JPS637108B2 - - Google Patents

Info

Publication number
JPS637108B2
JPS637108B2 JP57100103A JP10010382A JPS637108B2 JP S637108 B2 JPS637108 B2 JP S637108B2 JP 57100103 A JP57100103 A JP 57100103A JP 10010382 A JP10010382 A JP 10010382A JP S637108 B2 JPS637108 B2 JP S637108B2
Authority
JP
Japan
Prior art keywords
fine powder
ash
powder
classifier
silo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57100103A
Other languages
Japanese (ja)
Other versions
JPS58216763A (en
Inventor
Toshimoto Kobayashi
Susumu Sogo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP57100103A priority Critical patent/JPS58216763A/en
Publication of JPS58216763A publication Critical patent/JPS58216763A/en
Publication of JPS637108B2 publication Critical patent/JPS637108B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Combined Means For Separation Of Solids (AREA)

Description

【発明の詳細な説明】 本発明は、石炭焚ボイラなどの石炭を燃料とす
る燃焼装置において、石炭灰を輸送・分級処理す
る方法およびその装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and apparatus for transporting and classifying coal ash in a combustion device that uses coal as fuel, such as a coal-fired boiler.

従来、石炭焚ボイラなどにおいて石炭灰を処理
する場合、電気集じん機などの集じん装置で捕集
された灰(原粉)を真空ブロワにより一旦原粉サ
イロに集約し、ついで分級器を通すことにより原
粉を粗粉と細粉とに分級するという、いわゆる原
粉サイロを中継とした間接分級による灰処理方式
が一般に採用されている。第1図は従来の高真空
方式の灰処理装置の一例で、破線で囲まれた部分
は灰集約、中継部を示し、これ以外の部分は灰分
級部を示している。1は真空ブロワで、灰を真空
輸送するための高真空動力源である。電気集じん
機などの集じん装置2で捕集されホツパ3に貯つ
た灰(通常、フライアツシユと呼ばれている)
は、灰供給弁4から灰輸送管5内に供給され、空
気吸入弁6から吸い込まれた大気空気流に乗り、
灰輸送管5を通してレシーバ7まで空気輸送され
る。灰輸送管5の口径は通常、150〜250mm、管内
風速は20m/秒であり、灰の輸送時の灰輸送管内
圧力は真空ブロワ入口部で−5000mmAqという高
真空が必要である。また輸送時の灰輸送管内の空
気と灰との混合割合は、重量比ベースで空気1に
対し灰8〜12である。レシーバ7で灰は遠心分さ
れ、高真空領域と大気領域とを遮断するために設
けられた二重ダンパ8を通して原粉サイロ10に
貯灰される。レシーバ7を通過した含じん空気は
バグフイルタ11により脱じんされる。清浄化さ
れた空気は真空ブロワ1を通り集じん装置入口ダ
クト12に戻される。一方、バグフイルタ11で
捕集された灰は二重ダンパ13を通して原粉サイ
ロ10に貯灰される。
Conventionally, when processing coal ash in a coal-fired boiler, etc., the ash (raw powder) collected by a dust collection device such as an electrostatic precipitator is collected in a powder silo using a vacuum blower, and then passed through a classifier. Generally, an ash treatment method is adopted in which the raw powder is classified into coarse powder and fine powder by indirect classification using a so-called raw powder silo as a relay. FIG. 1 shows an example of a conventional high-vacuum type ash processing apparatus, in which the part surrounded by broken lines shows the ash collection and relay part, and the other part shows the ash classification part. 1 is a vacuum blower, which is a high vacuum power source for vacuum transporting ash. Ash collected by a dust collector 2 such as an electrostatic precipitator and stored in a hopper 3 (usually called fly ash)
is supplied from the ash supply valve 4 into the ash transport pipe 5 and rides on the atmospheric air flow sucked from the air intake valve 6,
The ash is pneumatically transported through the ash transport pipe 5 to the receiver 7. The diameter of the ash transport pipe 5 is usually 150 to 250 mm, the air velocity inside the pipe is 20 m/sec, and the pressure inside the ash transport pipe during ash transport requires a high vacuum of -5000 mmAq at the vacuum blower inlet. The mixing ratio of air and ash in the ash transport pipe during transportation is 8 to 12 parts air to 1 part ash on a weight ratio basis. The ash is centrifuged in the receiver 7 and stored in the raw powder silo 10 through a double damper 8 provided to isolate the high vacuum region from the atmospheric region. The dust-containing air that has passed through the receiver 7 is removed by a bag filter 11. The cleaned air passes through the vacuum blower 1 and is returned to the dust collector inlet duct 12. On the other hand, the ash collected by the bag filter 11 is stored in the raw powder silo 10 through the double damper 13.

