JPS63701B2 - - Google Patents

Info

Publication number
JPS63701B2
JPS63701B2 JP58139915A JP13991583A JPS63701B2 JP S63701 B2 JPS63701 B2 JP S63701B2 JP 58139915 A JP58139915 A JP 58139915A JP 13991583 A JP13991583 A JP 13991583A JP S63701 B2 JPS63701 B2 JP S63701B2
Authority
JP
Japan
Prior art keywords
temperature
air
area
perimeter area
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58139915A
Other languages
Japanese (ja)
Other versions
JPS6030926A (en
Inventor
Tsutomu Takeda
Keiichi Shimomura
Hironori Kimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ISHIMOTO KENCHIKU JIMUSHO KK
Original Assignee
ISHIMOTO KENCHIKU JIMUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ISHIMOTO KENCHIKU JIMUSHO KK filed Critical ISHIMOTO KENCHIKU JIMUSHO KK
Priority to JP58139915A priority Critical patent/JPS6030926A/en
Publication of JPS6030926A publication Critical patent/JPS6030926A/en
Publication of JPS63701B2 publication Critical patent/JPS63701B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、空気調和システムにおける混合ロス
防止のため、特に大規模事務所建物等の室内外周
部であるペリメータ域における室内環境の制御を
行なうのに最適な制御方法に関する。
[Detailed Description of the Invention] (Industrial Application Field) The present invention controls the indoor environment in a perimeter area, which is the outer periphery of a room, especially in a large office building, etc., in order to prevent mixing loss in an air conditioning system. Regarding the optimal control method for

(従来技術) 近年、中規模以上の事務所建物では、建築のシ
ステム化により、空気調和設備もシステム化して
きており、第1図に示す如く、建物内外周部であ
るペリメータ域Pと建物内中核部であるインテリ
ア域Iに夫々異なる空気調和システムを採用する
例が多い。例えば、ペリメータ域Pではフアンコ
イルユニツト1を採用し、インテリア域Iでは通
常の天井吹出口2を採用するのである。
(Prior art) In recent years, with the systemization of architecture in office buildings of medium or larger size, air conditioning equipment has also been systemized. There are many cases in which different air conditioning systems are adopted for the interior area I, which is the core area. For example, in the perimeter area P, a fan coil unit 1 is used, and in the interior area I, a normal ceiling air outlet 2 is used.

この場合、冬期においては、ペリメータ域Pで
は建物の外壁、窓ガラス3等からの伝熱損失に見
合う熱量の温風(例えば35℃)をフアンコイルユ
ニツト1から供給し、一方、ペリメータ域Pに連
続するインテリア域Iでは、室内照明、在室者、
事務器等による室内発生熱が存在して冬期におい
ても冷熱供給を必要とし、空気吹出口2から冷風
(例えば16〜18℃)を供給するので、1つの連続
する空間内に夫々別個に制御される2つの熱供給
システムが併存することになる。
In this case, in the winter, the fan coil unit 1 supplies hot air (for example, 35°C) with a heat amount commensurate with the heat transfer loss from the outer wall of the building, window glass 3, etc. to the perimeter area P; In the continuous interior area I, indoor lighting, occupants,
There is heat generated indoors by office equipment, etc., and it is necessary to supply cold heat even in winter, and since cold air (for example, 16 to 18 °C) is supplied from the air outlet 2, each space is controlled separately in one continuous space. Two heat supply systems will coexist.

ところで、ペリメータ域Pの快適度を高めるに
は、ペリメータ域Pの温度θP(℃)をインテリア
域Iの温度θI(℃)より高く設定する。
By the way, in order to increase the comfort level of the perimeter area P, the temperature θ P (°C) of the perimeter area P is set higher than the temperature θ I (°C) of the interior area I.

