JPS6371189A - Recovering method for amino acid from fermentation liquor - Google Patents

Recovering method for amino acid from fermentation liquor

Info

Publication number
JPS6371189A
JPS6371189A JP21770886A JP21770886A JPS6371189A JP S6371189 A JPS6371189 A JP S6371189A JP 21770886 A JP21770886 A JP 21770886A JP 21770886 A JP21770886 A JP 21770886A JP S6371189 A JPS6371189 A JP S6371189A
Authority
JP
Japan
Prior art keywords
amino acid
water
layer
emulsion
organic solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21770886A
Other languages
Japanese (ja)
Inventor
Haruhisa Ooura
大浦 晴壽
Hiroshi Suzuki
浩 鈴木
Masayoshi Naruse
成瀬 昌芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Original Assignee
Ajinomoto Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc filed Critical Ajinomoto Co Inc
Priority to JP21770886A priority Critical patent/JPS6371189A/en
Publication of JPS6371189A publication Critical patent/JPS6371189A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To recover an amino acid in high yield without diluting a fermentation liquor, by adding a specific organic solvent to an amino acid fermentation liquor containing microbial cells, stirring the resultant mixture, subjecting the mixture solution to centrifugal settling and separating the water layer containing dissolved amino acid. CONSTITUTION:An organic solvent capable of forming two layers with water without dissolving an amino acid, e.g. toluene, n-butanol or methyl isobutyl ketone, is added to an amino acid fermentation liquor containing microbial cells and the resultant mixture solution is stirred. The obtained whole microbial cell-organic solvent-water emulsion or a microbial emulsion layer prepared by allowing the emulsion to stand and separating from the water layer is subjected to centrifugal settling (60-250G centrifugal effect for 5-10min centrifugal settling time) to separate the water layer containing no microbial cell dissolving the amino acid from other layers, separate and recover the amino acid from the above-mentioned water layer. Water is then added to a microbial cell emulsion layer separated from the water layer by the centrifugal settling and the resultant mixture is further subjected to centrifugal settling. Thereby the recovery of the amino acid can be improved by using a small amount of washing water.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、菌体を含むアミノ酸発酵液から、菌体、可溶
性蛋白質等の不純物を分離除去し、清澄なアミノ酸水溶
液を経済的に高収率で得る方法に関するものである。
Detailed Description of the Invention (Industrial Field of Application) The present invention separates and removes impurities such as bacterial cells and soluble proteins from an amino acid fermentation liquid containing bacterial cells, thereby producing a clear amino acid aqueous solution economically and in high yield. It is about how to get the rate.

(従来の技術及びその問題点) 菌体を含むアミノ酸発酵液に水と二層を形成する有機溶
剤を加え、菌体を有機溶剤と共にエマルジョン層として
分離し得る事は、従来からグルタミン酸を含む発酵液に
a−ブタノール中アミルアルコールを加えて菌体を分離
する方法として知られている(特許出願公告昭38−6
460 )。又、炭化水素を原料とする発酵液について
も同様な報告がある(4?許゛出願公告 昭46−37
861 )。因みK、水と二層を形成する有機溶剤と水
の王者を攪拌混合するとエマルジョンが生ずるが、この
エマルジョンは不安定で、攪拌を止めると元の水層と有
機溶剤層とに分離する。ところが、菌体と水と二層を形
成する有機溶剤と水の王者を攪拌混合すると、上記エマ
ルジョンは菌体を取シ込み安定に存在するようになる。
(Prior art and its problems) It has been known that fermentation containing glutamic acid can separate the microorganisms together with the organic solvent as an emulsion layer by adding an organic solvent that forms two layers with water to the amino acid fermentation solution containing microorganisms. It is known as a method for separating bacterial cells by adding amyl alcohol in a-butanol to a solution (Patent Application Publication 1976-6).
460). In addition, there are similar reports regarding fermentation liquors using hydrocarbons as raw materials (4.
861). Incidentally, when an organic solvent that forms two layers with water is mixed with stirring, an emulsion is formed, but this emulsion is unstable and separates into the original water layer and the organic solvent layer when stirring is stopped. However, when the organic solvent and water, which form two layers with the bacteria and water, are stirred and mixed, the emulsion incorporates the bacteria and becomes stable.

