JPS6370422A - X-ray exposure mask - Google Patents

X-ray exposure mask

Info

Publication number
JPS6370422A
JPS6370422A JP61215280A JP21528086A JPS6370422A JP S6370422 A JPS6370422 A JP S6370422A JP 61215280 A JP61215280 A JP 61215280A JP 21528086 A JP21528086 A JP 21528086A JP S6370422 A JPS6370422 A JP S6370422A
Authority
JP
Japan
Prior art keywords
film
ray exposure
exposure mask
silicon substrate
stencils
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61215280A
Other languages
Japanese (ja)
Inventor
Toru Takeuchi
竹内 透
Masao Yamada
雅雄 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP61215280A priority Critical patent/JPS6370422A/en
Publication of JPS6370422A publication Critical patent/JPS6370422A/en
Pending legal-status Critical Current

Links

Landscapes

  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To obtain a high quality X-ray exposure mask, by providing a Langmuir-Blodgett (LB) film as a transparent electrode on a membrane and providing patterns of an X-ray absorbing material on the LB film. CONSTITUTION:Membranes (BN) 1 are deposited by chemical vapor growth on opposite sides of a silicon substrate and the membrane on one side of the silicon substrate is removed. A pyrex ring 5 is bonded to this side of the silicon substrate and the silicon substrate is etched away such that a silicon supporting frame 4 is left on the periphery of the structure. A conductive LB film 12 is then deposited on the BN 1 and stencils 6 of polyimide are formed thereon. Gold patterns 13 are formed on the surface having the stencils 6 by using the conductive LB film 12 as an electrode such that the patterns 13 are present between the stencils 6. Subsequently, the stencils 6 are removed by melting or ashing them so that an X-ray exposure mask is produced. The X-ray exposure mask thus obtained is a high quality mask having the gold patterns 13 formed uniformly and with high precision.

Description

【発明の詳細な説明】 [概要] メンブラン上に透明電極としてのラングミュア・ブロジ
ェット膜を介在し、該LB腹膜上吸収体パターンを設け
たX線露光用マスクである。このようなX線露光用マス
クは、均一な膜厚の吸収体パターンを有するマスクにな
る。
DETAILED DESCRIPTION OF THE INVENTION [Summary] This is an X-ray exposure mask in which a Langmuir-Blodgett film as a transparent electrode is interposed on a membrane, and the LB epiperitoneal absorber pattern is provided. Such an X-ray exposure mask has an absorber pattern with a uniform thickness.

[産業上の利用分野コ 本発明はX線露光用マスクの改善に関する。[Industrial application fields] The present invention relates to improvements in masks for X-ray exposure.

X線露光法は、紫外線露光法と同じく一括露光方式(ス
テップアンドレピート方式を含む)を採ることができ、
しかも、サブミクロン級の微細パターンを転写できるた
めに、今後のりソグラフィ技術として重要視されており
、その実用化のための開発努力がなされている。
Like the ultraviolet exposure method, the X-ray exposure method can use the batch exposure method (including step-and-repeat method).
Moreover, because it is capable of transferring submicron-level fine patterns, it is considered important as a future lithographic technology, and efforts are being made to develop it for practical use.

従って、このようなX線露光法ではマスクが必須の重要
なもので、その高品質化が望まれている。
Therefore, in such an X-ray exposure method, a mask is essential and important, and it is desired to improve its quality.

[従来の技術〕 X線露光用マスクの材料と構成については多くの研究が
発表されているが、例えば、メンブラン(membra
ne ;膜)として窒化硼素(B N)を用い、X線吸
収体パターンとして金(Au)を形成する方式が知られ
ており、第4図にそのマスクの一例の断面を示している
。図中の1はBN(メンブレン)、2はITO膜、3は
金(Au)パターン、4はシリコン支持枠、5はパイレ
ックスリングである。
[Prior Art] Many studies have been published regarding the materials and configurations of X-ray exposure masks.
A method is known in which boron nitride (BN) is used as the film and gold (Au) is formed as the X-ray absorber pattern, and FIG. 4 shows a cross section of an example of the mask. In the figure, 1 is a BN (membrane), 2 is an ITO film, 3 is a gold (Au) pattern, 4 is a silicon support frame, and 5 is a Pyrex ring.