しかし、ペリメータ域Pおよびインテリア域I
とは隔絶されていない為、図に示す如く、両域
P,Iの気流又は空気の混合が起こり、供給され
る冷温熱が相互に干渉し合い、夫々両域P,Iの
熱負荷を増大させる結果、室内空気の混合熱損失
が生じ、必要以上の冷温風が供給され、無駄なエ
ネルギーが消費されていた。
However, the perimeter area P and the interior area I
As shown in the figure, airflow or air mixing occurs in both areas P and I, and the supplied cold and hot heat interfere with each other, increasing the heat load in both areas P and I, respectively. As a result, mixing heat loss of indoor air occurred, more cold and hot air was supplied than necessary, and energy was wasted.

ここで、ペリメータ域Pの設定温度をインテリ
ア域Iのそれに比べて高くするほど混合ロスが非
常に大きくなり、逆に低くするほどかなりのロス
を防ぐことになるので、ペリメータ域Pの設定温
度を低くするほどエネルギー的には好ましいので
あるが、冬期においては当然、外壁、窓ガラス3
等の表面温度が低くなるため、ペリメータ域Pで
はその冷輻射を強く受け、またコールドドラフト
が生起するためには床面や床付近が冷やされやす
くなる。こうして、ペリメータ域Pでは冷感がよ
り助長されるため、インテリア域Iよりも設定温
度を高くして快適度を一定に保とうとするのが従
来の考え方であつた。
Here, the higher the set temperature of the perimeter area P compared to that of the interior area I, the greater the mixing loss will be, and conversely, the lower the set temperature of the perimeter area P, the greater the loss will be prevented. The lower the temperature, the better in terms of energy, but in winter, it is natural that the outer walls and window glass 3
Since the surface temperature of the surrounding area becomes low, the peripheral area P receives strong cold radiation, and the floor surface and the vicinity of the floor are likely to be cooled due to the occurrence of cold draft. In this way, since the feeling of cooling is further promoted in the perimeter area P, the conventional idea has been to set the set temperature higher than in the interior area I to maintain a constant level of comfort.

こうしたことから、ペリメータ域Pとインテリ
ア域Iの設定温度差は混合ロスに非常に大きな影
響を及ぼすのであるが、単にペリメータ域Pの設
定温度をインテリア域Iと同じか又は低くすると
いうことは上述の如く環境的に問題があり、また
逆に高くするのも上述の如く混合ロスを甚々しく
増大させるという問題がある。
For this reason, the difference in set temperature between the perimeter area P and the interior area I has a very large effect on the mixing loss, but simply setting the set temperature of the perimeter area P to be the same or lower than that of the interior area I is not enough as mentioned above. This poses an environmental problem, and conversely, raising the temperature also poses the problem of significantly increasing mixing loss as described above.

ところで、空気調和システムにおける混合ロス
防止を目的としたものではなく、またそのための
構成,作用・効果も相異するが、フアンコイルユ
ニツト1の前面に輻射パネルを設ける技術として
は、第3図aに示す如く、電気パネル4を設ける
もの(実公昭52―33091号参照)、第3図bに示す
如く、パネル型熱交換器5を設けるもの(実公昭
52―13151号参照)が提案されているが、両者と
も別体の電気パネル4や熱交換器5を必要とする
ので取付けが煩わしく高価になり、また、断線や
水漏れの恐れも大きいという問題がある。
By the way, although the purpose is not to prevent mixing loss in an air conditioning system, and the configuration, function, and effect for that purpose are different, the technique of providing a radiant panel on the front of the fan coil unit 1 is shown in Figure 3 a. As shown in FIG.
52-13151), but both require a separate electrical panel 4 and heat exchanger 5, making installation cumbersome and expensive, and there is also a large risk of wire breakage and water leakage. There is.

(発明の目的) 本発明の目的は、建物の室内のペリメータ域と
インテリア域で供給される冷・温熱の混合ロスを
防止するとともに、室内環境の快適さの維持を図
ることである。
(Objective of the Invention) An object of the present invention is to prevent the mixing loss of cold and hot heat supplied in the perimeter area and interior area of a building, and to maintain the comfort of the indoor environment.