原粉サイロ10に貯つた原粉は、ロータリフイ
ーダ14から灰輸送管15内に供給される。灰輸
送管15にはフアン16が接続され、このフアン
16により灰輸送管15内に空気流を発生せし
め、原粉サイロ10に貯つた灰(原粉)を分級器
17およびサイクロンなどの細粉捕集器18まで
空気輸送する。すなわちフアン16は低真空動力
源である。灰輸送管15内へ供給された原粉は空
気流に乗り、灰輸送管を通して分級器17まで空
気輸送される。灰輸送管15の口径は通常、400
〜500mmであり、灰の輸送時の灰輸送管15内圧
はフアン16の入口部で−500〜−700mmAqとい
う低真空である。また輸送時の灰輸送管15内の
空気と灰との混合割合は重量比ベースで空気1に
対し灰1という低濃度である。これは分級精度を
向上させる必要から低濃度としている。原粉は分
級器17で粗粉と細粉とに分級され、分級された
粗粉は分級器17の下部に取り付けられたロータ
リフイーダ20を通して粗粉サイロ21に投入さ
れて貯灰され、一方、分級器17を通過した細粉
は細粉捕集器18で捕集され、細粉捕集器下部に
取り付けられたロータリフイーダ22を通して細
粉サイロ23に投入されて貯灰される。細粉捕集
器18を通過した含じん空気はフアン16を通
り、再び原粉サイロ10の下部に取り付けられた
ロータリフイーダ14を経由して分級器17、細
粉捕集器18、フアン16の順序に循環される。
フアン16と原粉サイロ10下部のロータリフイ
ーダ14との間の循環ダクト19内の含じん濃度
は、飽和点に達するとそれ以上含じん濃度は上昇
することはない。通常、この間の含じん濃度は20
〜30g/Nm3である。外部から循環系内へ漏れ込
む少量のリークエアを逃がすために、フアン16
の下流側に分岐して設けられた排気弁24が開け
られており、リークエア(含じん空気)は排気管
25を通つて集じん装置入口ダクト12に戻して
いる。
The raw powder stored in the raw powder silo 10 is supplied from the rotary feeder 14 into the ash transport pipe 15. A fan 16 is connected to the ash transport pipe 15, and the fan 16 generates an air flow inside the ash transport pipe 15, and the ash (raw powder) stored in the raw powder silo 10 is divided into fine powder by a classifier 17 and a cyclone. It is pneumatically transported to the collector 18. That is, the fan 16 is a low vacuum power source. The raw powder supplied into the ash transport pipe 15 rides on the air flow and is pneumatically transported to the classifier 17 through the ash transport pipe. The diameter of the ash transport pipe 15 is usually 400 mm.
-500 mm, and the internal pressure of the ash transport pipe 15 during ash transport is a low vacuum of -500 to -700 mmAq at the inlet of the fan 16. Further, the mixing ratio of air and ash in the ash transport pipe 15 during transportation is a low concentration of 1 part air to 1 part ash on a weight ratio basis. This concentration is set to be low because it is necessary to improve classification accuracy. The raw powder is classified into coarse powder and fine powder by a classifier 17, and the classified coarse powder is fed into a coarse powder silo 21 through a rotary feeder 20 attached to the lower part of the classifier 17 and stored as ash. The fine powder that has passed through the classifier 17 is collected by a fine powder collector 18, and fed into a fine powder silo 23 through a rotary feeder 22 attached to the lower part of the fine powder collector, where it is stored as ash. The dust-containing air that has passed through the fine powder collector 18 passes through the fan 16 , and then passes through the rotary feeder 14 attached to the bottom of the raw powder silo 10 again to the classifier 17 , the fine powder collector 18 , and the fan 16 . are cycled in the order of
Once the dust concentration in the circulation duct 19 between the fan 16 and the rotary feeder 14 at the bottom of the raw flour silo 10 reaches a saturation point, the dust concentration does not increase any further. Normally, the dust concentration during this period is 20
~30g/ Nm3 . In order to release a small amount of leak air that leaks into the circulation system from the outside, the fan 16
An exhaust valve 24 branched on the downstream side is opened, and leak air (air containing dust) is returned to the dust collector inlet duct 12 through an exhaust pipe 25.

