JPS636968B2 - - Google Patents

Info

Publication number
JPS636968B2
JPS636968B2 JP55146022A JP14602280A JPS636968B2 JP S636968 B2 JPS636968 B2 JP S636968B2 JP 55146022 A JP55146022 A JP 55146022A JP 14602280 A JP14602280 A JP 14602280A JP S636968 B2 JPS636968 B2 JP S636968B2
Authority
JP
Japan
Prior art keywords
electrode
discharge
electrodes
panel
regulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55146022A
Other languages
Japanese (ja)
Other versions
JPS5769645A (en
Inventor
Tsutae Shinoda
Yoshimi Sugimoto
Yoshinori Myashita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP55146022A priority Critical patent/JPS5769645A/en
Publication of JPS5769645A publication Critical patent/JPS5769645A/en
Publication of JPS636968B2 publication Critical patent/JPS636968B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Gas-Filled Discharge Tubes (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Description

【発明の詳細な説明】 この発明は、ガス放電を利用した表示パネルの
改良に係り、特に面放電形あるいはモノリシツク
形ガス放電パネルにおける解像度向上のための新
しい電極構造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in display panels that utilize gas discharge, and particularly to a new electrode structure for improving resolution in surface discharge or monolithic gas discharge panels.

AC駆動形式のガス放電パネルの1種に面放電
形またはモノリシツク形と呼ばれるパネルがあ
る。この形式のガス放電パネルは、例えば特開昭
47−12号公報等から周知のように、ガス封入空間
を介して対向配置した1対の基板の内の一方の基
板上にのみX電極とY電極の両方を配設し、これ
ら両電極の交点近傍において基板面に沿つた横放
電を発生させるようにしたところに特徴をそなえ
ている。しかしてかかる構成によれば、1対の基
板間の間隙精度に対する要求が著しく緩和される
他、カバー用の基板内面に紫外線励起形の蛍光体
を付設して表示色の変換や多色化が容易に行える
という利点が得られるのであるが、反面単一の基
板上にX・Y両電極を配設しなければならないの
で、対向電極構造のパネルに比較して解像度の向
上が難しく、また基板の両方向に沿つた横放電を
利用する点で必然的に隣接セル(放電点)間の結
合が強くなり、過度のプラズマ結合による誤放電
を防止するという面からも解像度の向上が阻まれ
ていた。
One type of AC-driven gas discharge panel is a panel called a surface discharge type or monolithic type. This type of gas discharge panel is known, for example, from JP-A-Sho.
As is well known from Publication No. 47-12, an X electrode and a Y electrode are disposed only on one of a pair of substrates that are placed opposite each other with a gas-filled space in between. The feature is that a horizontal discharge is generated along the substrate surface in the vicinity of the intersection. However, according to such a configuration, the requirement for the gap accuracy between a pair of substrates is significantly relaxed, and an ultraviolet-excited phosphor is added to the inner surface of the cover substrate to allow conversion of display colors and multicolor display. This has the advantage of being easy to perform, but on the other hand, since both the X and Y electrodes must be placed on a single substrate, it is difficult to improve resolution compared to a panel with a facing electrode structure. The use of horizontal discharges along both directions inevitably leads to stronger coupling between adjacent cells (discharge points), which also hinders the improvement of resolution in terms of preventing erroneous discharges due to excessive plasma coupling. .

この発明は、以上のような従来の状況から、面
放電形またはモノリシツク形のガス放電パネルに
おいて解像度の向上を目的とするものであり、さ
らに具体的にはこの種のガス放電パネルの電極構
造を改善してシヤープな放電スポツトを得ようと
するものである。簡単に述べるとこの発明は、一
方の基板上に絶縁膜を介して2層にX・Y電極を
配した電極構造において、下層のY電極の真上で
かつ上層のX電極配設面における該X電極の両側
に、フローテイング電極構成の放電規定電極片を
ほぼ等距離関係で配設するとともに、その2層の
XY電極間の絶縁膜の厚みDiと、上層X電極と放
電規定電極片間の距離Dfの比(Df/Di)を2以
上に設定したことにより、放電スポツトの下層Y
電極延長方向への延び(拡大)を抑えるようにし
たことを特徴とするものである。
In view of the above-mentioned conventional situation, the present invention aims to improve the resolution in a surface discharge type or monolithic type gas discharge panel, and more specifically, to improve the electrode structure of this type of gas discharge panel. This is an attempt to improve and obtain a sharp discharge spot. Briefly stated, the present invention has an electrode structure in which X and Y electrodes are arranged in two layers on one substrate with an insulating film interposed therebetween, and in which the On both sides of the
By setting the ratio (Df/Di) of the thickness Di of the insulating film between the XY electrodes and the distance Df between the upper layer X electrode and the discharge regulating electrode piece to 2 or more, the lower layer Y of the discharge spot
This feature is characterized by suppressing extension (expansion) in the electrode extension direction.