(発明の構成) このため、本発明は、暖房時に、上記ペリメー
タ域の設定温度を上記インテリア域の設定温度と
ほぼ同じかそれ以下に制御する一方、上記ペリメ
ータ域のフアンコイルユニツトの前面に設けられ
た輻射パネルの表面温度を、ペリメータ域の設定
温度よりも高く制御するように構成したものであ
る。
(Structure of the Invention) For this reason, the present invention controls the set temperature of the perimeter area to be approximately the same as or lower than the set temperature of the interior area during heating, while providing a fan coil unit in front of the perimeter area. The surface temperature of the radiant panel is controlled to be higher than the set temperature of the perimeter area.

即ち、混合ロスの問題は、ペリメータ域の設定
温度をインテリア域の設定温度とほぼ同じかそれ
以下に制御することにより改善を図る一方、環境
的問題は、フアンコイルユニツトの輻射パネルの
表面温度をペリメータ域の設定温度よりも高く制
御することにより、熱輻射を強くして、熱感を助
長し快適度の改善を図るのである。
In other words, the problem of mixing loss can be improved by controlling the set temperature in the perimeter area to be approximately the same as or lower than the set temperature in the interior area, while the environmental problem can be solved by controlling the surface temperature of the fan coil unit's radiant panel. By controlling the temperature to be higher than the set temperature in the perimeter area, heat radiation is strengthened, promoting a feeling of heat and improving comfort.

(発明の効果) 本発明によれば、インテリア域の設定温度がペ
リメータ域の設定温度と同等かそれ以下であるか
ら、混合ロスが改善されて省エネルギー化を図れ
るようになり、合わせて、フアンコイルユニツト
による熱輻射がペリメータ域の設定温度よりも強
い(高い)から、ペリメータ域の設定温度を低く
することに起因する温熱環境の悪化が改善されて
快適度が向上するようになる。
(Effects of the Invention) According to the present invention, since the set temperature of the interior area is equal to or lower than the set temperature of the perimeter area, it is possible to improve the mixing loss and save energy. Since the heat radiation from the unit is stronger (higher) than the set temperature of the perimeter area, the deterioration of the thermal environment caused by lowering the set temperature of the perimeter area is improved, and the degree of comfort is improved.

(実施例) 第2図、第4図a及び第5図に示すように、ペ
リメータ域Pの外壁、窓ガラス3に沿つて配置さ
れるフアンコイルユニツト20は、横長四角箱状
のユニツト本体21を備え、該本体21内は、上
下方向の中間に設けられた中間間仕切板22によ
り前部側に冷風通路23、後部側にバイパス通路
28を残して上下段室24,25に仕切られ、上
段室24には送風機(フアン)26が配置される
とともに、下段室25には熱交換器(コイル)2
7が配置される。
(Embodiment) As shown in FIGS. 2, 4a, and 5, the fan coil unit 20 arranged along the outer wall of the perimeter area P and the window glass 3 has a unit main body 21 in the shape of an oblong square box. The inside of the main body 21 is partitioned into upper and lower chambers 24 and 25 by an intermediate partition plate 22 provided in the middle in the vertical direction, leaving a cold air passage 23 on the front side and a bypass passage 28 on the rear side. A blower (fan) 26 is disposed in the chamber 24, and a heat exchanger (coil) 2 is disposed in the lower chamber 25.
7 is placed.

上段室24の上部は、吹出口29が形成された
上面30と送風機26の吐出口31との間で上仕
切板32で仕切られる。
The upper part of the upper chamber 24 is partitioned by an upper partition plate 32 between an upper surface 30 in which a blower outlet 29 is formed and a discharge outlet 31 of the blower 26 .

また、上下段室24,25の後部は、後面33
との間の後仕切板34で仕切られてバイパス通路
28が形成され、上段室24に対応する壁面には
吹出温度制御用のバイパスダンパ35が設けられ
る。
Further, the rear portions of the upper and lower chambers 24 and 25 are connected to a rear surface 33.
A bypass passage 28 is formed by partitioning with a rear partition plate 34 between the upper chamber 24 and a bypass damper 35 for controlling the blowout temperature.