なお、ITO膜2はメッキ法で被着する金パターンの電
極とするために設けたもので、従って、この膜には透光
性と導電性とが要求される。このITOO20酸化イン
ジウム(In203 ) 95%、酸化錫(SnO2)
5% のIndium Tin 0xideのことで、
透明な導電体膜として公知のものである。
Note that the ITO film 2 is provided to serve as an electrode for a gold pattern deposited by plating, and therefore, this film is required to have translucency and conductivity. This ITOO20 indium oxide (In203) 95%, tin oxide (SnO2)
5% Indium Tin Oxide,
It is known as a transparent conductive film.

第5図fal〜(d)は第4図に示したX線露光用マス
クの形成工程順断面図を示しており、同図(a)はシリ
コン支持枠4.パイレックスリング5にBN(メンブレ
ン)を形成したマスク基板の断面図で、形成法はシリコ
ン基板に化学気相成長(CVD)法でBNI  (膜厚
5μm程度)を被着し、片面にのみBNを残存させた後
、シリコン基板の反対面にパイレックスリング5を貼り
付け、最後にシリコン基板をエツチング除去して枠状の
シリコン支持枠4のみ残存させる。
FIGS. 5 fal to 5 (d) are cross-sectional views in the order of the formation process of the X-ray exposure mask shown in FIG. 4, and FIG. This is a cross-sectional view of a mask substrate on which BN (membrane) is formed on a Pyrex ring 5. The formation method is to deposit BNI (film thickness of about 5 μm) on a silicon substrate by chemical vapor deposition (CVD), and apply BN only to one side. After the silicon substrate remains, a Pyrex ring 5 is attached to the opposite surface of the silicon substrate, and finally the silicon substrate is etched away, leaving only the frame-shaped silicon support frame 4.

次いで、第5図(blに示すように、マスク基板全面に
ITO膜2をスパッタ法で被着する。このITo膜2は
X線および光線を透過する必要があり、光線の透過はア
ライメント(位置合わせ)に光線を利用するからである
Next, as shown in FIG. 5 (bl), an ITO film 2 is deposited on the entire surface of the mask substrate by sputtering. This ITO film 2 needs to transmit X-rays and light rays, and the transmission of light rays depends on the alignment (position). This is because light rays are used for alignment.

次いで、第5図(C)に示すように、ポリイミド6を膜
厚0.5〜2μm程度に積層し、このポリイミドをパタ
ーンニングして、ポリイミドからなるステンシル6を形
成する。このステンシル(5tencil:型紙)5の
パターンニングは、公知の3層レジスト(トリレベル)
技術を用いておこなわれる。
Next, as shown in FIG. 5C, polyimide 6 is laminated to a thickness of about 0.5 to 2 μm, and this polyimide is patterned to form a stencil 6 made of polyimide. The patterning of this stencil (5 stencil) 5 is performed using a known three-layer resist (tri-level).
It is done using technology.

次いで、第5図<d+に示すように、ITO膜2を電極
にして、ITO膜2の上に金メッキする。そうすると、
ステンシル6の部分を除き、膜厚0.6〜1μmの金パ
ターン2を被着することができる。
Next, as shown in FIG. 5<d+, gold plating is applied onto the ITO film 2 using the ITO film 2 as an electrode. Then,
A gold pattern 2 having a thickness of 0.6 to 1 μm can be deposited except for the stencil 6 portion.

次いで、ステンシル6を溶解除去またはアッシング除去
して、第4図の断面図に示すような構造のX線露光用マ
スクが完成される。尚、最近、ステンシル6を残存させ
たままのマスクも利用されている。
Next, the stencil 6 is removed by dissolving or ashing to complete an X-ray exposure mask having a structure as shown in the cross-sectional view of FIG. Incidentally, recently, masks in which the stencil 6 remains have also been used.

[発明が解決しようとする問題点コ ところで、上記の形成工程において、ITO膜2を電極
にして金パターンをメッキ法で被着すると、ITO膜の
電気伝導率が安定していないために、均一な膜厚に金パ
ターンが形成されないと云う欠点がある。また、その応
力も高い圧縮応力であり好ましくない。
[Problems to be Solved by the Invention] By the way, in the above-mentioned formation process, when a gold pattern is applied by plating using the ITO film 2 as an electrode, the electrical conductivity of the ITO film is not stable, so it is not uniform. The drawback is that the gold pattern cannot be formed to a certain thickness. Moreover, the stress is also high compressive stress, which is not preferable.