以下、この発明の好ましい実施例につき、図面
を参照してさらに詳細に説明する。
Hereinafter, preferred embodiments of the present invention will be described in more detail with reference to the drawings.

第1図および第2図はこの発明を適用した面放
電形のガス放電パネルの1例電極構造を示す平面
図とそれの−′線断面図である。これらの図
において、表示パネル10は、放電用ガス空間1
1を介して対向した1対のガラス基板12および
13の平板状密閉構体を主体として構成されてい
る。電極支持基板として機能する一方(下側)の
ガラス基板12の上には、横方向に延びる複数本
のY電極14が設けられ、その上に厚さ数μm本
例では約3μmの硼硅酸ガラスよりなる蒸着絶縁
膜15を介して縦方向に延びる複数本のX電極1
6が形成されている。そして、当該X電極16の
上には例えば厚さ約6μmの硼硅酸ガラスまたは
二酸化アルミニウム(Al2O3)等の蒸着膜よりな
る誘電体層17が設けられ、さらにその上には図
示しない酸化マグネシウム(MgO)の蒸着膜よ
りなる表面層が被覆されている。なお、上記X・
Y電極14,16はいずれも厚さ約2μmのアル
ミニウム(Al)の薄膜導電層を写真露光法によ
つてパターニングし、電極幅約70μmのストライ
プ状電極として形成されており、また放電用ガス
空間11には2%のクセノン(Xe)と98%のヘ
リウム(He)の混合ガスが600torrの圧力で封入
されている。
1 and 2 are a plan view and a sectional view taken along the line -' of the electrode structure of a surface discharge type gas discharge panel to which the present invention is applied. In these figures, the display panel 10 has a discharge gas space 1
It is mainly composed of a flat plate-like closed structure consisting of a pair of glass substrates 12 and 13 facing each other with a glass substrate 1 in between. On one (lower) glass substrate 12 that functions as an electrode support substrate, a plurality of Y electrodes 14 extending in the horizontal direction are provided, and on top of the Y electrodes 14, a borosilicate film with a thickness of several μm, in this example, approximately 3 μm, is provided. A plurality of X electrodes 1 extend vertically through a vapor-deposited insulating film 15 made of glass.
6 is formed. A dielectric layer 17 made of a vapor-deposited film such as borosilicate glass or aluminum dioxide (Al 2 O 3 ) with a thickness of approximately 6 μm is provided on the X electrode 16, and further on top of this is a dielectric layer 17 (not shown). It is covered with a surface layer consisting of a vapor-deposited film of magnesium oxide (MgO). In addition, the above
Both Y electrodes 14 and 16 are formed by patterning a thin conductive layer of aluminum (Al) with a thickness of about 2 μm using a photolithography method to form a striped electrode with an electrode width of about 70 μm. 11 is filled with a mixed gas of 2% xenon (Xe) and 98% helium (He) at a pressure of 600 torr.