さらに、上下段室24,25の前部は、前面3
6との間の前保温材37で仕切られて、前面36
との間に温風通路38が形成されるとともに、中
間間仕切板22との間に冷風通路23が形成され
る。前面36は、熱放射の良好な金属材料等で形
成されていて、輻射パネルとしての作用をする。
前保温材37には、下段室25に対応して、下段
室25を冷風通路23と温風通路38とに切替え
る流路切替ダンパ39が設けられる(第3図b参
照)。なお、40は下部間仕切板、41はドレン
パンである。
Furthermore, the front portions of the upper and lower chambers 24 and 25 are connected to the front surface 3.
6 and is partitioned by a front heat insulating material 37 between the front side 36
A hot air passage 38 is formed between the intermediate partition plate 22 and a cold air passage 23 between the intermediate partition plate 22 and the intermediate partition plate 22 . The front surface 36 is made of a metal material or the like with good heat radiation, and functions as a radiant panel.
The front heat insulating material 37 is provided with a passage switching damper 39 corresponding to the lower chamber 25 that switches the lower chamber 25 into the cold air passage 23 and the hot air passage 38 (see FIG. 3b). Note that 40 is a lower partition plate, and 41 is a drain pan.

上記本体の前面36の下部には吸込口42,4
2が形成され、送風機26の回転により吸込口4
2から吸込まれた室内空気は、バイパス通路28
側から熱交換器27を介して流路切替ダンパ39
の手動又は自動切替えにより、送風機26を介し
て吹出口29から室内へ吹出されるようになる。
Suction ports 42 and 4 are provided at the bottom of the front surface 36 of the main body.
2 is formed, and the rotation of the blower 26 opens the suction port 4.
The indoor air sucked from 2 passes through the bypass passage 28
Flow path switching damper 39 via heat exchanger 27 from the side
By manual or automatic switching, the air is blown into the room from the air outlet 29 via the blower 26.

しかして、上記のようにフアンコイルユニツト
20を構成すれば、暖房時には、流路切替ダンパ
39により冷風通路23を閉じて温風通路38を
開く。
Thus, if the fan coil unit 20 is configured as described above, during heating, the flow path switching damper 39 closes the cold air passage 23 and opens the hot air passage 38.

そうすると、熱交換器27で昇温された室内空
気(温風)が温風通路38を通るので、前面(輻
射パネル)36を加熱しつつ送風機26に至るよ
うになる。
Then, the indoor air (warm air) heated by the heat exchanger 27 passes through the hot air passage 38, so that it reaches the blower 26 while heating the front surface (radiation panel) 36.

従つて、前面(輻射パネル)36から輻射熱が
ペリメータ域Pに輻射されるようになる。
Therefore, radiant heat is radiated from the front surface (radiation panel) 36 to the perimeter area P.

例えば、熱交換器27の温水が60℃であると、
熱交換器27から出た温風が50℃前後に加熱さ
れ、この温風により前面(輻射パネル)36が40
〜50℃に加熱されて、吹出口31からはバイパス
ダンパ35の開度調節により30℃前後の温風が吹
出される。
For example, if the hot water in the heat exchanger 27 is 60°C,
The warm air coming out of the heat exchanger 27 is heated to around 50℃, and the front (radiation panel) 36 is heated to 40℃ by this hot air.
The air is heated to ~50°C, and hot air of around 30°C is blown out from the air outlet 31 by adjusting the opening degree of the bypass damper 35.