更に、グルタミン酸結晶と菌体等不純物の分離方法とし
ては、グルタミン酸結晶が析出し九含菌体液にグルタミ
ン酸結晶よシも比重が小で、晶出母液よシも比重が大の
有機溶剤を添加した後、遠心力を作用させて結晶を沈降
させ有機溶剤層に移し、結晶と各種不純物を含む母液を
分離する方法が知られている(特許出願公告 昭42−
12884)。
Furthermore, as a method for separating impurities such as glutamic acid crystals and bacterial bodies, an organic solvent was added to the body fluid containing bacteria from which the glutamic acid crystals were precipitated, and which had a small specific gravity for the glutamic acid crystals and a large specific gravity for the crystallization mother liquor. After that, a method is known in which the crystals are sedimented by applying centrifugal force and transferred to an organic solvent layer to separate the crystals from the mother liquor containing various impurities (Patent Application Publication 1972-
12884).

しかし、上記の方法では分離された菌体エマル2.7層
にはまだかなシの水が、従って目的アミノ酸が残存して
おシ、前記出願公告昭38−6460の例では、静置分
層により分取したエマルジョン層を更に数回等量の水で
水洗する事によりグルタミン酸の回収率を上げている。
However, in the above method, a small amount of water and therefore the target amino acid remain in the 2.7 layer of the separated bacterial cell emulsion. The recovery rate of glutamic acid is increased by washing the emulsion layer separated several times with equal amounts of water.

しかし、この方法によれば、回収される水層中のグルタ
ミン酸の濃度は低下せざるを得す、後工程である水層か
らのグルタミン酸の単離精製工程でのエネルギー消費量
の増大につながっていた。
However, according to this method, the concentration of glutamic acid in the recovered aqueous layer inevitably decreases, which leads to an increase in energy consumption in the subsequent process of isolating and purifying glutamic acid from the aqueous layer. Ta.

(問題点を解決するための手段) そこで本発明者らは、かかる欠点を有しない発酵液から
のアミノ酸の分離方法を鋭意検討の結果、含菌体アきノ
酸発酵液に有機溶剤を添加、攪拌して得られる菌体−有
機溶剤一水エマルジョン(菌体エマルション)を遠心沈
降する事により、比重差によって菌体エマル2.7層と
水層との2層に又は有機溶剤層と菌体エマル2.7層と
水層との3層に容易に分離し得る事を見いだし、発酵液
を希釈する事無く、発酵目的物(アi)酸)を含菌体発
酵液から高収率で回収し得る本発明を完成させるに至っ
た。
(Means for Solving the Problems) Therefore, as a result of intensive research into a method for separating amino acids from fermentation broth that does not have these drawbacks, the present inventors added an organic solvent to the anoic acid fermentation solution containing bacteria. By centrifuging the bacterial cell-organic solvent/water emulsion (bacterial emulsion) obtained by stirring, the difference in specific gravity results in two layers: a bacterial cell emulsion 2.7 layer and an aqueous layer, or an organic solvent layer and a bacterial cell emulsion. It was discovered that the fermentation target product (acid) can be easily separated into three layers: the body emul 2.7 layer and the aqueous layer, and the fermentation target product (acid) can be obtained in high yield from the bacteria-containing fermentation liquid without diluting the fermentation liquid. We have now completed the present invention, which allows for recovery.

例えば、炭水化物系の発酵原料を用いたL−フェニルア
ラニン発酵液(P)I−2,85に調整した液)100
mgにトルエンを等量刑えた後攪拌し、30分間靜静置
層す゛ると得られる菌体不含水層量は48mであシ、約
半量の水は菌体エマルジョン層に包含されておシ、静置
分層時間を更に延長しても、この水は容易には分層して
こない。又、回収されるL−フェニルアラニン量は、は
ぼ水層回収量に比例しておυ、高回収率でL−フェニル
アラニンを回収しようとすれば、後で比較例1で示す様
に、分取したエマルジョン層に水を加え攪拌後、再度静
置分層する水洗操作が必須である。
For example, L-phenylalanine fermentation liquid using carbohydrate-based fermentation raw materials (liquid adjusted to P)I-2,85) 100
After pouring an equal amount of toluene into the microorganism, stir and leave to stand still for 30 minutes.The amount of water layer free of bacteria obtained is 48 m, and about half of the water is included in the bacteria emulsion layer. Even if the separation time is further extended, this water does not easily separate into layers. In addition, the amount of L-phenylalanine recovered is proportional to the amount recovered in the aqueous layer, so if you want to recover L-phenylalanine with a high recovery rate, as will be shown later in Comparative Example 1, preparative separation is necessary. After adding water to the emulsion layer and stirring, it is essential to wash the emulsion layer by standing still and separating the layers again.

