JPS637095B2 - - Google Patents

Info

Publication number
JPS637095B2
JPS637095B2 JP16238381A JP16238381A JPS637095B2 JP S637095 B2 JPS637095 B2 JP S637095B2 JP 16238381 A JP16238381 A JP 16238381A JP 16238381 A JP16238381 A JP 16238381A JP S637095 B2 JPS637095 B2 JP S637095B2
Authority
JP
Japan
Prior art keywords
separator
conductive
power supply
contact
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16238381A
Other languages
Japanese (ja)
Other versions
JPS5864145A (en
Inventor
Senichi Masuda
Naoki Sugita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP56162383A priority Critical patent/JPS5864145A/en
Priority to GB08228317A priority patent/GB2110119B/en
Priority to US06/433,414 priority patent/US4509958A/en
Priority to FR828216884A priority patent/FR2514266B1/en
Priority to IT49243/82A priority patent/IT1189380B/en
Priority to DE19823237780 priority patent/DE3237780A1/en
Publication of JPS5864145A publication Critical patent/JPS5864145A/en
Publication of JPS637095B2 publication Critical patent/JPS637095B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electrostatic Separation (AREA)

Description

【発明の詳細な説明】 本発明は、主として室内の空気を浄化するのに
使用する静電式超高性能フイルターの給電装置に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a power supply device for an electrostatic ultra-high performance filter used primarily to purify indoor air.

HEPAフイルターと称されるフイルターは、
一般に集塵効率の高いものであるが、それに含塵
ガスを通過させる場合の圧力損失も高いものであ
る。
A filter called a HEPA filter is
Although they generally have high dust collection efficiency, they also have a high pressure loss when passing dust-containing gas through them.

そのため、圧力損失を小さくしようとしてフイ
ルターの目を粗くすると、集塵効率が低下する
し、通風速度を遅くして圧力損失を小さくしよう
とすると、フイルターの大きさが大きくなつてし
まうという欠点があつた。また目づまりによる圧
力損失の増加が著しく、フイルターの寿命が短い
という欠点もあつた。そのために、フイルターの
前に適当なプレフイルターを設けてフイルターの
寿命を延ばす方法がとられていた。
Therefore, if you make the filter mesh coarser in an attempt to reduce pressure loss, the dust collection efficiency will decrease, and if you try to reduce the pressure loss by slowing down the ventilation speed, the filter will become larger. Ta. Another disadvantage was that the pressure loss due to clogging increased significantly and the life of the filter was short. For this reason, a method has been adopted in which a suitable pre-filter is provided in front of the filter to extend the life of the filter.

本発明者は、第1図及び第2図示のように含塵
ガスを通過させる器枠1に接地平行平板電極2を
気流方向に並列するように配置固定し、各電極2
の間隔内に高電圧を印加する放電線3を張設して
成る荷電部4と、その荷電部4を通過してくる含
塵ガスを通過させる器枠5に瀘材6を気流方向と
直交する方向に蛇行するように配置し、この瀘材
の隣り合う部分の間へ含塵ガスの通過をゆるす導
電性のセパレーター(別名スペーサー)7を上記
気流の上流側と下流側からそれぞれはさみ込み、
上流側の各セパレーターと下流側の各セパレータ
ーとの間に高電圧を印加する集塵部8とから成
り、荷電部4で予備荷電した粉塵粒子を集塵部8
で捕集する構成を有し、従来の瀘材のみの集塵効
率よりも3桁集塵効率を向上させることができる
という集塵効率が極めて高く、寿命の長い静電式
超高性能フイルターを発明した。
The present inventor arranged and fixed grounded parallel plate electrodes 2 in parallel in the airflow direction on a container frame 1 through which dust-containing gas passes, as shown in FIGS. 1 and 2, and each electrode 2
A charging section 4 consisting of a discharge wire 3 that applies a high voltage is stretched within an interval of A conductive separator (also known as a spacer) 7 is arranged in a meandering direction in the direction of the air flow, and conductive separators (also known as spacers) 7 that allow the passage of dust-containing gas between adjacent parts of the filter material are inserted from the upstream and downstream sides of the air flow, respectively.
It consists of a dust collection section 8 that applies a high voltage between each separator on the upstream side and each separator on the downstream side, and the dust particles precharged by the charging section 4 are collected in the dust collection section 8.
This is an electrostatic ultra-high performance filter that has a long lifespan and has an extremely high dust collection efficiency that can improve the dust collection efficiency by three orders of magnitude compared to the conventional filter material alone. Invented.

この静電式超高性能フイルターにおいて、上流
側の各セパレーター及び下流側の各セパレーター
に直接給電すると、あるセパレーターの一個所で
放電が起つた場合でも、全部のセパレーターの電
荷が放電個所に移動し、放電エネルギーが大きく
なるため、その放電によつて一時的にセパレータ
ー電圧が下り、集塵効率が一時的に低下したり、
瀘材に穴があくなど瀘材を損傷するおそれがあ
る。
In this electrostatic ultra-high performance filter, if power is supplied directly to each separator on the upstream side and each separator on the downstream side, even if a discharge occurs in one separator, the charge in all separators will move to the discharge point. , because the discharge energy increases, the separator voltage temporarily decreases due to the discharge, and the dust collection efficiency temporarily decreases.
There is a risk of damage to the filter material such as holes being formed in the filter material.

