaction in a shorter time, it is desirable to heat the reaction. However, the divalent tin compound produced is
If the temperature exceeds 150℃, separation will become severe, so
It is advantageous to carry out the process at temperatures below 160°C, especially below 150°C. The reaction time varies depending on the type of organic group, temperature, solvent, and other factors, but it can be substantially completed in about 30 minutes to 20 hours. The organic divalent tin compound produced by the reaction can be easily and purely isolated by distillation or recrystallization, and the copper powder produced at the same time can be recovered and used as a raw material for synthesizing the organocopper compound. According to the method of the present invention, it is difficult to handle, and
There is no need to use anhydrous tin dichloride or tin dialkoxide as starting materials, which are difficult to synthesize, and the reaction can be performed starting from a copper compound and metal tin, which can be easily synthesized with high yield and high purity. Since the obtained product is of high quality, it is industrially effective as a raw material for resin curing catalysts, organic reaction catalysts, and inorganic materials. Examples of the present invention are shown below. Example 1 Equipped with a thermometer, reflux condenser and airtight stirrer
Weighed 9.6 g of tin powder ground into 28-100 meshes, 11.5 g of Cu (C 5 H 7 O 2 ) 2 and 100 ml of xylene into a 200 ml four-necked flask, heated to 130°C with stirring, and heated at the same temperature. The reaction was completed after 2 hours of reaction. After the reaction product was cooled to room temperature, unreacted tin and copper precipitated by the reaction were separated using a glass filter, and the resulting liquid was distilled under reduced pressure to remove xylene. When 50 ml of n-hexane was added to the residue and stirred, a small amount of greenish-blue insoluble matter precipitated, which was further separated. Analysis revealed that this precipitate was unreacted Cu(C 5 H 7 O 2 ) 2 and weighed 0.3 g. The n-hexane solution from which unreacted substances had been removed was distilled at normal pressure to remove n-hexane, and the remainder was distilled under reduced pressure to obtain 12.5 g of a colorless transparent liquid with a temperature of 85-89°/1.5 mmHg. The analytical values of the product were Sn; 37.4%, C; 38.0%,
H: 3.10%, O: 19.97%, Sn(C 5 H 7 O 2 ) 2
Analysis value of Sn: 37.94%, C: 38.38%, H: 3.23%,
It was confirmed to be Sn(C 5 H 7 O 2 ) 2 because it was in good agreement with O; 20.45%, and the yield was 88.7%. This product is the result of infrared analysis.

【式】で示される。 実施例 2 実施例1と同様にして、28〜100メツシユのス
ズ粉末3.6gとCu(OCOCH325.3g、無水酢酸100
mlをフラスコに計量して125〜130℃10時間反応さ
せた後、同温で過して未反応スズ及び生成した
銅を別した。液を蒸留して濃縮したのち酢酸
より再結晶して白色粉末状固体5.2gを得た。 生成物を分析した結果、Sn;49.60%、C;
20.04%、H;2.18%、O;27.55%であり、Sn
(OCOCH32として計算したSn;50.13%、C;
20.29%、H;256%、O;27.03%と良く一致し、
反応収率は、Cu(OCOCH32より計算して70%で
あつた。 実施例 3 実施例1と同様にして、28〜100メツシユのス
ズ粉末3.6g、
It is shown by [Formula]. Example 2 In the same manner as in Example 1, 3.6 g of tin powder of 28 to 100 meshes, 5.3 g of Cu (OCOCH 3 ) 2 , and 100 g of acetic anhydride were added.
ml was weighed into a flask and reacted at 125-130°C for 10 hours, and then filtered at the same temperature to separate unreacted tin and produced copper. The liquid was concentrated by distillation and then recrystallized from acetic acid to obtain 5.2 g of a white powdery solid. As a result of analyzing the product, Sn; 49.60%, C;
20.04%, H; 2.18%, O; 27.55%, Sn
Sn calculated as (OCOCH 3 ) 2 ; 50.13%, C;
20.29%, H; 256%, O; good agreement with 27.03%,
The reaction yield was 70% calculated from Cu(OCOCH 3 ) 2 . Example 3 In the same manner as in Example 1, 3.6 g of tin powder of 28 to 100 meshes,

【式】7.6g及びエ チレングリコールジブチルエーテル100mlを仕込
んで120℃で7時間反応させて、未反応スズと生
成した銅を別し溶媒を減圧で蒸留した。濃縮液
にn−ヘキサンを加えて撹拌し、再度過して得
た液を濃縮し、冷却して無定形状の固形物を析
出させ、過乾燥し、6.9gを得た。 生成物を分析した結果、Sn;39.28%、C;
24.41%、H;3.17%、O;32.66%であり、 としての計算値Sn;39.99%、C;24.27%、C;
24.27%、H;3.4%、O;32.34%と良く一致し
た。
7.6 g of [Formula] and 100 ml of ethylene glycol dibutyl ether were charged and reacted at 120°C for 7 hours, unreacted tin and produced copper were separated, and the solvent was distilled under reduced pressure. N-hexane was added to the concentrated solution, stirred, filtered again, the obtained solution was concentrated, cooled to precipitate an amorphous solid, and overdried to obtain 6.9 g. As a result of analyzing the product, Sn; 39.28%, C;
24.41%, H; 3.17%, O; 32.66%, Calculated value as Sn; 39.99%, C; 24.27%, C;
There was good agreement with 24.27%, H: 3.4%, O: 32.34%.