そこで、この水洗水量を削減すべく、本発明者らは種々
検討の結果、菌体エマルジョンを遠心沈降に付すればI
Gの重力分層で得られるよシ多量のしかもL−フェニル
アラニンを高濃度に含有する水層を回収し得る事に思い
至った。
Therefore, in order to reduce the amount of washing water, the present inventors have conducted various studies and found that if the bacterial emulsion is subjected to centrifugal sedimentation, the I.
It was realized that it is possible to recover an aqueous layer containing a large amount of L-phenylalanine at a high concentration compared to that obtained by gravity separation of G.

そこで後に実施例で詳細に示す様に、一旦重力場で水層
と分層された菌体エマルション層を採取し、遠心沈降に
付すると、更に菌体不含水層が分層分離してくる事が観
察され、水洗水を用いる事無くL−7工ニルアラニン回
収率および濃度の大幅な向上を実現し得た。
Therefore, as will be shown in detail later in Examples, when the bacterial cell emulsion layer that has been separated from the water layer in a gravity field is collected and subjected to centrifugal sedimentation, the bacterial cell-free water layer will be further separated. was observed, and it was possible to realize a significant improvement in the recovery rate and concentration of L-7 engineered nylalanine without using washing water.

通常、有機溶剤を添加混合しない発酵液を遠心沈降に付
すると、比重の大きな菌体は沈降し、菌体が濃縮された
重液と上澄み液(軽液)とに分離される。
Normally, when a fermentation liquid that is not mixed with an organic solvent is subjected to centrifugal sedimentation, bacterial cells with a large specific gravity settle and are separated into a heavy liquid containing concentrated bacterial cells and a supernatant liquid (light liquid).

これに反し、発酵液に、例えば、水よシ比重の小さいト
ルエン(有機溶剤)を添加攪拌した後に。
On the other hand, after stirring, for example, toluene (organic solvent), which has a lower specific gravity than water, is added to the fermentation liquid.

遠心沈降にかければ、本来重液として水層下部に沈降す
るはずの菌体が、驚くべき事に、トルエンと水とで形成
されるエマルジョン層中に留まり、重液である水層と分
離されるのである。もし、水よシ比重の大きいEDC(
エチレンジクロライド)等の有機溶剤を用いれば、菌体
エマル212層が重液として沈降し、水層が軽液として
回収される事は言うまでもない。これらの事実は、有機
溶剤逃埋により、親油性の菌体細胞膜と有機溶剤が強固
な親和性を示す様になシ、その挙動を同じくする、との
考え方で理解される。
When subjected to centrifugal sedimentation, the bacterial cells, which should normally settle at the bottom of the aqueous layer as a heavy liquid, surprisingly remained in the emulsion layer formed by toluene and water and were separated from the aqueous layer, which was a heavy liquid. It is. If water has a high specific gravity, EDC (
It goes without saying that if an organic solvent such as ethylene dichloride is used, the bacterial emul 212 layer will settle as a heavy liquid and the aqueous layer will be recovered as a light liquid. These facts can be understood from the idea that by escaping the organic solvent, the lipophilic bacterial cell membrane and the organic solvent exhibit a strong affinity and behave in the same way.

本発明に於て使用し得る有機溶剤としては、基本的に水
と二層を形成し、当該アミノ酸に対しほとんど溶解度を
持たない有機溶剤であればよく、トルエン、n−゛ヘキ
サン、a−ブタノール、MIBK(メチルイソブチルケ
トン)等広く使用し得る。
The organic solvent that can be used in the present invention basically needs to be an organic solvent that forms two layers with water and has almost no solubility for the amino acid, such as toluene, n-hexane, and a-butanol. , MIBK (methyl isobutyl ketone), etc. can be widely used.