本発明は、上記の問題点を解消しうる静電式超
高性能フイルターの給電装置を提供しようとする
ものである。
The present invention aims to provide a power supply device for an electrostatic ultra-high performance filter that can solve the above problems.

以下図面第3図ないし第12図にもとずいて本
発明の実施例を説明すると、第3図ないし第10
図において9は含塵ガスを通過させる器枠で、左
右両側壁10,11、天板12及び底板13から
成る。14はガラス繊維などからなる瀘材で、器
枠9の内側において一方の側壁10から他方の側
壁11にかけて蛇行し、かつ上下両端が天板12
の内面と底板13の内面に到達するように設けて
成る。15,16は器枠9を通過する含塵ガスの
気流の上流側と下流側から蛇行している瀘材14
の隣り合う部分の間へそれぞれはさみ込んだ導電
性のセパレーターで、アルミ箔などからなり、瀘
材14の隣り合う部分を一定の間隔を保つように
支持するとともに含塵ガスの同間隔内への通過を
ゆるすようにするため、上端から下端にかけて波
形に折曲して成る。17は天板12の内面から瀘
材14及びセパレーター15,16の上端部を囲
撓するように突設した囲壁、18は底板13の内
面から瀘材14及びセパレーター15,16の上
端部を囲撓するように突設した囲壁で、これらの
囲壁17,18内にシール材19を流し込んで固
化し、瀘材14及びセパレーター15,16の上
下両端面を天板12及び底板13に気密に結合し
てある。20,21はシール材19を流し込む前
に各上流側セパレーター15と囲壁18の間、及
び各下流側セパレーター16と囲壁18の間にそ
れぞれ形成されている隙間に沿つて挿入し、シー
ル材19の流し込みによつて固定された導電性の
ゴムシートで、各セパレーター15,16の電荷
の移動を防ぐ電気抵抗を有し、これらは第4図示
のように細長いゴムシートをその中心線を境界に
してV字形に屈曲し、両屈曲片22,23の端縁
が常時開くように付勢し、各セパレーター15,
16に対向させる屈曲片22には、その端縁から
多数の切込線24を入れて細切片25を設け、
個々の細切片25が個々のセパレーター15,1
6に圧接するように設けて成る。26は器枠9の
入口を被うように取付けた金網その他の多孔カバ
ー、27は器枠9の内側において多孔カバー26
と瀘材14の間に設けた接地平行平板電極で、含
塵ガスの気流と同方向に並設してある。28は各
電極27の間隔を保持するとともに各電極27を
電気的に導通させる筒形の導電性スペーサーで、
これらは各電極27の上部、中間部、下部の3個
所に貫通させた芯杆29によつて支持されてい
る。30は各電極27の間隔毎に設けたイオン化
線で、天板12と底板13の間にスプリング3
1,32を介して張設してある。33は導電性ゴ
ムシート21は高圧電源装置34の高電圧を印加
するための接続端子、35はイオン化線30に高
圧電源装置34の高電圧を印加するための接続端
子、36はアース端子で、器枠9の側壁11の内
面と接する上流側セパレーター15、導電性ゴム
シート20、電極27に共通に接触させたアルミ
箔37と導通している。38は瀘材14の左右両
側端面のうち下流側端面と器枠9の左右両側壁1
0,11との間をそれぞれ気密に結合するシール
材で、左右両側壁10,11が木材など粉塵を発
生するおそれがある材質で作られている場合に
は、左右両側壁10,11の下流側の内面から粉
塵の発生を防ぐシールの役目もする。
Embodiments of the present invention will be described below based on FIGS. 3 to 12. FIGS.
In the figure, reference numeral 9 denotes a container frame through which dust-containing gas passes, and is composed of left and right side walls 10, 11, a top plate 12, and a bottom plate 13. Reference numeral 14 denotes a filter material made of glass fiber or the like, which snakes inside the container frame 9 from one side wall 10 to the other side wall 11, and has upper and lower ends connected to the top plate 12.
and the inner surface of the bottom plate 13. Reference numerals 15 and 16 denote filtering materials 14 that meander from the upstream and downstream sides of the airflow of dust-containing gas passing through the container frame 9.
A conductive separator sandwiched between adjacent parts of the filtration material 14, made of aluminum foil or the like, supports the adjacent parts of the filter material 14 so as to keep a constant distance between them, and also prevents dust-containing gas from entering the same space. It is bent into a wave shape from the top end to the bottom end to allow for easy passage. Reference numeral 17 denotes a surrounding wall that protrudes from the inner surface of the top plate 12 to surround the upper ends of the filter material 14 and the separators 15 and 16, and reference numeral 18 indicates a surrounding wall that surrounds the upper ends of the filter material 14 and the separators 15 and 16 from the inner surface of the bottom plate 13. A sealing material 19 is poured into these surrounding walls 17 and 18 and solidified using surrounding walls that protrude so as to bend, and both upper and lower end surfaces of the filter material 14 and separators 15 and 16 are airtightly connected to the top plate 12 and the bottom plate 13. It has been done. 20 and 21 are inserted along the gaps formed between each upstream separator 15 and the surrounding wall 18 and between each downstream separator 16 and the surrounding wall 18 before pouring the sealing material 19 into the sealing material 19. It is a conductive rubber sheet fixed by pouring, and has an electric resistance that prevents the movement of charges in each separator 15, 16, and these are made of a long and thin rubber sheet with its center line as a boundary, as shown in the fourth figure. The separators 15, 23 are bent in a V shape and biased so that the edges of both bent pieces 22, 23 are always open.
A bent piece 22 opposite to the bent piece 16 is provided with a thin cut piece 25 by making a number of cut lines 24 from its edge,
Individual strips 25 are separated by individual separators 15,1
6. 26 is a wire mesh or other porous cover attached to cover the entrance of the container frame 9; 27 is a porous cover 26 on the inside of the container frame 9;
A grounded parallel plate electrode is provided between the filter member 14 and the filter material 14, and is arranged in parallel in the same direction as the airflow of the dust-containing gas. 28 is a cylindrical conductive spacer that maintains the distance between each electrode 27 and makes each electrode 27 electrically conductive;
These are supported by a core rod 29 that penetrates each electrode 27 at three locations: the top, middle, and bottom. Reference numeral 30 denotes an ionization line provided at each interval between the electrodes 27, and a spring 3 is provided between the top plate 12 and the bottom plate 13.
1 and 32. 33 is a connection terminal for applying the high voltage of the high voltage power supply 34 to the conductive rubber sheet 21; 35 is a connection terminal for applying the high voltage of the high voltage power supply 34 to the ionization wire 30; 36 is a ground terminal; It is electrically connected to the upstream separator 15 that is in contact with the inner surface of the side wall 11 of the container frame 9, the conductive rubber sheet 20, and the aluminum foil 37 that is in common contact with the electrode 27. Reference numerals 38 denote the downstream side end surfaces of the left and right end surfaces of the filter material 14 and the left and right side walls 1 of the container frame 9.
If the left and right walls 10, 11 are made of a material that may generate dust, such as wood, the downstream side of the left and right walls 10, 11 is It also acts as a seal to prevent dust from forming on the inner surface of the side.