ペリメータ域Pに吹出されたこの温風は、外
壁,窓ガラス3等による伝熱損失の影響で約21〜
22℃となつて対流し、一方、通常の空気吹出口2
からインテリア域Iに吹出された冷風(16〜18
℃)は、室内発生熱の影響で約22℃となつて対流
するので、第2図のように、両域P,Iの気流又
は空気が混合しても、両域空気温度が等しいた
め、混合による熱損失はなくなる。又、両域空気
温度に差があつても、それぞれの空気は両域の設
定温度に近く、混合しても各域の熱負荷を処理す
る方向に作用し、混合による熱利得となる。
This warm air blown into the perimeter area P is approximately 21 to
22℃ and convection, while normal air outlet 2
Cold air blown from the interior area I (16 to 18
℃) becomes approximately 22℃ due to the influence of the heat generated indoors, and convection occurs.As shown in Figure 2, even if the air currents or air in both areas P and I mix, the air temperature in both areas is the same. Heat loss due to mixing is eliminated. Further, even if there is a difference in air temperature between the two zones, each air is close to the set temperature of both zones, and even when mixed, the air acts in a direction to handle the heat load of each zone, resulting in a heat gain due to mixing.

また、外壁,窓ガラス3等からの冷輻射は、フ
アンコイルユニツト20の前面(輻射パネル)3
6からの熱輻射と相殺されるので、冷感が大幅に
緩和されて温感が生じるようになり、ペリメータ
設定温度を従来のように高く設定しなくても快適
度が向上するのである。
In addition, the cold radiation from the outer wall, window glass 3, etc. is
6, the cold sensation is significantly alleviated and a warm sensation is generated, improving comfort without having to set the perimeter temperature as high as in the past.

第6図は、快適な温熱環境の事務所での作業を
考慮した場合の環境条件と、着衣表面温度との関
係を示すデータで、室温22℃、外気温0.4℃の場
合、暖房時の事務所の作業性を考慮した着衣の表
面温度がおよそ27〜28℃の範囲が快適感〔インテ
リア域Iは着衣の表面温度が一定温度d(27.46
℃)〕とすると、輻射パネル36が室温と同じ温
度a(22℃→輻射パネルがない従来方法と同じ)
のときは、窓際から4〜5m以上離れないと快適
域にならないが、輻射パネル36が温度b(40℃)
のときは、窓際から1mであつても快適域であり、
温度c(70℃)のときは逆に窓際から1mまでは少
し暑くなりすぎ、2mから快適域となるのがわか
る。
Figure 6 shows data showing the relationship between environmental conditions and clothing surface temperature when working in an office with a comfortable thermal environment. It feels comfortable when the surface temperature of clothing is in the range of approximately 27 to 28 degrees Celsius, taking into consideration the workability of the place [interior area I, the surface temperature of clothing is a constant temperature d (27.46
℃)], the temperature of the radiant panel 36 is the same as room temperature a (22℃→same as the conventional method without the radiant panel)
In this case, the comfort zone will not be reached unless you are at least 4 to 5 meters away from the window, but the radiant panel 36 is at temperature B (40℃).
, even if you are 1m from the window, it is still within the comfortable range.
Conversely, when the temperature is C (70℃), it becomes a little too hot up to 1m from the window, and it becomes comfortable from 2m.

一方、冷房時には、流路切替ダンパ39によ
り、温風通路38を閉じて冷風通路23を開く。
On the other hand, during cooling, the flow path switching damper 39 closes the hot air passage 38 and opens the cold air passage 23.

そうすると、熱交換器27で降温された室内空
気(冷風)が冷風通路23を通つて送風機26に
至るようになる。この場合、冷風は温風通路38
を通らないので、前面(輻射パネル)36が不要
に冷却されて結露等を生じることはない。又、輻
射パネル36と前保温材37との間の温風通路3
8は、停留空気層となり、断熱層としての機能を
もつことにもなる。
Then, the indoor air (cold air) whose temperature has been lowered by the heat exchanger 27 reaches the blower 26 through the cold air passage 23. In this case, the cold air is sent to the hot air passage 38.
Since the radiation does not pass through the air, the front surface (radiation panel) 36 will not be unnecessarily cooled and no condensation will occur. Moreover, the hot air passage 3 between the radiant panel 36 and the front heat insulating material 37
8 becomes a retained air layer and also functions as a heat insulating layer.

また、フアンコイルユニツト20は、次のよう
に制御することもできる。
Further, the fan coil unit 20 can also be controlled as follows.