また、他の方法として、ITO膜2の代わりに膜厚数十
Å以下の金膜をスパッタ法で被着して、これをメッキ電
極とする方法も公知となっているが、薄い金膜を制御性
良(被着することが難しく、特に、光を利用するアライ
メントが困難になると云う問題がある。
In addition, as another method, a method is known in which a gold film with a thickness of several tens of angstroms or less is deposited by sputtering instead of the ITO film 2 and used as a plating electrode. Good controllability (difficult to deposit, especially alignment using light).

本発明は、これらの問題点を解消させるX線露光用マス
クを提案するものである。
The present invention proposes an X-ray exposure mask that solves these problems.

[問題点を解決するための手段] その問題は、メンブラン上に透明な導電性のラングミュ
ア・ブロジェット膜(以下、LB膜と呼ぶ)を介して、
吸収体パターンを設けたX線露光用マスクによって解決
される。
[Means for solving the problem] The problem is solved by using a transparent conductive Langmuir-Blodgett film (hereinafter referred to as LB film) on the membrane.
This problem can be solved by using an X-ray exposure mask provided with an absorber pattern.

[作用] 即ち、本発明は、メンブラン上に透明電極膜としてLB
膜を介在させる。そうすると、LB膜は均一な膜厚で、
導電性も一定しているから、均一な膜厚の吸収体パター
ン、例えば、金パターンが形成される。
[Function] That is, the present invention provides LB as a transparent electrode film on a membrane.
Interpose a membrane. Then, the LB film has a uniform thickness,
Since the conductivity is also constant, an absorber pattern with a uniform thickness, for example, a gold pattern, is formed.

L B (Langmuir−Blodgett)膜は
有機薄膜で、疎水基の末端に親水基をもつ両親媒性分子
を気・水界面に展開して安定な単分子膜に形成されるた
め、この単分子膜を固体表面に移しとって所望の層厚だ
け累積するもので、このようなLB膜の一種として透明
な導電性膜が知られており、これを数分子層の膜厚でB
N膜の上に形成して、電極膜とするものである。
LB (Langmuir-Blodgett) film is an organic thin film that is formed into a stable monomolecular film by expanding amphiphilic molecules with a hydrophilic group at the end of a hydrophobic group at the air/water interface. A transparent conductive film is known as a type of LB film, and this is transferred to a solid surface to a desired layer thickness.
It is formed on the N film to serve as an electrode film.

[実施例] 以下、図面を参照して実施例によって詳細に説明する。[Example] Hereinafter, embodiments will be described in detail with reference to the drawings.

第1図は本発明にかかるX線露光用マスクの断面を示し
ており、1は膜厚3〜5μmのBN膜。
FIG. 1 shows a cross section of an X-ray exposure mask according to the present invention, and numeral 1 indicates a BN film with a thickness of 3 to 5 μm.

12は膜厚200人の導電性LB膜、13は膜厚0.6
〜1μmの金パターン、4はシリコン支持枠、5はパイ
レックスリングである。
12 is a conductive LB film with a film thickness of 200, and 13 is a film thickness of 0.6.
~1 μm gold pattern, 4 is a silicon support frame, and 5 is a Pyrex ring.