上記の構成において瀘材14及び各セパレータ
ー15,16によつて形成される集塵部は、上流
側セパレーター15と下流側セパレーター16と
の間でコンデンサーが形成され、導電性ゴムシー
ト20,21の前記電気抵抗を介して高電圧が給
電され、瀘材14を通して若干のリーク電流が流
れることから、各セパレーター間の静電容量を
C1、C2、………、Coとし、導電性ゴムシート2
0,21の抵抗をR1,R2………,Roとし、瀘材
14の抵抗Rl1,Rl2,………,Rloとすると、上
記集塵部の等価回路は第7図に示すようになる。
In the above configuration, the dust collection section formed by the filter material 14 and the separators 15 and 16 has a capacitor formed between the upstream separator 15 and the downstream separator 16, and the conductive rubber sheets 20 and 21. A high voltage is supplied through the electrical resistance, and a small amount of leakage current flows through the filter material 14, so the capacitance between each separator is reduced.
C 1 , C 2 , ......, Co and conductive rubber sheet 2
Assuming that the resistances of 0 and 21 are R 1 , R 2 ......, Ro , and the resistances of the filter material 14 are Rl 1 , Rl 2 , ......, Rl o , the equivalent circuit of the dust collecting section is shown in Figure 7. It becomes as shown in .

今、導電性ゴムシート20,21を介さず、各
セパレーター15,16に直接給電する場合の等
価回路を示せば第8図のようになるが、あるセパ
レーターの一個所で放電が起つた場合でも、各セ
パレーター15,16の全部の電荷が放電個所へ
瞬時に移動し、放電エネルギーは大きくなつてし
まう。その時の放電エネルギーは、ほぼ E1=1/2(C1+C2+………+Co)V2 となる。
Now, if we show the equivalent circuit when power is directly supplied to each separator 15, 16 without going through the conductive rubber sheets 20, 21, it will be as shown in Figure 8. , all the charges on each separator 15, 16 are instantaneously moved to the discharge location, and the discharge energy becomes large. The discharge energy at that time is approximately E 1 = 1/2 (C 1 +C 2 + +C o )V 2 .

この放電エネルギーは、セパレーター15,1
6間の静電容量と印加電圧によつて決つてしま
い、外部に接続された抵抗Rxによつては影響さ
れない。
This discharge energy is transmitted through the separators 15, 1
6 and the applied voltage, and is not affected by the externally connected resistor Rx .

しかし第7図のようにセパレーター15,16
を一枚一枚切りはなし個別に導電性ゴムシートの
抵抗R1〜Roを介して給電すると、あるセパレー
ターの一個所で放電が起つても、抵抗R1〜Ro
よつて放電々荷量が制限され、他のセパレーター
間に充電された電荷が放電個所へ移動しないた
め、その放電エネルギーは、抵抗R1〜Roを介さ
ない場合に比しほぼn分の1、すなわち E2=1/2CoV2=E1/n になる。
However, as shown in Figure 7, separators 15 and 16
If power is supplied through the resistors R 1 to R o of the conductive rubber sheet one by one, even if a discharge occurs at one location on a certain separator, the discharged charge will be suppressed by the resistors R 1 to R o . Since the amount of charge is limited and the charge charged between other separators does not move to the discharge point, the discharge energy is approximately 1/n compared to the case not via the resistors R 1 to R o , that is, E 2 = 1/2C o V 2 =E 1 /n.