分級器17の機能は大凡次の通りである。 The functions of the classifier 17 are roughly as follows.

粗粉の粉末度および収率:原粉の粉末度−900〜
−1000cm2/g、50% 細粉の粉末度および収率:原粉の粉末度+900〜
+1000cm2/g、50% なお粗粉サイロ21に貯つた粗粉は灰捨場へ運
搬されて埋立処分される他、一部は有効利用のた
め回収される場合がある。細粉サイロ23に貯つ
た細粉はセメント混和剤などの有効利用のため回
収される。
Fineness of coarse powder and yield: Fineness of raw powder -900 ~
−1000cm 2 /g, 50% Fineness and yield of fine powder: Fineness of raw powder +900~
+1000cm 2 /g, 50% The coarse powder stored in the coarse powder silo 21 is transported to an ash dump and disposed of in a landfill, and some of it may be recovered for effective use. The fine powder stored in the fine powder silo 23 is recovered for effective use as a cement admixture.

このように従来の灰処理装置は、装置が複雑で
あるのでコストが嵩み、また原粉の性状にかかわ
らず原粉はすべて原粉サイロに貯灰されるので、
灰の分別がつかなくなる。さらに灰輸送管内の灰
輸送時の混合比は1:8〜12(重量比)と灰濃度
が高いために摩耗対策として、管厚も14〜15mmと
厚く、しかも高級な耐摩耗材を必要とするなどの
欠点があつた。
In this way, conventional ash processing equipment is complicated and expensive, and all raw powder is stored in the raw powder silo regardless of the properties of the raw powder.
The ash becomes indistinguishable. Furthermore, the mixing ratio during ash transport in the ash transport pipe is 1:8 to 12 (weight ratio), which is a high ash concentration, so to prevent wear, the pipe is thick at 14 to 15 mm and requires high-grade wear-resistant material. There were drawbacks such as:

本発明は上記の欠点を解消するためになされた
もので、集じん装置で捕集された石炭灰を循環空
気により灰輸送管を介して低真空、低濃度で直接
分級器に導いて粗粉と細粉とに分級し、粗粉を粗
粉サイロに投入するとともに、細粉を細粉捕集器
を介して細粉サイロに投入し、分級の必要がない
ときは、前記細粉捕集器で捕集した細粉を粗粉サ
イロに、または分級器で捕集した粗粉を細粉サイ
ロに切替・投入することにより、装置を簡素化し
てコストの低減を計ることができるようにした石
炭灰の処理方法および処理装置を提供せんとする
ものである。
The present invention has been made to solve the above-mentioned drawbacks, and the coal ash collected by the dust collector is guided directly to the classifier at low vacuum and low concentration through the ash transport pipe using circulating air to powder it into coarse particles. The coarse powder is charged into a coarse powder silo, and the fine powder is introduced into a fine powder silo via a fine powder collector.When classification is not necessary, the fine powder collector is By switching and feeding the fine powder collected in the container into the coarse powder silo, or the coarse powder collected in the classifier into the fine powder silo, it is possible to simplify the equipment and reduce costs. It is an object of the present invention to provide a method and apparatus for treating coal ash.

以下、本発明の構成を図面に基づいて説明す
る。第2図は本発明の石炭灰の処理装置の一実施
例を示している。本発明は第1図に示す灰分級部
を応用したもので、電気集じん機、バグフイル
タ、サイクロンなどの集じん装置2下部のホツパ
3を灰輸送管26を介して分級器17に直接接続
し、この分級器17の粗粉出口をロータリフイー
ダ20を介して粗粉サイロ21に接続するととも
に、分級器17の排気出口をサイクロンなどの細
粉捕集器18に接続し、この細粉捕集器18の下
流側に低真空の誘引フアン16を接続し、かつこ
の細粉捕集器18の細粉出口にロータリフイーダ
22を介して細粉サイロ23を接続し、細粉捕集
器18と粗粉サイロ21とをエアスライダ、コン
ベア、シユートなどの切替・投入装置27を介し
て接続して構成されている。28は切替・投入装
置27に設けられた切替弁で、細粉サイロ23に
接続されている。30はフアン16出口と灰輸送
管26とを接続する循環ダクト、31は排気管で
ある。
Hereinafter, the configuration of the present invention will be explained based on the drawings. FIG. 2 shows an embodiment of the coal ash processing apparatus of the present invention. The present invention is an application of the ash classification section shown in FIG. The coarse powder outlet of the classifier 17 is connected to the coarse powder silo 21 via the rotary feeder 20, and the exhaust outlet of the classifier 17 is connected to a fine powder collector 18 such as a cyclone. A low-vacuum induction fan 16 is connected to the downstream side of the collector 18, and a fine powder silo 23 is connected to the fine powder outlet of the fine powder collector 18 via a rotary feeder 22. 18 and a coarse powder silo 21 are connected via a switching/feeding device 27 such as an air slider, a conveyor, or a chute. Reference numeral 28 denotes a switching valve provided in the switching/feeding device 27, which is connected to the fine powder silo 23. 30 is a circulation duct connecting the outlet of the fan 16 and the ash transport pipe 26, and 31 is an exhaust pipe.