ただし、発酵液の糧類に二って有機溶剤に多少、適、不
適があるが、当業者であれば適切な有機溶剤を選定する
ことは容易である。炭水化物系の発酵原料を用いたL−
7工ニルアラニン発酵液及びL−リジン発酵液の例では
、MIBK v n−ブタノール、トルエン、酢酸エチ
ル、ジクロロメタン、オレイン酸等が使用可能である。
However, depending on the type of fermentation liquid, organic solvents are more or less suitable and unsuitable, but those skilled in the art can easily select an appropriate organic solvent. L- using carbohydrate-based fermented raw materials
As examples of the 7-engineering nylalanine fermentation liquid and the L-lysine fermentation liquid, MIBK v n-butanol, toluene, ethyl acetate, dichloromethane, oleic acid, etc. can be used.

有機溶剤の使用量について以下に述べる。例えば、炭水
化物系発酵原料を用いたL−フェニルアラニン発酵液(
S−3)にトルエンを加えた場合では、発酵液量の5V
o1%のトルエンの添加でも菌体はエマルジョン層を形
成し、分離された。しかし、菌体不含であるべき水層中
に菌体前が残る様になる為、清澄性に欠けた。従って、
この場合は、トルエン使用量は望ましくは対発酵液量1
5Vo1%以上であった。他のアミノ酸発酵液と有機溶
剤との組合せにおいても同様に容易に有機溶剤の必要量
を定め得る。
The amount of organic solvent used will be described below. For example, L-phenylalanine fermentation liquid using carbohydrate-based fermentation raw materials (
When toluene is added to S-3), the fermentation liquid volume is 5V.
Even when 1% of toluene was added, the bacterial cells formed an emulsion layer and were separated. However, because the pre-microbial cells remained in the water layer, which should not contain microbial cells, clarity was lacking. Therefore,
In this case, the amount of toluene used is preferably 1
5Vo1% or more. For combinations of other amino acid fermentation liquids and organic solvents, the required amount of organic solvent can be determined easily in the same way.

又、本発明の操作に適した発酵液の一範囲は発酵液や使
用する溶剤の種類によって異なる。例えば、炭水化物系
発酵原料を用いたL−リジン発酵液とトルエンを使用し
た系では、pH−2,5−4,0に水層回収率が最大に
なる至適域があるが、n−プタノールを用いると−−2
,5−5,5で良好な水層回収性を示す。いずれにしろ
、当業者であれば、至適−範囲は容易に定め得る。
The range of fermentation liquors suitable for the operation of the present invention will also vary depending on the fermentation liquor and the type of solvent used. For example, in a system using toluene and L-lysine fermentation liquid using carbohydrate-based fermentation raw materials, there is an optimal range where the aqueous layer recovery rate is maximized at pH -2.5-4.0, but n-butanol Using --2
, 5-5,5 shows good aqueous layer recovery. In any case, those skilled in the art can easily determine the optimum range.

次に、本発明を実施するに当って作用させる遠心効果(
C)と必要な遠心沈降時間について述べる。
Next, the centrifugal effect (
C) and the required centrifugal sedimentation time.

図1にpH−2,85−3,05に調整された炭水化物
系発酵原料を用いたL−7工ニルアラニン発酵液に対し
、等体積のトルエンを加えて攪拌後、遠心効果を変えて
10分間遠心沈降した結果を示す。
Figure 1 shows that an equal volume of toluene was added to the L-7 engineered nylalanine fermentation solution using carbohydrate-based fermentation raw materials adjusted to pH-2.85-3.05, stirred, and then centrifuged for 10 minutes with different centrifugal effects. The results of centrifugal sedimentation are shown.

回収された水層の体積百分率は、IGでは21.5%(
回収率43%)だが、60Gで遠心沈降すれば体積百分
率41%(回収率82%)もの水層が得られる事が分か
る。更に遠心効果を上げて行くと、■ 回収される水層
量は増加するが、水層回収率的91%を上限として頭打
ちになる。■ 軽液上部に菌体を含まないトルエンの上
澄液部が生じ、全体で、トルエン層、菌体エマルジョン
層、水層の3層に分層する様になる。■ 約700G以
上になると水層下部に菌体前が沈降する様になシ、望ま
しくない、事が分かった。
The volume percentage of the recovered aqueous layer was 21.5% (
However, if centrifugal sedimentation is performed at 60G, an aqueous layer with a volume percentage of 41% (recovery rate of 82%) can be obtained. If the centrifugal effect is further increased, (1) The amount of water layer recovered increases, but the water layer recovery rate reaches a ceiling of 91%. ■ A toluene supernatant liquid containing no bacterial cells is formed above the light liquid, and the whole is divided into three layers: a toluene layer, a bacterial emulsion layer, and an aqueous layer. ■ It was found that when the pressure exceeds about 700G, the front of the bacterial cells appears to settle at the bottom of the water layer, which is undesirable.