器枠9の外形寸法を、例えばたて、よこいずれ
も610mm、奥行150mmとし、電源電圧1KV、瀘材
リーク抵抗200MΩ、瀘材リーク電流がセパレー
ター1段当り5μA、セパレーター間静電容量が3
×10-8Fの場合、実験によると、放電々荷量を制
限する効果は、抵抗Roの値がセパレーター間の
静電容量にもよるが10KΩ以上になつてくると表
われて来て、抵抗値が高ければ高いほどセパレー
ター間の電荷の移動が小さくなる。ところが抵抗
Roの値をあまり大きくすると、リーク電流によ
つて抵抗Roの両端に電圧降下が生じ、実質的に
セパレーター間に加わる電圧が低下してしまい、
捕集効率が低下してしまう。具体例としては、電
源電圧1KVに対し5%の電圧低下を許容すると
してリーク電流は上記のようにスペーサー1段当
り5μAなので 1000×0.05/5×10-6=107(Ω) 約10MΩ以下であれば、抵抗Roにおける電圧
降下分は無視できる。
The external dimensions of the container frame 9 are, for example, 610 mm both vertically and horizontally, and 150 mm deep, the power supply voltage is 1 KV, the filter material leak resistance is 200 MΩ, the filter material leak current is 5 μA per separator stage, and the capacitance between separators is 3
In the case of ×10 -8 F, experiments have shown that the effect of limiting the discharge load becomes apparent when the value of the resistance Ro becomes 10KΩ or more, although it depends on the capacitance between the separators. , the higher the resistance value, the smaller the charge transfer between the separators. However, resistance
If the value of R o is set too large, a voltage drop will occur across the resistor R o due to leakage current, and the voltage applied across the separator will essentially decrease.
Collection efficiency will decrease. As a specific example, if a voltage drop of 5% is allowed for the power supply voltage of 1KV, the leakage current is 5μA per spacer stage as mentioned above, so 1000×0.05/5×10 -6 = 10 7 (Ω) Approximately 10MΩ or less If so, the voltage drop across the resistor R o can be ignored.

従つて上記実験例の場合抵抗Roの範囲は10KΩ
〜10MΩの範囲に定めるのが適当である。
Therefore, in the above experimental example, the range of resistance R o is 10KΩ
It is appropriate to set it in the range of ~10 MΩ.

次に、上記の構成より成る静電式超高性能フイ
ルターの作用について説明すると、イオン化線3
0と、セパレーター15とに直流高電圧を印加し
た状態において器枠9の入口から含塵ガスを送り
込むと、粉塵粒子47が各接地平行平板電極27
とイオン化線30によつて形成される荷電部を通
過する間にコロナ放電により荷電され、その荷電
粒子47を含むガスが集塵部を第10図の点線矢
印で示すように通過するが、その過程で、先ず荷
電粒子47の大部分が上流側の各セパレーター1
5に吸引され、各セパレーター15の表面に付着
して除去される。この効果は粒径の大きい荷電粒
子ほど顕著である。次いで残りの荷電粒子47を
含むガスの気流48は、瀘材14の圧力損失が非
常に大きいので、瀘材14を最短距離で通過す
る。このため気流48は第10図示のようにセパ
レーター16から15に向う電気力線49とほぼ
平行で逆向きになる。それと同時に気流48の速
度は、瀘材14を通過するとき、集塵部の上流の
速度(面風速)に比べて極端に遅くなる。このよ
うに、電界の向きと気流の向きが逆になると、荷
電粒子47の電気的な移動速度、すなわち電気力
線49の方向の移動速度が瀘材14を通過する気
流48の速度より大きくなるので、荷電粒子47
は瀘材144の内部に入り込めなくなる。そうか
といつて、瀘材14の気流速度は速いので、荷電
粒子47は結局瀘材14の表面にポーラス状に沈
着してゆく。次いでポーラス状に沈着せず瀘材1
4内に入り込んだ荷電粒子47は、セパレーター
15,16間に加えられた電界により瀘材14の
繊維に集まる電気力線にそつて移動してゆくた
め、繊維にとらえられる面積は飛躍的に増大す
る。
Next, to explain the action of the electrostatic ultra-high performance filter consisting of the above configuration, the ionization line 3
When a dust-containing gas is fed from the inlet of the container frame 9 with a DC high voltage applied to the separator 15 and
Gas containing charged particles 47 that are charged by corona discharge while passing through the charged part formed by the ionized wires 30 and ionized lines 30 passes through the dust collection part as shown by the dotted arrow in FIG. In the process, most of the charged particles 47 first reach each separator 1 on the upstream side.
5, adheres to the surface of each separator 15, and is removed. This effect is more pronounced as the charged particles have a larger particle size. Next, the gas flow 48 containing the remaining charged particles 47 passes through the filter material 14 in the shortest distance since the pressure loss through the filter material 14 is very large. For this reason, the airflow 48 is substantially parallel to and in the opposite direction to the electric lines of force 49 directed from the separators 16 to 15, as shown in Figure 10. At the same time, when the airflow 48 passes through the filter material 14, the speed of the airflow 48 becomes extremely slow compared to the speed (surface wind speed) upstream of the dust collecting section. In this way, when the direction of the electric field and the direction of the airflow are reversed, the electrical movement speed of the charged particles 47, that is, the movement speed in the direction of the electric lines of force 49, becomes greater than the speed of the airflow 48 passing through the filter material 14. Therefore, charged particles 47
cannot enter inside the filter material 144. On the other hand, since the airflow velocity through the filter material 14 is high, the charged particles 47 end up depositing on the surface of the filter material 14 in a porous manner. Next, filtering material 1 without being deposited in a porous manner
The charged particles 47 that have entered the filter material 14 move along the lines of electric force that gather on the fibers of the filter material 14 due to the electric field applied between the separators 15 and 16, so the area that can be captured by the fibers increases dramatically. do.