上記のように、本発明の灰処理装置は、集じん
装置2で捕集されホツパ3に貯つた灰を直接分級
器17に導いたものである。第1図に示す従来装
置における原粉サイロ下部のロータリフイーダ1
4と分級器17は一般的には近接して設置される
ため、灰輸送距離は短かい。一方、本発明の装置
における集じん装置下部の灰供給弁4と分級器1
7との間の灰輸送距離は機器の配置上一般的には
灰輸送距離が長くなるので、この分だけフアン1
6の圧力を増加することにより対処することにな
る。第1図に示す従来技術の装置では、吸込圧力
は−500〜−700mmAqであるが、本発明の装置で
は大凡−1000〜−1200mmAqとなる。細粉捕集器
18下部の切替・投入装置27は原粉の品質に対
応すべく設置したものである。すなわち最近の石
炭火力発電所で使用する炭種は、1発電所で10種
以上の多くに達する。このため必然的に灰質も異
なつたものが発生し、中には原粉中の未燃分が多
く、分級器を通しても細粉中の未然分は5%を越
え、有効利用としての不都合な灰が発生する場合
がある。この品質不良原粉が発生した場合は、前
記切替弁28を閉として粗粉サイロ21側に切り
替え、細粉捕集器18で捕集された細粉をも切
替・投入装置27を通して粗粉サイロ21に投入
する。
As described above, in the ash processing apparatus of the present invention, the ash collected by the dust collector 2 and stored in the hopper 3 is directly guided to the classifier 17. Rotary feeder 1 at the bottom of the raw powder silo in the conventional device shown in Figure 1
4 and the classifier 17 are generally installed close to each other, so the ash transportation distance is short. On the other hand, the ash supply valve 4 and the classifier 1 at the bottom of the dust collector in the apparatus of the present invention
Generally speaking, the ash transport distance between fan 1 and fan 1 is longer due to equipment layout, so fan 1
This will be dealt with by increasing the pressure of 6. In the prior art device shown in FIG. 1, the suction pressure is -500 to -700 mmAq, but in the device of the present invention, it is approximately -1000 to -1200 mmAq. The switching/feeding device 27 at the bottom of the fine powder collector 18 is installed to correspond to the quality of the raw powder. In other words, the types of coal used in recent coal-fired power plants are often more than 10 types at a single power plant. For this reason, ash of different quality is inevitably generated, and there is a large amount of unburned content in the raw powder, and even if it is passed through a classifier, the unburned content in the fine powder exceeds 5%, making it difficult to use the ash effectively. may occur. When this raw powder of poor quality is generated, the switching valve 28 is closed and the switching is switched to the coarse powder silo 21 side, and the fine powder collected by the fine powder collector 18 is also passed through the switching/feeding device 27 to the coarse powder silo. Put it in on 21.