又、図2に同じ発酵液を、遠心効果一定(C−250)
で遠心沈降時間を変えて分離した結果を示す。約5分の
分離時間でも水層回収率は大幅に向上する事が分かる。
In addition, the same fermentation liquid is shown in Figure 2 with constant centrifugal effect (C-250).
The results of separation with different centrifugal sedimentation times are shown. It can be seen that even with a separation time of about 5 minutes, the aqueous layer recovery rate is significantly improved.

図1.2よシ、遠心効果が6O−250G、遠心沈降時
間が5−10分間と言うごく軽度の遠心沈降により水層
回収率(アミノ酸回収率)の大幅な向上が実現する事が
分かる。
From Figure 1.2, it can be seen that the aqueous layer recovery rate (amino acid recovery rate) can be significantly improved by a very mild centrifugal sedimentation with a centrifugal effect of 6O-250G and a centrifugal sedimentation time of 5-10 minutes.

(作用及び発明の効果) 本発明の方法に従い、アミノ酸発酵液に有機溶剤を添加
攪拌して菌体エマルジョンを形成させ、該エマルジョン
を遠心沈降に付すれば、水洗水を用いなくても、10重
力分層によって得られる水層量の約2倍量の水層が回収
でき、同様にアミノ酸回収量もこれに比例して向上させ
得る。
(Action and Effect of the Invention) According to the method of the present invention, if an organic solvent is added to the amino acid fermentation liquid and stirred to form a bacterial emulsion, and the emulsion is subjected to centrifugal sedimentation, the Approximately twice the amount of water layer obtained by gravity separation can be recovered, and the amount of amino acid recovered can also be increased proportionately.

本発明の方法に従い、水洗水を用いず、従って、全くア
ミノ酸を希釈せずに1回の沈降分離で回収し得た水層量
は、L−フェニルアラニン発酵液の例では約91%であ
ったが、この回収率を重力分層のみで得ようとすれば、
比較例1に示す様に、発酵液量の約2倍量の水洗水を用
いて、くシ返し攪拌分層操作を行う必要があった。
According to the method of the present invention, the amount of water layer that could be recovered in one sedimentation separation without using washing water and therefore without diluting the amino acid at all was about 91% in the case of L-phenylalanine fermentation liquid. However, if we try to obtain this recovery rate only by gravity layer,
As shown in Comparative Example 1, it was necessary to perform a comb-over stirring and layer separation operation using approximately twice the amount of washing water as the amount of fermentation liquid.

又、更に高いアミノ酸回収率を得ようと思えば、一旦水
層と分離された菌体エマルジョン層に水を加え、これを
再度遠心沈降すれば、少量の水洗水の使用で、アミノ酸
回収率を容易に向上し得る事は言うまでも無い。
In addition, if you want to obtain an even higher amino acid recovery rate, you can add water to the bacterial cell emulsion layer that has been separated from the aqueous layer and centrifuge it again. Needless to say, it can be easily improved.

以上、本発明をL−フェニルアラニン発酵液、L−リジ
ン発酵液を例にとって説明したが、本発明はL−アルギ
ニン、L−ヒスチジンなどの他のアミノ酸発酵液にも適
用できることは云うまでもない。
Although the present invention has been explained above using L-phenylalanine fermentation broth and L-lysine fermentation broth as examples, it goes without saying that the present invention can also be applied to other amino acid fermentation broths such as L-arginine and L-histidine.

本発明の方法に従えば、以上の説明の様に、菌体不含ア
ミノ酸液のアミノ酸濃度の低下を最小限に抑え、常法に
よる単離精製工程でのエネルギー消費量を大幅に′削減
し得る、という利点が有る。
As explained above, according to the method of the present invention, the decrease in the amino acid concentration of the bacterial cell-free amino acid solution can be minimized, and the energy consumption in the conventional isolation and purification process can be significantly reduced. There is an advantage that you can get it.

(実施例) 以下、実施例によって本発明の詳細な説明する。(Example) Hereinafter, the present invention will be explained in detail with reference to Examples.

ただし実施例は本発明を限定するものと考えられるべき
ではない。
However, the examples should not be considered as limiting the invention.