以上の集塵のメカニズムにより、集塵効率は著
しく増大し、器枠9の出口から清浄なガスが流出
してくるのである。また粒径の大きい荷電粒子ほ
ど各セパレーター15に集塵される効果が大きい
ので瀘材内部の目づまりが少く、著しく寿命を延
ばすことができる。
Due to the above dust collection mechanism, the dust collection efficiency is significantly increased, and clean gas flows out from the outlet of the container frame 9. Furthermore, the larger the particle size of the charged particles, the greater the effect of collecting them in each separator 15, which reduces clogging inside the filter material and significantly extends the service life.

上記実施例では、導電性ゴムシート20,21
に多数の細切片25を設けたゴムシートを用いた
から、上流側の各セパレーター15あるいは下流
側の各セパレーター16が多少不揃いにはさみ込
まれている場合でも、個々の細切片25が個々の
セパレーターに圧接するので、接触不良部は生じ
ないという利点があるが、本発明は、上流側の各
セパレーターあるいは下流側の各セパレーターが
正確に揃えてはさみ込まれる場合には、細切片を
設けず単にV字形に屈曲にした導電性ゴムシート
を用いることができる。
In the above embodiment, the conductive rubber sheets 20, 21
Since a rubber sheet with a large number of thin pieces 25 provided thereon is used, even if the separators 15 on the upstream side or the separators 16 on the downstream side are sandwiched somewhat irregularly, the individual thin pieces 25 can be inserted into the individual separators. Since the pressure contact is made, there is an advantage that no contact failure occurs. However, in the case where each separator on the upstream side or each separator on the downstream side is accurately aligned and sandwiched, the present invention does not provide a thin section and is simply V. A conductive rubber sheet bent into a letter shape can be used.

本発明は、上記実施例に限定されるものではな
く、例えば、第11図示のように器枠9の天板1
2の内面にセパレーター15,16の電荷の移動
を防ぐ電気抵抗を有する導電性のシール層39と
絶縁物のシール層40を2層に設け、底板13の
内面にも上記の電気抵抗を有する導電性のシール
層41と絶縁物ののシール層42を2層に設け、
蛇行する瀘材14に気流の上流側からはさみ込ん
だ導電性の各セパレーター15は、その上端を導
電性のシール層39へ埋め込み、下端を絶縁物の
シール層42に埋め込むようにし、気流の下流側
からはさみ込んだ導電性の各セパレーター16
は、その下端を導電性のシール層41に埋め込
み、上端を絶縁物のシール層40に埋め込むとい
うようにして、上流側の各セパレーター15を一
方の導電性シールのみに導通させ、下流側の各セ
パレーター16を他方の導電性シールのみに導通
させて、上流側の各セパレーター15には負また
は正の高電圧を印加し、下流側の各セパレーター
16には正または負の高電圧を印加するように構
成することもある。
The present invention is not limited to the above embodiments, and for example, as shown in FIG.
A conductive sealing layer 39 and an insulating sealing layer 40 having electrical resistance to prevent the movement of electric charges of the separators 15 and 16 are provided on the inner surface of the bottom plate 13, and the inner surface of the bottom plate 13 is also provided with a conductive sealing layer 39 having electrical resistance and an insulating material sealing layer 40 having the above-mentioned electrical resistance. A solid seal layer 41 and an insulating seal layer 42 are provided in two layers,
Each conductive separator 15 sandwiched between the meandering filter material 14 from the upstream side of the airflow has its upper end embedded in the conductive sealing layer 39 and its lower end embedded in the insulating sealing layer 42, so that it Conductive separators 16 sandwiched from the sides
The lower end is buried in the conductive seal layer 41 and the upper end is buried in the insulating seal layer 40, so that each separator 15 on the upstream side is electrically connected to only one conductive seal, and each separator 15 on the downstream side is electrically connected to only one conductive seal. The separator 16 is electrically connected only to the other conductive seal, and a negative or positive high voltage is applied to each separator 15 on the upstream side, and a positive or negative high voltage is applied to each separator 16 on the downstream side. It may also be configured as

この場合には、各セパレーター15,16の端
縁に液体の導電性シール材を流し込んで固めるの
で、各セパレーター15,16の端縁形状に影響
されずに確実に給電でき、信頼性が高い。
In this case, since the liquid conductive sealing material is poured into the edges of each separator 15, 16 and hardened, power can be reliably supplied without being affected by the edge shape of each separator 15, 16, and reliability is high.