暖房負荷の変動が少ない場合、フアンコイルユ
ニツト20からの送風温度と設定室温との差が少
ないので、送風量を一定とすれば、温水量の制御
によつて送風温度を制御することができる。この
結果、輻射パネルの表面温度も送風温度の制御に
追従して変動する。
When there is little variation in the heating load, the difference between the temperature of the air blown from the fan coil unit 20 and the set room temperature is small, so if the amount of air blown is kept constant, the temperature of the air blown can be controlled by controlling the amount of hot water. As a result, the surface temperature of the radiant panel also fluctuates following the control of the air temperature.

ところで、居室の温熱環境に占める輻射,対流
成分の各構成比率は、その負荷の変動にかかわら
ずほぼ一定であると考えられ(対流50%、輻射50
%)、従来どおりの室内空気温度の制御により、
容易に輻射成分となるパネルの表面温度もコント
ロールできる。
By the way, the composition ratio of radiation and convection components in the thermal environment of a living room is considered to be almost constant regardless of changes in the load (50% for convection, 50% for radiation).
%), by controlling the indoor air temperature as before,
The surface temperature of the panel, which easily becomes a radiant component, can also be controlled.

つまり、従来の前面パネルに電気ヒータを貼り
つけたフアンコイルユニツトでは、輻射系と対流
系は並列で各々はそれ自体では相互関係をもつて
いないので、室内検知サーモにより対流成分をコ
ントロールし、この対流成分の吹出し温度を別の
サーモにより検知し、さらにコントロール用変換
器を介して輻射成分をコントロールする必要があ
り、コストアツプとなる。
In other words, in a conventional fan coil unit with an electric heater attached to the front panel, the radiation system and convection system are parallel and have no mutual relationship with each other. It is necessary to detect the blowout temperature of the convective component using a separate thermometer and to control the radiant component via a control converter, which increases costs.

これに対して本案のフアンコイルユニツト20
では、輻射系と対流系は直列で各々はそれ自体で
相互関係をもつているので、室温検知サーモによ
り対流成分をコントロールすると、自動的に輻射
成分もコントロールされるようになるので、別の
センサーやコントロール用変換器等が不要であ
る。
In contrast, the proposed fan coil unit 20
Now, the radiation system and the convection system are connected in series and each has its own interrelationship, so if you control the convection component with a room temperature detection thermometer, the radiation component will also be automatically controlled, so you can use another sensor to control the convection component. There is no need for converters or control converters.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の空気調和システムを示す側面
図、第2図は本発明に係る空気調和システムを示
す側面図、第3図及び第4図は従来のフアンコイ
ルユニツトの断面図、第5図aは本発明に係る暖
房時のフアンコイルユニツトの断面図、第5図b
は冷房時のフアンコイルユニツトの断面図、第6
図は第5図aの平面図、第7図は環境条件と着衣
の表面温度との関係を示すグラフである。 20……フアンコイルユニツト、21……ユニ
ツト本体、22……中間間仕切板、23……冷風
通路、26……送風機、27……熱交換器、28
……バイパス通路、29……吹出口、35……バ
イパスダンパ、36……前面(輻射パネル)、3
7……前保温材、38……温風通路、39……流
路切替ダンパ、42……吸込口、P……ペリメー
タ域、I……インテリア域。
Fig. 1 is a side view showing a conventional air conditioning system, Fig. 2 is a side view showing an air conditioning system according to the present invention, Figs. 3 and 4 are sectional views of a conventional fan coil unit, and Fig. 5 a is a sectional view of the fan coil unit during heating according to the present invention, FIG. 5 b
Figure 6 is a cross-sectional view of the fan coil unit during cooling.
The figure is a plan view of FIG. 5a, and FIG. 7 is a graph showing the relationship between environmental conditions and the surface temperature of clothing. 20... Fan coil unit, 21... Unit main body, 22... Intermediate partition plate, 23... Cold air passage, 26... Blower, 27... Heat exchanger, 28
... Bypass passage, 29 ... Air outlet, 35 ... Bypass damper, 36 ... Front (radiation panel), 3
7...Front heat insulating material, 38...Hot air passage, 39...Flow path switching damper, 42...Suction port, P...Perimeter area, I...Interior area.