本発明においては、石炭灰の低真空、低濃度空
気輸送の低真空動力源である誘引フアン16の羽
根車の形状をラジアル羽根(プレート)としてい
る。ラジアル羽根(プレート)はダストの付着が
しにくく、かつ摩耗対策も容易にできることか
ら、取扱気体中のばいじん濃度が、瞬時50g/N
m3、連続30g/Nm3条件下でも使用でき、本発明
における場合のばいじん濃度下での使用条件に十
分対応できる。すなわち本発明における空気輸送
中の混合比1:1(重量比)状態でのばいじん濃
度は約1300g/Nm3となる。分級器17と細粉捕
集器18を合わせた総合効率は98%前後であり、
細粉捕集器18の出口、すなわちフアン16入口
でのばいじん濃度は約26g/Nm3となる。このば
いじん濃度下(26g/Nm3)ではフアン16は1
年に1回程度の定期点検を実施するだけですむ。
なお混合比(重量比)空気1に対し灰を1以上に
することは、装置全体の圧力損失が増加すること
によりフアン16の吸引圧力が−1200mmAq以上
となり、フアン16の仕様限界を超え、かつ分級
精度が低下するので不可能である。
In the present invention, the shape of the impeller of the induction fan 16, which is a low-vacuum power source for low-vacuum, low-concentration pneumatic transportation of coal ash, is a radial blade (plate). The radial blades (plates) are difficult to attract dust and can be easily prevented from wearing, so the dust concentration in the handled gas can be reduced to 50g/N instantaneously.
m 3 and continuous 30 g/Nm 3 , it can be used under the conditions of soot and dust concentration, which is the case in the present invention. That is, in the present invention, the soot and dust concentration at a mixing ratio of 1:1 (weight ratio) during pneumatic transport is approximately 1300 g/Nm 3 . The overall efficiency of the classifier 17 and fine powder collector 18 is around 98%.
The soot and dust concentration at the outlet of the fine powder collector 18, that is, at the inlet of the fan 16, is about 26 g/Nm 3 . Under this dust concentration (26g/ Nm3 ), fan 16 is 1
It is only necessary to carry out regular inspections once a year.
In addition, if the mixing ratio (weight ratio) is 1 ash to 1 air, the pressure loss of the entire device will increase, and the suction pressure of the fan 16 will exceed -1200 mmAq, exceeding the specification limit of the fan 16. This is not possible because the classification accuracy will decrease.

一方、逆に混合比(重量比)空気1に対し灰を
1以下にすることは、装置全体の圧力損失は低下
するが、その割には分級精度の向上は図れず、過
剰な設備となり、かえつて不経済な設備となる。
混合比1:1(重量比)条件下では空気輸送管中
の粉体の流動状態は浮遊流に近く、低濃度でもあ
るので、従来の高真空輸送と比べ圧倒的に摩耗が
少なく、管厚も4.5〜6mmと薄いものでよく、し
かも普通炭素鋼管が使用できる。それに比べ従来
方式の高真空輸送方式は、空気輸送管中のばいじ
ん濃度は本発明における場合の8〜12倍となるの
で、空気輸送管中の粉体の流動状態は底密流に近
く、高濃度とも重なつて摩耗も大となり、管厚も
14〜15mmと厚くなければならず、しかも高級な耐
摩耗材を必要とする。
On the other hand, by reducing the mixing ratio (weight ratio) of ash to 1 part of air to less than 1, the pressure loss of the entire device will be reduced, but the classification accuracy will not be improved and the equipment will become redundant. On the contrary, it becomes an uneconomical facility.
At a mixing ratio of 1:1 (weight ratio), the fluidity of the powder in the pneumatic transport pipe is close to that of a floating flow, and the concentration is low, so there is far less wear compared to conventional high-vacuum transport, and the pipe thickness can be reduced. The material may be as thin as 4.5 to 6 mm, and ordinary carbon steel pipes can be used. In contrast, in the conventional high-vacuum transport method, the dust concentration in the pneumatic transport pipe is 8 to 12 times that in the present invention, so the fluidity state of the powder in the pneumatic transport pipe is close to that of a bottom flow, and This overlaps with the concentration, leading to increased wear, and the pipe thickness also increases.
It must be as thick as 14 to 15 mm, and requires high-grade wear-resistant material.

第3図は本発明の石炭灰の処理装置の他の実施
例を示している。本例の装置は、分級器17と細
粉サイロ23とを切替・装入装置32を介して装
続して構成したものである。33は切替・投入装
置32に設けられた切替弁で、粗粉サイロ21に
接続されている。したがつて原粉が分級の必要が
ないほど細かいときは、分級器17で捕集した粗
粉を細粉サイロ23に切替・投入することができ
る。他の構成は第2図の場合と同様である。なお
第2図および第3図における切替弁28,33
は、たとえば第4図に示すような構造のものを用
いる。
FIG. 3 shows another embodiment of the coal ash processing apparatus of the present invention. The apparatus of this example is constructed by connecting a classifier 17 and a fine powder silo 23 via a switching/charging device 32. 33 is a switching valve provided in the switching/feeding device 32, and is connected to the coarse powder silo 21. Therefore, when the raw powder is so fine that classification is not necessary, the coarse powder collected by the classifier 17 can be switched to and fed into the fine powder silo 23. The other configurations are the same as those in FIG. 2. Note that the switching valves 28 and 33 in FIGS. 2 and 3
For example, a structure as shown in FIG. 4 is used.