第2図は導電性LB膜を説明するための図で、同図(8
)はLB膜構造のX型膜5Y型膜、Z型膜の3種のうち
、Y型膜を模型化した図である。即ち、Y型膜は親木基
を固体板面に向けて被着し、次に、疎水基(0で示して
いる)同士が向き合い、次に、親水基同士が向き合って
、かくして積層した累積膜である。このY型膜のうち、
ドナーとしてN−トコシルピリジニウム(記号および模
型(右側)を第2図(′b)に示している)、アクセプ
タとしてTCNQアニオン(記号および模型(右側)を
第2図(0)に示している)を用いて、第2図(dlに
示すように、1対l錯体の単分子複合層を累積する。し
かし、このままでは導電性は大きくないから、沃素■2
蒸気を吸わせて構造を大きく変化させ、第2図(e)に
示すようにTCNQの分子面を90度回転させると、膜
面内方向に金属導電性が現れ、このようにして作成した
導電性LB膜をBN上に成長させる。
Figure 2 is a diagram for explaining the conductive LB film.
) is a model of a Y-type film among the three types of LB film structure: X-type film, Y-type film, and Z-type film. That is, the Y-type film is deposited with the parent wood group facing the solid plate surface, then the hydrophobic groups (indicated by 0) face each other, and then the hydrophilic groups face each other, thus forming a laminated stack. It is a membrane. Of this Y-type film,
N-tocosylpyridinium as donor (symbol and model (right side) shown in Figure 2 ('b)) and TCNQ anion as acceptor (symbol and model (right side) shown in Figure 2 (0) ) to accumulate a monomolecular composite layer of 1:1 complex as shown in Figure 2 (dl).However, since the conductivity is not high as it is, iodine 2
When vapor is inhaled to greatly change the structure and the molecular plane of TCNQ is rotated 90 degrees as shown in Figure 2(e), metallic conductivity appears in the in-plane direction of the film, and the conductivity created in this way LB film is grown on the BN.

次に、第3図(al〜(dlは本発明にかかるマスクの
形成工程順断面図を示しており、同図falは第5図(
alと同様のマスク基板の断面図である。図中の記号l
は膜厚3〜5μmのBN、4はシリコン支持枠、5はパ
イレックスリング、である。
Next, FIGS. 3(al to dl) show cross-sectional views in the order of the formation process of the mask according to the present invention, and FIG.
FIG. 3 is a cross-sectional view of a mask substrate similar to al. Symbol l in the diagram
4 is a silicon support frame, and 5 is a Pyrex ring.

次いで、第3図(blに示すように、BNIの上に膜厚
300人の導電性LB膜12を、上記のようにして被着
する。この導電性LB膜は透明で導電性があり、X線は
勿論、光を十分に透過する。
Next, as shown in FIG. 3 (bl), a conductive LB film 12 with a thickness of 300 mm is deposited on the BNI as described above. This conductive LB film is transparent and conductive. It can sufficiently transmit light as well as X-rays.

次いで、第3図(C)に示すように、ポリイミドかラナ
ルステンシル6を形成する。このステンシル5は、第4
図(C)で説明した従来法と同様に、膜厚0.5〜2μ
mのポリイミドを塗布してキュアし、これをパターンニ
ングしたものである。
Next, as shown in FIG. 3(C), a polyimide ranal stencil 6 is formed. This stencil 5 is the fourth
Similar to the conventional method explained in Figure (C), the film thickness is 0.5 to 2μ.
This is obtained by applying and curing polyimide of No. m and patterning it.

次いで、第3図(dlに示すように、そのステンシル5
を含む面上に導電性LB膜12を電極にして、ステンシ
ル5の間に膜厚0.6〜1μmの金パターン2を形成す
る。
Then, as shown in Figure 3 (dl), the stencil 5
A gold pattern 2 having a thickness of 0.6 to 1 μm is formed between the stencils 5 using the conductive LB film 12 as an electrode.

次いで、ステンシル6を溶解除去またはアンシング除去
して、第1図の断面図に示すような本発明にかかるX線
露光用マスクを作成する。このX線露光用マスクは、均
一な金パターンが精度良く形成されており、非常に高品
質なマスクである。
Next, the stencil 6 is removed by dissolving or unsinging to create an X-ray exposure mask according to the present invention as shown in the cross-sectional view of FIG. This X-ray exposure mask has a uniform gold pattern formed with high precision and is a very high quality mask.

尚、上記例は吸収体パターンを金パターンとしたが、金
パターンに限るものではない。
In the above example, the absorber pattern is a gold pattern, but it is not limited to a gold pattern.