また第12図示のように器枠9の天板12の内
面と底板13の内面とにセパレーター15,16
の電荷の移動を防ぐ電気抵抗を有するゴムシート
43,44を接着し、蛇行する瀘材14に気流の
上流側からはさみ込んだ導電性の各セパレーター
15の上端に形成した接触片をゴムシート43に
弾力的に接触させ、気流の下流側からはさみ込ん
だ導電性の各セパレーター16の下端に形成した
接触片をゴムシート44に弾力的に接触させて、
上流側の各セパレーター15には負または正の高
電圧を印加し、下流側の各セパレーター16には
正または負の高電圧を印加するように構成するこ
ともある。第12図において45,46は瀘材1
4及び各セパレーター15,16の上下両端部を
天板12及び底板13に気密に結合するシール材
である。
Also, as shown in Figure 12, separators 15 and 16 are provided on the inner surface of the top plate 12 and the inner surface of the bottom plate 13 of the container frame 9.
Rubber sheets 43 and 44 having electrical resistance to prevent the movement of charges are bonded together, and a contact piece formed on the upper end of each conductive separator 15 sandwiched between the meandering filter material 14 from the upstream side of the airflow is attached to the rubber sheet 43. A contact piece formed at the lower end of each conductive separator 16 sandwiched from the downstream side of the airflow is brought into elastic contact with the rubber sheet 44,
A negative or positive high voltage may be applied to each separator 15 on the upstream side, and a positive or negative high voltage may be applied to each separator 16 on the downstream side. In Fig. 12, 45 and 46 are filter material 1
4 and the upper and lower ends of each of the separators 15 and 16 are hermetically coupled to the top plate 12 and the bottom plate 13.

この場合には、各接触片と導電性ゴムシートと
が適当な圧力で接触するので、接触の信頼性が高
い。
In this case, since each contact piece and the conductive rubber sheet come into contact with each other with appropriate pressure, the reliability of the contact is high.

上記実施例では、荷電部と集塵部を一体に成形
された器枠に設ける例を示したが、両者を別々に
成形した器枠に設け、それらの器枠を結合するよ
うに構成することもある。
In the above embodiment, an example was shown in which the charging section and the dust collecting section were provided in an integrally molded container frame, but it is also possible to provide both in separately molded container frames and to combine the container frames. There is also.

本発明は、叙上の構成より成り、蛇行する瀘材
にはさみ込んだ各上流側セパレーターと各下流側
セパレーターとに各セパレーターの電荷の移動を
防ぐ電気抵抗を有する導電材を介して高圧電源装
置を接続できるため、あるセパレーターの一個所
で放電が起つた場合、上記電気抵抗によつて放
電々荷量が制限され、全部のセパレーターの電荷
が放電個所に移動するのを防ぐことができ、放電
エネルギーを小さくおさえられる。そのため放電
によつて一時的にセパレーター電圧が低下するよ
うなことはなく、従つて集塵効率が一時的に低下
するようなことはない。また瀘材に穴があくなど
瀘材を損傷するおそれもない。また導電材が導電
性ゴムシート、導電シールのように一連に連なつ
ているため、上流側の各セパレーターと下流側の
各セパレーターが瀘材の間へ不揃いにはさみ込ま
れていると否とに拘わらずそれらの全部に導電材
を接触不良を生ずることなく簡単に接触させるこ
とができ、組立が容易であるなどの利点を有す給
電装置を提供することができる。
The present invention has the above-mentioned configuration, and connects each upstream separator and each downstream separator sandwiched between the meandering filter material to a high-voltage power supply device through a conductive material having an electrical resistance that prevents the movement of electric charges in each separator. can be connected, so if a discharge occurs at one location on a separator, the amount of discharge is limited by the electrical resistance, and it is possible to prevent all of the separator's charges from moving to the discharge location. Energy can be kept small. Therefore, the separator voltage does not temporarily decrease due to discharge, and therefore the dust collection efficiency does not decrease temporarily. Further, there is no risk of damaging the filter material such as making holes in the filter material. Also, since the conductive material is connected in a series like a conductive rubber sheet or a conductive seal, it is inevitable that each separator on the upstream side and each separator on the downstream side may be inserted unevenly between the filter materials. Regardless, it is possible to provide a power supply device which has advantages such as being able to easily bring the conductive material into contact with all of them without causing contact failure, and being easy to assemble.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の静電式超高性フイルターの概略
を示す斜視図、第2図は同フイルターの回路図、
第3図は本発明装置の一部を省略した斜視図、第
4図は導電材の一例を示す斜視図、第5図は本発
明装置の一部を省略した縦断面図、第6図は本発
明装置の一部を省略した横断面図、第7図は本発
明装置の等価回路図、第8図は従来装置の等価回
路図、第9図は集塵部を通過する含塵ガスの気流
の略図、第10図は荷電粒子の瀘材通過時におけ
る移動方向と電界の方向の関係を説明する図、第
11図は本発明の別の実施例を示す図、第12図
は本発明のさらに別の実施例を示す図である。 9……器枠、14……瀘材、15……上流側導
電性セパレーター、16……下流側導電性セパレ
ーター、20,21……導電性ゴムシート、25
……細切片、26……多孔カバー、27……接地
平行平板電極、30……イオン化線、33……接
続端子、34……高圧電源装置、35……接続端
子、36……アース端子。
Figure 1 is a perspective view schematically showing a conventional electrostatic ultra-high performance filter, Figure 2 is a circuit diagram of the filter,
FIG. 3 is a partially omitted perspective view of the device of the present invention, FIG. 4 is a perspective view showing an example of a conductive material, FIG. 5 is a vertical sectional view of the device of the present invention with some portions omitted, and FIG. A partially omitted cross-sectional view of the device of the present invention, FIG. 7 is an equivalent circuit diagram of the device of the present invention, FIG. 8 is an equivalent circuit diagram of the conventional device, and FIG. 9 is a diagram of the dust-containing gas passing through the dust collection section. A schematic diagram of airflow; FIG. 10 is a diagram explaining the relationship between the direction of movement of charged particles when passing through a filter material and the direction of the electric field; FIG. 11 is a diagram showing another embodiment of the present invention; FIG. 12 is a diagram showing the present invention. It is a figure which shows yet another Example of. 9... Container frame, 14... Filter material, 15... Upstream conductive separator, 16... Downstream conductive separator, 20, 21... Conductive rubber sheet, 25
... Thin section, 26 ... Porous cover, 27 ... Ground parallel plate electrode, 30 ... Ionization wire, 33 ... Connection terminal, 34 ... High voltage power supply device, 35 ... Connection terminal, 36 ... Earth terminal.