また第2図および第3図において、石炭灰の輸
送に循環空気を使用できるように、誘引フアン1
6を循環ダクト30を介して灰輸送管26に接続
しているので、外部から空気を取り入れないで、
循環空気で石炭灰を輸送することができる。すな
わち輸送用空気はホツパ下部の灰供給弁4、分級
器17、細粉捕集器18、フアン16、再び灰供
給弁4と循環する。このように外部から空気を取
り入れないので、理論上は排気が出ない。実際は
洩れ込み分だけが排気されるが、きわめて僅かで
済む。また灰供給弁4から分級器17、細粉捕集
器18を経てフアン16に至る迄が大気圧以下の
圧力で運転される。大気圧以下の圧力で運転でき
る圧力の制御方法として灰供給弁4に至る迄の循
環ダクト30にノズル、オリフイス、調節弁など
の圧力調整手段を設ける。さらに灰供給弁4の上
流側に、集じん装置2の入口煙道に接続する排気
管31を設けて排気を可能にするとともに、煙道
ガスを循環系内に逆流させないように調節弁、逆
止弁などの逆流防止手段を設ける。
In addition, in Figures 2 and 3, an induction fan 1 is installed so that circulating air can be used for transporting coal ash.
6 is connected to the ash transport pipe 26 via the circulation duct 30, so air is not taken in from the outside.
Coal ash can be transported with circulating air. That is, the transport air circulates through the ash supply valve 4 at the bottom of the hopper, the classifier 17, the fine powder collector 18, the fan 16, and the ash supply valve 4 again. Since no air is taken in from the outside in this way, theoretically no exhaust air is emitted. In reality, only the leakage is exhausted, but it is only a very small amount. Further, the area from the ash supply valve 4 to the fan 16 via the classifier 17 and the fine powder collector 18 is operated at a pressure below atmospheric pressure. As a pressure control method that allows operation at a pressure below atmospheric pressure, the circulation duct 30 leading to the ash supply valve 4 is provided with pressure adjustment means such as a nozzle, orifice, and control valve. Furthermore, an exhaust pipe 31 connected to the inlet flue of the dust collector 2 is provided upstream of the ash supply valve 4 to enable exhaust, and a control valve and a reverse valve are installed to prevent the flue gas from flowing back into the circulation system. Provide backflow prevention means such as a stop valve.