Claims (1)

【特許請求の範囲】 1 次の一般式 又は を有する有機銅化合物と金属スズを反応させて相
当する次の一般式 又は 〔上記各式中R1はOH、SH、NH2、OR4
COOH、COOR4のいずれかの置換基を持つか又
は持たないC1〜C22の炭化水素基、R2はC1〜C18
の炭化水素基、R3はC1〜C18の炭化水素基か又は
OR4で示される基であり又ここでR4はC1〜C18
アルキル基を示す〕 で示される有機2価スズ化合物を製造することか
らなる、有機2価スズ化合物の製法。
[Claims] First-order general formula or The following general formula is obtained by reacting an organocopper compound with metal tin with or [In each of the above formulas, R 1 is OH, SH, NH 2 , OR 4 ,
A C 1 to C 22 hydrocarbon group with or without a substituent of COOH or COOR 4 , R 2 is a C 1 to C 18
is a hydrocarbon group, R 3 is a C 1 to C 18 hydrocarbon group, or
A method for producing an organic divalent tin compound, which comprises producing an organic divalent tin compound represented by OR 4 , wherein R 4 represents a C 1 to C 18 alkyl group.
JP12165980A 1980-09-02 1980-09-02 Preparation of bivalent organotin compound Granted JPS5746991A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12165980A JPS5746991A (en) 1980-09-02 1980-09-02 Preparation of bivalent organotin compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12165980A JPS5746991A (en) 1980-09-02 1980-09-02 Preparation of bivalent organotin compound

Publications (2)

Publication Number Publication Date
JPS5746991A JPS5746991A (en) 1982-03-17
JPS637191B2 true JPS637191B2 (en) 1988-02-15

Family

ID=14816716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12165980A Granted JPS5746991A (en) 1980-09-02 1980-09-02 Preparation of bivalent organotin compound

Country Status (1)

Country Link
JP (1) JPS5746991A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4581964A (en) * 1985-02-22 1986-04-15 Max Co. Ltd. Fastener driving tool with improved magazine and feed mechanism

Also Published As

Publication number Publication date
JPS5746991A (en) 1982-03-17

Similar Documents

Publication Publication Date Title
JPH066553B2 (en) Process for producing sterically hindered hydroxyphenylcarboxylic acid ester
JPS6136827B2 (en)
JP2008031166A (en) Preparation methods of boronic acid and derivative thereof
JPS637191B2 (en)
KR960016858B1 (en) Improved process for the catalyzed synthesis of n-substituted acrylamides and methacrylamides
JPS59157058A (en) Preparation of aromatic hydrocarboxylic acid benzyl esters
JPH0751536B2 (en) Process for producing tetrakis [3- (3,5-ditertiary butyl-4-hydroxyphenyl) propionyloxymethyl] methane
JPH0764789B2 (en) Manufacturing method of methacrylic acid ester
JP3064530B2 (en) Production method of polymerizable monomer
KR100301756B1 (en) Manufacturing method of 0,0'- diacyl tartaric anhydride and manufacturing method of 0,0'- diacyl tartaric acid
US4575561A (en) Carboxyalkylation of aryl-substituted alkyl halides to the corresponding esters
JP2542117B2 (en) Method for producing silyl unsaturated carboxylate
HU195758B (en) Process for production of 2,3,4,5-tetrafluor-benzoilacetates
JP2618668B2 (en) Method for producing β-substituted allylsilane
US4981619A (en) Process for preparing alpha-hydroxy acids
JPS603306B2 (en) Method for producing 4-alkoxycarbonyl-3,5-dimethylphthalic anhydride
JP2002322125A (en) Method for producing carboxylic vinyl ester
JP2861122B2 (en) Method for producing pyrazolecarboxylic acid esters
JP3064529B2 (en) Production method of polymerizable monomer
JP4250211B2 (en) Novel aminocarboxylic acid ester salt derivatives
JP2005075780A (en) Method for producing 1,2-dicarboxylic acid derivative
JPS6035334B2 (en) Method for producing metal chelate compounds
JPH0768255B2 (en) Method for producing silyl unsaturated carboxylate
JPH0689007B2 (en) Manufacturing method of organotin compounds
JPS6023675B2 (en) Method for producing α-siloxy-α-cyanocarboxylic acid ester