Claims (1)

【特許請求の範囲】 1 室内外周部であるペリメータ域と室内中核部
であるインテリア域とで夫々異なる空気調和シス
テムを採用するものにおいて、 暖房時に、上記ペリメータ域の設定温度を上記
インテリア域の設定温度とほぼ同じかそれ以下に
制御する一方、上記ペリメータ域のフアンコイル
ユニツトの前面に設けられた輻射パネルの表面温
度を、ペリメータ域の設定温度よりも高く制御す
ることを特徴とする空気調和システムにおける混
合ロス防止方法。
[Claims] 1. In a device that employs different air conditioning systems for a perimeter area, which is the outer periphery of the room, and an interior area, which is the core part of the room, during heating, the set temperature of the perimeter area is set to the set temperature of the interior area. An air conditioning system characterized in that the surface temperature of a radiant panel provided in front of the fan coil unit in the perimeter area is controlled to be higher than the set temperature of the perimeter area, while controlling the temperature to be approximately the same as or lower than the temperature. Method for preventing mixing loss in.
JP58139915A 1983-07-29 1983-07-29 Method for preventing loss in mixing in air conditioning system Granted JPS6030926A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58139915A JPS6030926A (en) 1983-07-29 1983-07-29 Method for preventing loss in mixing in air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58139915A JPS6030926A (en) 1983-07-29 1983-07-29 Method for preventing loss in mixing in air conditioning system

Publications (2)

Publication Number Publication Date
JPS6030926A JPS6030926A (en) 1985-02-16
JPS63701B2 true JPS63701B2 (en) 1988-01-08

Family

ID=15256606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58139915A Granted JPS6030926A (en) 1983-07-29 1983-07-29 Method for preventing loss in mixing in air conditioning system

Country Status (1)

Country Link
JP (1) JPS6030926A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0229530A (en) * 1988-07-20 1990-01-31 Yamatake Honeywell Co Ltd Reduction and control method for mixing loss in air conditioning system
JP2005156093A (en) * 2003-11-28 2005-06-16 Daikin Ind Ltd Air conditioner
CN113503633B (en) * 2021-07-05 2022-08-05 湖南永一节能科技有限公司 Intelligent management method, controller and management system for building central air conditioner

Also Published As

Publication number Publication date
JPS6030926A (en) 1985-02-16

Similar Documents

Publication Publication Date Title
US6319115B1 (en) Air cycle houses and house ventilation system
US4258615A (en) Ceiling construction for a heating, ventilation and air conditioning system
JPS63701B2 (en)
JPH05141708A (en) Radiational panel for cooling and heating
JPH035786Y2 (en)
JPH0448430Y2 (en)
JP2883929B2 (en) Radiation air conditioning chamber and air conditioning system including the chamber
JPH102596A (en) Air conditioner
JPH0941506A (en) Building
US4735257A (en) Arrangement in internal panels for eliminating cold radiating surfaces on walls, ceilings and floors
US2619288A (en) Heating system
JPH0561538B2 (en)
JP2000274733A (en) Air conditioning device for multiple dwelling house
JP3836592B2 (en) Indoor heating device and method thereof
JPH10325551A (en) Korean floor heating device
JP3656077B2 (en) Lower outlet air conditioner with indoor circulation channel and outdoor air supply channel
JP3240453B2 (en) Large air-conditioning glass window
JP3136292B1 (en) Air conditioning equipment
JPH05203244A (en) Air conditioner
JPH0318101B2 (en)
JPS5817861B2 (en) Ceiling structure for air conditioning
JP2003027616A (en) Outside insulation building
JPS621648Y2 (en)
JPS6333052Y2 (en)
JPH0796935B2 (en) Reciprocating window air conditioning system with thermal radiation