以上説明したように、本発明は直接分級を特徴
とした低真空方式によりフライアツシユを輸送・
分級するものであり、直接分級式とすることで、
従来必要としていた原粉サイロ、レシーバ、バグ
フイルタ、二重ダンパ、空気吸入弁および灰輸送
管からなる灰集約、中継部の設置が不要となり、
装置全体が簡素化されるとともに、据付スペース
が縮少でき建設費が安価になる。また切替・投入
装置を設けているので、原粉の性状に即応した運
用を行なうことができる。従来方式では灰輸送管
内の灰輸送時の混合比は1:8〜12(重量比)で
あり、このため管厚も14〜15mmと厚く、しかも高
級な耐摩耗材を必要としていたが、本発明におい
ては混合比は1:1(重量比)と低濃度である。
このため管厚も4.5〜6mmと薄いものでよく、し
かも普通炭素鋼材製の鋼管が使用できる。また低
濃度であるので配管以外の機器についても摩耗に
よる損傷は少なくなり、かつランニングコストの
低減を計ることができる。(従来方式の50〜60
%)。さらに集じん装置入口ダクトへ排出する排
気量が殆どない(従来方式の50%以下)などの利
点がある。
As explained above, the present invention uses a low-vacuum method featuring direct classification to transport and transport flyash.
By using a direct classification method,
This eliminates the need for the ash collection and relay section consisting of a raw powder silo, receiver, bag filter, double damper, air intake valve, and ash transport pipe that was previously required.
The entire device is simplified, installation space is reduced, and construction costs are reduced. Furthermore, since a switching/feeding device is provided, operations can be carried out in response to the properties of the raw powder. In the conventional method, the mixing ratio during ash transport in the ash transport pipe was 1:8 to 12 (weight ratio), which resulted in a thick pipe of 14 to 15 mm and required high-grade wear-resistant material. The mixing ratio is 1:1 (weight ratio), which is a low concentration.
Therefore, the tube thickness may be as thin as 4.5 to 6 mm, and a steel tube made of ordinary carbon steel can be used. Furthermore, since the concentration is low, equipment other than piping is less likely to be damaged by wear, and running costs can be reduced. (50 to 60 in the conventional method)
%). Another advantage is that almost no exhaust gas is discharged into the dust collector inlet duct (less than 50% of the conventional method).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の石炭灰の処理装置の系統的説明
図、第2図は本発明の石炭灰の処理装置の一実施
例を示す系統的説明図、第3図は本発明の装置の
他の実施例を示す系統的説明図、第4図は切替弁
の一例を示す説明図である。 1……真空ブロワ、2……集じん装置、3……
ホツパ、4……灰供給弁、5……灰輸送管、6…
…空気吸入弁、7……レシーバ、8……二重ダン
パ、10……原粉サイロ、11……バグフイル
タ、12……集じん装置入口ダクト、13……二
重ダンパ、14……ロータリフイーダ、15……
灰輸送管、16……フアン、17……分級器、1
8……細粉捕集器、19……循環ダクト、20…
…ロータリフイーダ、21……粗粉サイロ、22
……ロータリフイーダ、23……細粉サイロ、2
4……排気弁、25……排気管、26……灰輸送
管、27……切替・投入装置、28……切替弁、
30……循環ダクト、31……排気管、32……
切替・投入装置、33……切替弁。
FIG. 1 is a systematic explanatory diagram of a conventional coal ash processing device, FIG. 2 is a systematic explanatory diagram showing an embodiment of the coal ash processing device of the present invention, and FIG. 3 is a systematic explanatory diagram showing an embodiment of the coal ash processing device of the present invention. FIG. 4 is an explanatory diagram showing an example of a switching valve. 1... Vacuum blower, 2... Dust collection device, 3...
Hopper, 4... Ash supply valve, 5... Ash transport pipe, 6...
... Air intake valve, 7 ... Receiver, 8 ... Double damper, 10 ... Raw powder silo, 11 ... Bag filter, 12 ... Dust collector inlet duct, 13 ... Double damper, 14 ... Rotary lift Ida, 15...
Ash transport pipe, 16...fan, 17...classifier, 1
8...Fine powder collector, 19...Circulation duct, 20...
...Rotary feeder, 21...Coarse powder silo, 22
...Rotary feeder, 23...Fine powder silo, 2
4...Exhaust valve, 25...Exhaust pipe, 26...Ash transport pipe, 27...Switching/injection device, 28...Switching valve,
30...Circulation duct, 31...Exhaust pipe, 32...
Switching/throwing device, 33... switching valve.

Claims (1)