又、実施例中で用いられたアミノ酸分析は以下の方法で
行われた。
Moreover, the amino acid analysis used in the examples was performed by the following method.

アンノ酸アナライザー分析 機種   :日立 835−50形 カラム  :日立+26174φX25053℃溶離液
   :  0.3d/min Buff@r三段切り
替えニンヒドリン :  0.3 m7 min反応槽
温度 :98℃ 検出波長 :570nm 比較例1 炭水化物系発酵原料を用いたL−7工ニルア2二ン発酵
液(100OG、30分間の遠心沈降で含菌体重液15
Vo1%の菌体を含んでいた。)250−に水1010
Osを加え、98%硫酸を用いてPH−2,96に調整
した。この液にトルエン175mgを加え、分液ロート
中で十分に振とうし35分間静置分層すると、上層の菌
体エマル2.7層と下層の菌体不含水層に分層した。
Annoic acid analyzer analysis model: Hitachi 835-50 column: Hitachi +26174φ L-7 fermentation liquid using carbohydrate-based fermentation raw materials (100OG, centrifugal sedimentation for 30 minutes will yield 15% of the bacteria-containing liquid)
It contained Vo1% of bacterial cells. ) 250- to water 1010
Os was added and the pH was adjusted to -2.96 using 98% sulfuric acid. 175 mg of toluene was added to this liquid, thoroughly shaken in a separatory funnel, and allowed to stand still for 35 minutes to separate the layers into an upper layer of 2.7 bacterial cell emuls and a lower bacterial cell-free aqueous layer.

水層(+1水層)を分取し、菌体エマル2.7層に水3
00−を加え、同様に振とり後、静置し分層してくる水
層(す2水層)を分取した。分離された菌体エマル2.
7層に更に水を100−加え、同様な操作を行い水層(
÷3水層)を分取した。
Separate the aqueous layer (+1 aqueous layer), add 2.7 layers of bacterial emulsion and 33 mL of water.
00- was added, and after shaking in the same manner, the mixture was allowed to stand and the aqueous layer that separated into layers (2 aqueous layers) was separated. Isolated bacterial cell emul 2.
Add 100% more water to the 7th layer and perform the same operation to form the aqueous layer (
÷3 aqueous layer) was separated.

分取された◆1−3水層の液量と、液中のL−フェニル
アラニン量は表1の通シであった。
The amount of the separated ◆1-3 aqueous layer and the amount of L-phenylalanine in the solution were as shown in Table 1.

表  1 水 量  L−7工ニルアラニン量 ◆1水層 195mg     4.2401!す2水
層 294m    2.171す3水層 1131s
t   0.5191回収されたL−フェニルアラニン
濃度は、4P1−3水層を合わせた平均値で11.53
.974であυ、L−7エニルアラニンの回収量は6.
938.9であった。これは使用した発酵液中に含まれ
てい九し−フェ二ルア2ニン量の92.5%に相当した
Table 1 Water amount L-7 Nylalanine amount◆1 water layer 195mg 4.2401! 2nd water layer 294m 2.171s 3rd water layer 1131s
t 0.5191 The recovered L-phenylalanine concentration is 11.53 as the average value of the 4P1-3 water layer combined.
.. 974, and the amount of L-7 enylalanine recovered is 6.
It was 938.9. This amount corresponded to 92.5% of the amount of 9-phenyluanine contained in the fermentation liquid used.

実施例1 炭水化物系発酵原料を用いた、98%硫酸によりPH−
2,96に調整されたし一フェニルアラニン発酵液(1
oooc、30分間の遠心沈降で含菌体重液15Vo1
%の菌体を含んでいた。)ZoomKトルエン100−
を加え、分液ロート中で振とう後装置分層すると、下層
として菌体不含水層が45−得られた。
Example 1 Using carbohydrate-based fermentation raw materials, PH-
1-phenylalanine fermentation solution adjusted to 2.96% (1
oooc, 15 Vol1 of bacteria-containing weight liquid was centrifuged for 30 minutes.
It contained % bacterial cells. ) ZoomK toluene 100-
was added, shaken in a separatory funnel, and then separated into layers using a device to obtain an aqueous layer free of bacterial cells as the lower layer.