[発明の効果] 以上の説明から明らかなように、本発明によれば高品質
なX線露光用マスクが得られて、X線露光法の汎用化に
顕著に貢献するものである。
[Effects of the Invention] As is clear from the above description, according to the present invention, a high-quality mask for X-ray exposure can be obtained, and it significantly contributes to the generalization of X-ray exposure methods.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明にかかるX線露光用マスクの断面図、 第2図は導電性LB膜を説明する図、 第3図(a)〜(d)は本発明にかかるマスクの形成工
程順断面図、 第4図は従来のX線露光用マスクの断面図、第5図(5
)〜(dlは従来のマスクの形成工程順断面図である。 図において、 1はBN(メンブレン)、 2はITO膜、 3.13は金パターン、 4はシリコン支持枠、 5はパイレックスリング、 6はポリイミドからなるステンシル、 12は導電性LB膜 序々B小二で1−3 、X !宇蕗支m7スフN11 
図 第3図 C)エフ績 (d’   lh P’−7’n          
    <e) T21−“−フ・を梨導を村LBIり
えf、説明jシコ 第2図
Fig. 1 is a cross-sectional view of an X-ray exposure mask according to the present invention, Fig. 2 is a diagram illustrating a conductive LB film, and Fig. 3 (a) to (d) are order of forming steps of a mask according to the present invention. Figure 4 is a cross-sectional view of a conventional X-ray exposure mask, Figure 5 is a cross-sectional view of a conventional X-ray exposure mask.
) to (dl are cross-sectional views in the order of the conventional mask formation process. In the figure, 1 is a BN (membrane), 2 is an ITO film, 3.13 is a gold pattern, 4 is a silicon support frame, 5 is a Pyrex ring, 6 is a stencil made of polyimide, 12 is a conductive LB film, B is small, 1-3,
Figure 3 C) F score (d' lh P'-7'n
<e) T21-“-F.

Claims (1)

【特許請求の範囲】[Claims]  メンブラン上に透明な導電性のラングミュア・ブロジ
ェット膜を介して、吸収体パターンを設けたことを特徴
とするX線露光用マスク。
An X-ray exposure mask characterized by having an absorber pattern provided on a membrane via a transparent conductive Langmuir-Blodgett film.
JP61215280A 1986-09-11 1986-09-11 X-ray exposure mask Pending JPS6370422A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61215280A JPS6370422A (en) 1986-09-11 1986-09-11 X-ray exposure mask

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61215280A JPS6370422A (en) 1986-09-11 1986-09-11 X-ray exposure mask

Publications (1)

Publication Number Publication Date
JPS6370422A true JPS6370422A (en) 1988-03-30

Family

ID=16669701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61215280A Pending JPS6370422A (en) 1986-09-11 1986-09-11 X-ray exposure mask

Country Status (1)

Country Link
JP (1) JPS6370422A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0949538A3 (en) * 1998-04-08 2000-02-23 Lucent Technologies Inc. Membrane mask for projection lithography

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0949538A3 (en) * 1998-04-08 2000-02-23 Lucent Technologies Inc. Membrane mask for projection lithography

Similar Documents

Publication Publication Date Title
RU2544280C2 (en) Mask for near-field lithography and its manufacture
CN116256829A (en) Preparation method of diffraction grating waveguide of near-eye display
US20050159019A1 (en) Method for manufacturing large area stamp for nanoimprint lithography
KR20000035503A (en) Replicating a nanoscale pattern
Wu et al. Patterning flood illumination with microlens arrays
CN112305859B (en) Nano-imprinting template and preparation method and application thereof
Wadayama et al. Fabrication of multilayered structure of silver nanorod arrays for plasmon memory
JPS62202518A (en) Mask for x-ray exposure
CN114433260A (en) Nanofluidic chip based on nano cracks and processing method thereof
JPS6370422A (en) X-ray exposure mask
CN102096123B (en) Method for preparing planar zoom magnification super-resolution imaging lens
CN111302653B (en) Preparation method of reticular gold-silver composite nano film
WO2020148367A1 (en) Nano-stamping method and nano-optical component
JPH08295505A (en) Production of fullerene thin film
JPH0795506B2 (en) Method for manufacturing mask for X-ray exposure
JPS59154452A (en) Soft x-ray transferring mask and its manufacture
US20090274874A1 (en) Photonic Device And Method For Forming Nano-Structures
KR101186520B1 (en) Method on mold fabricating for formatting pattern and thin film transistor- crystal display device using it
JPS61174502A (en) Optical element for soft x ray
JPH02252229A (en) X-ray exposure mask and its manufacture
JP2003287605A (en) Optical substrate, method and device for manufacturing the same, and optical device
JP2002048915A (en) Polarizing element and method for producing the same
JP2006118028A (en) Method for selectively forming layer
Takahashi et al. Fabrication of X-rays mask with carbon membrane for diffraction gratings
JPS63113504A (en) Manufacture of self-standing type optical element