Claims (1)

【特許請求の範囲】 1 含塵ガスを通過させてコロナ放電により塵埃
粒子を荷電する荷電部と、その荷電部を通過して
くる含塵ガスの気流方向と直交する方向に瀘材を
蛇行するように配置し、その瀘材の隣り合う部分
の間へ、波形に折曲した導電性のセパレーターを
上記気流の上流側と下流側からそれぞれはさみ込
み、上流側の各セパレーターと、下流側の各セパ
レーターとの間に高電圧を印加する集塵部とから
成る静電式超高性能フイルターにおいて、上流側
の各セパレーターの電荷の移動を防ぐ電気抵抗を
有し、かつ一連に連なつた導電材を上流側のセパ
レーター全部に接触させるように配置し、下流側
の各セパレーターの電荷の移動を防ぐ電気抵抗を
有し、かつ一連に連なつた導電材を下流側のセパ
レーター全部に接触させるように配置し、上記各
導電材に高圧電源装置の接続部を設けて成る静電
式超高性能フイルターの給電装置。 2 導電材が、各セパレーターの電荷の移動を防
ぐ電気抵抗を有する導電性のゴムシートをV字形
に屈曲し、その屈曲片の一方の端縁から多数の切
込線を入れて多数の細切接触片を設けて成る特許
請求の範囲第1項記載の静電式超高性能フイルタ
ーの給電装置。 3 導電材が、各セパレーターの電荷の移動を防
ぐ電気抵抗を有する液状の導電性シール材を、蛇
行する瀘材の端部と同瀘材にはさみ込んだ各上流
側セパレーターの端部とが器枠に接する個所に流
し込んで固化させた導電シールと、上記導電性シ
ール材を、上記瀘材の端部と同瀘材にはさみ込ん
だ各下流側セパレーターの端部とが器枠に接する
個所に流し込んで固化させた導電シールの一対の
導電シールから成る特許請求の範囲第1項記載の
静電式超高性能フイルターの給電装置。 4 一対の導電シールが、器枠の相対向する壁面
に設けられて成る特許請求の範囲第3項記載の静
電式超高性能フイルターの給電装置。 5 導電材が、各セパレーターの電荷の移動を防
ぐ電気抵抗を有する導電性ゴムシートを、蛇行す
る瀘材にはさみ込んだ各上流側セパレーターの端
部に設けた接触片が弾力的に接触するように設け
た導電性シートと、上記導電性ゴムシートを、上
記瀘材にはさみ込んだ各下流側セパレーターの端
部に設けた接触片が弾力的に接触するように設け
た導電性シートの一対の導電性シートから成る特
許請求の範囲第1項記載の静電式超高性能フイル
ターの給電装置。 6 一対の導電性シートが、器枠の相対向する壁
面にそれぞれ設けられて成る特許請求の範囲第5
項記載の静電式超高性能フイルターの給電装置。
[Scope of Claims] 1. A charging section that charges dust particles by corona discharge through the passage of dust-containing gas, and a filter material meandering in a direction perpendicular to the airflow direction of the dust-containing gas passing through the charging section. Conductive separators bent into waveforms are sandwiched between adjacent parts of the filter material from the upstream and downstream sides of the airflow, and each separator on the upstream side and each separator on the downstream side are sandwiched between adjacent parts of the filter material. In an electrostatic ultra-high performance filter consisting of a separator and a dust collector that applies a high voltage between them, each separator on the upstream side has an electrical resistance that prevents the movement of charge, and is a series of conductive materials. is arranged so as to be in contact with all of the separators on the upstream side, and has an electrical resistance that prevents the movement of charge in each separator on the downstream side, and a series of conductive materials is placed in contact with all of the separators on the downstream side. A power supply device for an electrostatic ultra-high performance filter, comprising: a high-voltage power supply device connected to each conductive material; 2. A conductive rubber sheet whose conductive material has an electrical resistance that prevents the movement of charges in each separator is bent into a V shape, and a number of score lines are inserted from one edge of the bent piece to form a number of thin pieces. A power supply device for an electrostatic ultra-high performance filter according to claim 1, comprising a contact piece. 3. The conductive material is a liquid conductive sealing material having an electrical resistance that prevents the movement of charges in each separator, and the end of the meandering filter material and the end of each upstream separator sandwiched between the filter material are connected to each other. A conductive seal poured and solidified into the area in contact with the frame, and the conductive sealing material are applied to the area where the end of the filtration material and the end of each downstream separator sandwiched between the filtration materials contact the vessel frame. A power supply device for an electrostatic ultra-high performance filter according to claim 1, comprising a pair of conductive seals that are poured and solidified. 4. The power supply device for an electrostatic ultra-high performance filter according to claim 3, wherein a pair of conductive seals are provided on opposing wall surfaces of the container frame. 5. A conductive rubber sheet with electrical resistance that prevents the movement of charges in each separator is sandwiched between the meandering filter materials so that the contact pieces provided at the ends of each upstream separator come into elastic contact with each other. A pair of conductive sheets provided in such a manner that the conductive rubber sheet is in elastic contact with the contact piece provided at the end of each downstream separator sandwiched between the filter material. A power supply device for an electrostatic ultra-high performance filter according to claim 1, which comprises a conductive sheet. 6 Claim 5, wherein a pair of conductive sheets are provided on opposing wall surfaces of the container frame, respectively.
Power supply device for the electrostatic ultra-high performance filter described in Section 1.
JP56162383A 1981-10-12 1981-10-12 Current supply apparatus of electrostatic type ultra-high capacity filter Granted JPS5864145A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP56162383A JPS5864145A (en) 1981-10-12 1981-10-12 Current supply apparatus of electrostatic type ultra-high capacity filter
GB08228317A GB2110119B (en) 1981-10-12 1982-10-04 High efficiency electrostatic filter device
US06/433,414 US4509958A (en) 1981-10-12 1982-10-08 High-efficiency electrostatic filter device
FR828216884A FR2514266B1 (en) 1981-10-12 1982-10-08 HIGH EFFICIENCY ELECTROSTATIC FILTER
IT49243/82A IT1189380B (en) 1981-10-12 1982-10-08 HIGH EFFICIENCY ELECTROSTATIC FILTER DEVICE
DE19823237780 DE3237780A1 (en) 1981-10-12 1982-10-12 HIGH-PERFORMANCE ELECTROSTATIC FILTER ARRANGEMENT