上層の菌体エマル2.7層を60Gで10分間遠心沈降
分離したところ、更に37.2−の水層を重液として回
収し得た。以上の操作によるI、−フェニルアラニン回
収率は84.7%であシ、濃度は30、91171!、
であった。
When the 2.7 layers of the upper bacterial cell emulsion were centrifuged at 60G for 10 minutes, a further 37.2-layer aqueous layer could be recovered as a heavy liquid. The recovery rate of I,-phenylalanine by the above operation was 84.7%, and the concentration was 30.91171! ,
Met.

更にこの菌体エマル2.7層に水50−を加え、攪拌後
60Gで10分間遠心沈降分離し、49tdの水層を得
た。この水層中には0.3321iのI、−フェニルア
ラニンが含まれておシ、以上の全水層を合わせ7’cL
 −フェニルアラニンの回収率は95.7%であり、平
均濃度は2L91/1.であった。
Furthermore, 50 mL of water was added to the 2.7 layers of this bacterial emulsion, stirred, and then centrifuged at 60 G for 10 minutes to obtain an aqueous layer of 49 td. This aqueous layer contains 0.3321 i of I,-phenylalanine, and the total amount of the above aqueous layer is 7'cL.
- The recovery rate of phenylalanine was 95.7% and the average concentration was 2L91/1. Met.

実施例2 実施例1と同じ発酵液100−に、トルエン100dを
加え攪拌後、静置分層により下層として菌体不含水層3
8−をえた。この後、菌体エマル217層を750Gで
10分間遠心沈降し面体不含水層を更に52.7−得た
Example 2 To the same fermentation liquid 100 as in Example 1, 100 d of toluene was added and stirred, and then separated into layers by standing to form a bacterial cell-free aqueous layer 3 as the lower layer.
I got 8-. Thereafter, the bacterial cell emul 217 layer was centrifuged at 750G for 10 minutes to obtain an additional 52.7-layer of aqueous layer free of facepieces.

合計のアミノ酸回収率は93.4%であり、濃度は30
.99/J!、であった。
The total amino acid recovery was 93.4% and the concentration was 30
.. 99/J! ,Met.

実施例3 実施例1と同じ発酵液200mにトルエン3〇−を加え
攪拌後、25分間静置分層し菌体不含水層(÷1水層)
を分取した。
Example 3 Add 30ml of toluene to 200ml of the same fermentation liquid as in Example 1, stir, and then let stand for 25 minutes to separate the layers to form a bacterial cell-free aqueous layer (÷1 aqueous layer)
was separated.

上層の菌体エマル2.7層に水100−を追加し攪拌後
、25分間静置分層し菌体不含水層(÷2水層−1)を
得゛た。この菌体エマル2.7層を250Gで10分間
遠心沈降分離して、重液として更に水層(+2水層−2
)を得た。
100 ml of water was added to 2.7 layers of the upper bacterial cell emulsion, stirred, and then allowed to stand for 25 minutes to separate the layers to obtain a bacterial cell-free water layer (÷2 water layer - 1). The 2.7 layers of this bacterial cell emulsion were centrifuged at 250G for 10 minutes, and a heavy liquid was obtained by further aqueous layer (+2 aqueous layer -2
) was obtained.

ナ1水層、÷2水層−1、ナ2水層−2の液量と中に含
まれるL−フェニルアラニン量は表2の通り。
Table 2 shows the liquid amounts of Na1 aqueous layer, ÷2 aqueous layer-1, and Na2 aqueous layer-2 and the amount of L-phenylalanine contained therein.

表  2 Wit     L−フェニルアラニン量す1水層  
    88.0m      2.719F÷2水層
−1   128.5d      2.048N◆2
水層−250,1mA      0.791回収され
たL−7エニルアラニン量は5.566.9であシ、回
収率は92.8%であった。又、得られた水層の平均濃
度は20.8 s g711であった。
Table 2 Wit L-phenylalanine amount 1 aqueous layer
88.0m 2.719F÷2 water layer-1 128.5d 2.048N◆2
Aqueous layer - 250.1 mA 0.791 The amount of L-7 enylalanine recovered was 5.566.9, and the recovery rate was 92.8%. Moreover, the average concentration of the obtained aqueous layer was 20.8 s g711.

【図面の簡単な説明】 図1は、遠心沈降時間を一定(10分間)とし、遠心効
果を変化させた場合の分層状況をしめし、図2は、遠心
効果を一定(G−250)とした場合で、遠心沈降時間
を変化させた時の分層状況を示す。
[Brief explanation of the drawings] Figure 1 shows the layer separation situation when the centrifugal sedimentation time is constant (10 minutes) and the centrifugal effect is varied, and Figure 2 shows the layer separation situation when the centrifugal effect is constant (G-250). The following shows the layer separation situation when the centrifugal sedimentation time is changed.