【特許請求の範囲】 1 集じん装置で捕集された石炭灰を循環空気に
より灰輸送管を介して低真空、低濃度で直接分級
器に導いて粗粉と細粉とに分級し、粗粉を粗粉サ
イロに投入するとともに、細粉を細粉捕集器を介
して細粉サイロに投入し、分級の必要がないとき
は、前記細粉捕集器で捕集した細粉に粗粉サイロ
に、または分級器で捕集した粗粉を細粉サイロに
切替・投入することを特徴とする石炭灰の処理方
法。 2 集じん装置下部のホツパを灰輸送管を介して
分級器に接続し、この分級器の粗粉出口を粗粉サ
イロに接続するとともに、分級器の排気出口を細
粉捕集器に接続し、この細粉捕集器の下流側に低
真空の誘引フアンを接続し、かつこの細粉捕集器
の細粉出口に細粉サイロを接続し、分級器と細粉
サイロとを、または細粉捕集器と粗粉サイロとを
切替・投入装置を介して接続してなることを特徴
とする石炭灰の処理装置。 3 集じん装置下部のホツパを灰輸送管を介して
分級器に接続し、この分級器の粗粉出口を粗粉サ
イロに接続するとともに、分級器の排気出口を細
粉捕集器に接続し、この細粉捕集器の下流側に低
真空の誘引フアンを接続し、かつこの細粉捕集器
の細粉出口に細粉サイロを接続し、分級器と細粉
サイロとを、または細粉捕集器と粗粉サイロとを
切替・投入装置を介して接続し、さらに石炭灰の
輸送に循環空気を使用できるように前記誘引フア
ンを前記灰輸送管に接続してなることを特徴とす
る石炭灰の処理装置。 4 切替・投入装置が切替弁を有するエアスライ
ダである特許請求の範囲第2項または第3項記載
の石炭灰の処理装置。
[Claims] 1 Coal ash collected by a dust collector is guided directly to a classifier at low vacuum and low concentration through an ash transport pipe using circulating air to classify it into coarse powder and fine powder. Powder is fed into a coarse powder silo, and fine powder is fed into the fine powder silo via a fine powder collector.When classification is not necessary, coarse powder is added to the fine powder collected by the fine powder collector. A method for processing coal ash characterized by switching to a powder silo or switching and charging coarse powder collected by a classifier to a fine powder silo. 2 Connect the hopper at the bottom of the dust collector to the classifier via the ash transport pipe, connect the coarse powder outlet of this classifier to the coarse powder silo, and connect the exhaust outlet of the classifier to the fine powder collector. , connect a low vacuum induction fan to the downstream side of this fine powder collector, and connect a fine powder silo to the fine powder outlet of this fine powder collector, and connect the classifier and the fine powder silo, or A coal ash processing device characterized in that a powder collector and a coarse powder silo are connected via a switching/feeding device. 3 Connect the hopper at the bottom of the dust collector to the classifier via the ash transport pipe, connect the coarse powder outlet of this classifier to the coarse powder silo, and connect the exhaust outlet of the classifier to the fine powder collector. , connect a low vacuum induction fan to the downstream side of this fine powder collector, and connect a fine powder silo to the fine powder outlet of this fine powder collector, and connect the classifier and the fine powder silo, or The powder collector and the coarse powder silo are connected via a switching/feeding device, and the induction fan is connected to the ash transport pipe so that circulating air can be used for transporting coal ash. Coal ash processing equipment. 4. The coal ash processing device according to claim 2 or 3, wherein the switching/feeding device is an air slider having a switching valve.
JP57100103A 1982-06-10 1982-06-10 Method and apparatus for treating coal ash Granted JPS58216763A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57100103A JPS58216763A (en) 1982-06-10 1982-06-10 Method and apparatus for treating coal ash

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57100103A JPS58216763A (en) 1982-06-10 1982-06-10 Method and apparatus for treating coal ash

Publications (2)

Publication Number Publication Date
JPS58216763A JPS58216763A (en) 1983-12-16
JPS637108B2 true JPS637108B2 (en) 1988-02-15

Family

ID=14265048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57100103A Granted JPS58216763A (en) 1982-06-10 1982-06-10 Method and apparatus for treating coal ash

Country Status (1)

Country Link
JP (1) JPS58216763A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5063761B2 (en) * 2010-09-07 2012-10-31 中国電力株式会社 Thermal power generation system

Also Published As

Publication number Publication date
JPS58216763A (en) 1983-12-16

Similar Documents

Publication Publication Date Title
JP2010501822A (en) Cooling system for dry extraction of heavy ash from boilers
CN106629070A (en) Pneumatic powder conveying device
JPS6067325A (en) Granular powder collecting device
US4000885A (en) Cupola furnace waste gas recuperative system and method for operating same
CN1141188C (en) Quickly loaded separating system of powdered coal ash
CN105645113A (en) Sodium bicarbonate gathering, transporting and injecting method
JPS637108B2 (en)
CN218560389U (en) Flying ash pneumatic conveying system matched with special waste fluidized bed incinerator
CN207810737U (en) A kind of boiler fly ash low pressure dilute-phase pneumatic conveying device
CN208250225U (en) Coke oven coal-charging dedusting pre-spray system
CN208115967U (en) A kind of novel magnetic iron ore concentrate powder equipment for purifying and diffuser
CN207418780U (en) It is a kind of that there is the pulverized coal preparation system of external feeding and system of blast furnace injection
CN205328232U (en) Device is failed to improved generation sodium bicarbonate collection
JP7496462B1 (en) Fly ash circulation device
CN111068446A (en) Sintering flue gas circulation system and ash removal method thereof
Funk et al. Dust cyclone design
CN219530883U (en) Boiler fly ash high-efficiency treatment device
CN210197303U (en) Purification treatment system of waste incineration flue gas
JPS60133214A (en) Coal-ash treating method
CN220844623U (en) Dust removal pipeline device for transferring belt unloading points
CN215613984U (en) Underground area dust collecting and processing device
SU1397378A1 (en) Suction-type pneumatic transport installation
JPH0691119A (en) Dust collecting hood
US20220212142A1 (en) Apparatus and method for a carbon reduction assembly
JPH0333966B2 (en)