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56162383A JPS5864145A (en) 1981-10-12 1981-10-12 Current supply apparatus of electrostatic type ultra-high capacity filter

Publications (2)

Publication Number Publication Date
JPS5864145A JPS5864145A (en) 1983-04-16
JPS637095B2 true JPS637095B2 (en) 1988-02-15

Family

ID=15753531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56162383A Granted JPS5864145A (en) 1981-10-12 1981-10-12 Current supply apparatus of electrostatic type ultra-high capacity filter

Country Status (1)

Country Link
JP (1) JPS5864145A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58166948A (en) * 1982-03-30 1983-10-03 Nippon Muki Kk Set up body fof electrostatic air filter
JPH06284843A (en) * 1992-07-07 1994-10-11 Yamakou:Kk Device for attaching and detaching gandama

Also Published As

Publication number Publication date
JPS5864145A (en) 1983-04-16

Similar Documents

Publication Publication Date Title
US4509958A (en) High-efficiency electrostatic filter device
AU780343B2 (en) Air cleaning device
US6491743B1 (en) Electronic cartridge filter
JPH0246265B2 (en)
JPH0261302B2 (en)
JP2001503309A (en) Dust collector for purifying air from charged aerosols
EP1492622B1 (en) Electrostatic filter construction
US2822058A (en) Electrostatic precipitators
US3678653A (en) Electrostatic precipitator
KR20090009549U (en) Electric precipitation and air cleaner having the same
JP2006289337A (en) Dust collector and air-conditioner
CN209885989U (en) Novel electrostatic dust collector
JPS62102844A (en) Electrostatic precipitator
JPS637095B2 (en)
CN2562880Y (en) Integrated air purifier for high voltage electric field and dust collection
JPH07323242A (en) Dust collecting part of electric precipitator
JPH02280852A (en) Electrical dust precipitator
JPS6279859A (en) Corona blower and electrostatic precipitator utilizing said blower
JPS58114752A (en) Electrostatic ultrahigh performance filter
JPH05305249A (en) Dust collecting unit
JP2833251B2 (en) Air filter and mounting method
JPS6031792Y2 (en) Two-stage electrostatic precipitator
JPH03232553A (en) Dust collecting electrode
JPH0380952A (en) Dust collecting electrode and preparation thereof
JPS60212255A (en) Electrostatic filter apparatus