Claims (1)

【特許請求の範囲】[Claims] 菌体を含むアミノ酸発酵液に、水に加えると二層を形成
しかつ当該アミノ酸を溶解しない有機溶剤を加えて攪拌
後、その混合液全体又は静置分層して得られる菌体エマ
ルジョン層を遠心沈降にかけ、ここに生ずるアミノ酸を
溶解した水層を他層から分離し、該水層からアミノ酸を
常法により分離回収する事を特徴とするアミノ酸発酵液
からのアミノ酸の回収方法。
An organic solvent that forms two layers when added to water and does not dissolve the amino acids is added to the amino acid fermentation liquid containing bacterial cells, and after stirring, the entire mixture or a bacterial cell emulsion layer obtained by static layer separation is added. A method for recovering amino acids from an amino acid fermentation solution, which comprises subjecting the solution to centrifugal sedimentation, separating an aqueous layer in which amino acids are dissolved therefrom from other layers, and separating and recovering amino acids from the aqueous layer by a conventional method.
JP21770886A 1986-09-16 1986-09-16 Recovering method for amino acid from fermentation liquor Pending JPS6371189A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21770886A JPS6371189A (en) 1986-09-16 1986-09-16 Recovering method for amino acid from fermentation liquor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21770886A JPS6371189A (en) 1986-09-16 1986-09-16 Recovering method for amino acid from fermentation liquor

Publications (1)

Publication Number Publication Date
JPS6371189A true JPS6371189A (en) 1988-03-31

Family

ID=16708489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21770886A Pending JPS6371189A (en) 1986-09-16 1986-09-16 Recovering method for amino acid from fermentation liquor

Country Status (1)

Country Link
JP (1) JPS6371189A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003092853A1 (en) * 2002-05-06 2003-11-13 Forschungszentrum Jülich GmbH Integrated separation of organic substances from an aqueous bio-process mixture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003092853A1 (en) * 2002-05-06 2003-11-13 Forschungszentrum Jülich GmbH Integrated separation of organic substances from an aqueous bio-process mixture

Similar Documents

Publication Publication Date Title
US6207428B1 (en) Process for the isolation of clavulanic acid and of pharmaceutically acceptable salts thereof from the fermentation broth of streptomyces sp. P 6621 FERM P 2804
JPS6371189A (en) Recovering method for amino acid from fermentation liquor
JPH11503744A (en) Method for producing clavulanate
BG63086B1 (en) Method for isolation of clavulanic acid from fermentation nutrient by means of ultrafiltration
Shen et al. Process integration for production of 6-aminnopenicillanic acid from penicillin G fermentation broth
Yang et al. Extraction of penicillin-G by aqueous two-phase partition
DE1966428C3 (en) Process for the production of water-insoluble penicillin acylase
CN111499537A (en) Refining and purifying method of plant-derived ceramide extract
JP2002538948A (en) Emulsion crystallization with recirculation
WO1995011295A1 (en) An improved process to recover an aqueous fermentation broth
EP2921471A1 (en) Method for extracting aconitic acid from products of the sugar cane industry
JP2001504508A (en) Purification of clavulanic acid produced by fermentation
EP3223626B1 (en) Process for separating amino and/or organic acid-containing particles from a mixture
DE10040176B4 (en) Process for the isolation of cystine
CN113735731A (en) Extraction and purification method of ceramide compound
US3592845A (en) Separation of 2,3-dihydroxy-p-toluic acid from p-toluic acid
US2935520A (en) Recovery of steroids from fermentation broth
US2503216A (en) Purification of penicillin
US2793161A (en) Process for recovering vitamin b12
CH659824A5 (en) METHOD FOR PREVENTING THE REDUCTION OF THE MOTION OF ENZYME IN A ENZYME REACTION in aqueous phase.
JP2002080493A (en) Method for purifying sterols
JPH0141314B2 (en)
JP2003096025A (en) Method for producing glyoxylic acid monohydrate
JPS61218534A (en) Method of purifying crude 2,3-dimethylnaphthalene
JPS62267255A (en) Production of amide crystal using immobilized biocatalyst