かくして、各Y電極14とX電極16の交差部
に対応したガス空間に多数の放電点がマトリツク
ス状に画定された形となり、両電極を選択駆動す
ることによつて所望の放電点に放電を発生させる
ことが可能となる。この放電は、選択されたX−
Y電極間に所定の放電開始電圧を印加した際、こ
れらの電極交差部においてガス空間11中に漏洩
する電界Eによつて引き起こされ、以後この放電
に伴う電荷の当該放電点対応の誘電体層17への
蓄積により、交番維持電極の印加によつて接続す
る。
In this way, a large number of discharge points are defined in a matrix in the gas space corresponding to the intersections of each Y electrode 14 and X electrode 16, and by selectively driving both electrodes, a discharge can be directed to a desired discharge point. It becomes possible to generate This discharge is caused by the selected
When a predetermined discharge starting voltage is applied between the Y electrodes, this is caused by the electric field E leaking into the gas space 11 at the intersection of these electrodes, and the electric charge associated with this discharge is subsequently transferred to the dielectric layer corresponding to the discharge point. 17 and is connected by applying an alternating sustain electrode.

ここで、この発明の特徴とするところは、下層
に位置するY電極14対応の絶縁膜15上におい
て上層のX電極16の両側にほぼ同じ距離Dfを
隔て放電規定電極片21を設けたところにある。
なお、ここで重要なことは前記絶縁膜15の厚み
Diと、前距離Dfとの比(Df/Di)が2以上にな
るように設計しなければならないことである。こ
の比を2以下にすると、当該規定電極片自体が下
層Y電極に随伴した放電用電極として機能してし
まう。第1図および第2図に示した実施例の場
合、当該規定電極片は隣接する2つのX電極間の
中央位置に配され、それら両電極で定まる2つの
隣接放電点に共用するようになつている。なお、
放電規定電極片21のエツジ部とX電極16のエ
ツジ部との間の距離Dfは本例では約40μm、また
X電極のピツチ幅は約500μmである。しかして、
前記したように蒸着絶縁膜15の厚みDiが約3μ
mであるから、前記(Df/Di)は約13である。
このように上層のX電極16間に放電規定電極片
21を設けることによつて、放電スポツトが下層
Y電極14の伸張方向に延びる傾向にあるのを防
止することができる。
Here, the feature of the present invention is that discharge regulating electrode pieces 21 are provided on both sides of the upper layer X electrode 16 at approximately the same distance Df on the insulating film 15 corresponding to the lower layer Y electrode 14. be.
Note that what is important here is the thickness of the insulating film 15.
The design must be such that the ratio of Di to the front distance Df (Df/Di) is 2 or more. When this ratio is set to 2 or less, the specified electrode piece itself functions as a discharge electrode accompanying the lower layer Y electrode. In the case of the embodiment shown in FIGS. 1 and 2, the specified electrode piece is arranged at the center position between two adjacent X electrodes, and is shared by two adjacent discharge points defined by both electrodes. ing. In addition,
In this example, the distance D f between the edge portion of the discharge regulating electrode piece 21 and the edge portion of the X electrode 16 is approximately 40 μm, and the pitch width of the X electrode is approximately 500 μm. However,
As mentioned above, the thickness Di of the vapor-deposited insulating film 15 is about 3μ.
m, the above (D f /Di) is approximately 13.
By providing the discharge regulating electrode piece 21 between the upper layer X electrodes 16 in this way, it is possible to prevent the discharge spot from tending to extend in the direction in which the lower layer Y electrode 14 extends.

すなわち、上記面放電形のガス放電パネルで
は、2層に配設されたX・Y電極の内、下層に位
置するY電極14の上層X電極16と対向する部
分Saはドツトを施して示すごとく当該上層X電
極16の陰になつてガス空間11に漏洩する電界
Eからは遮断された状態にあり、放電には寄与し
ない。一方、X・Y電極間のAC放電は、各電極
面が交互にカソードとなつて陰極グローを生じる
ような形で行われるのであるが、この場合印加電
圧の極性反転時の電流が同一である限り、陰極グ
ローの生じる面積はX・Y両電極面において均等
となる。従つて、X・Y電極の幅が同一関係にあ
るこの種パネルにおいては、下層のY電極14側
がカソードとなつて放電する場合、上層X電極1
6直下の放電無効部分Saの面積に相当する分だ
け当該Y電極14の伸張方向に放電が広がつて生
ずることになる。
That is, in the above-mentioned surface discharge type gas discharge panel, among the X and Y electrodes arranged in two layers, the portion Sa of the lower Y electrode 14 facing the upper layer X electrode 16 is dotted as shown. It is in the shadow of the upper layer X electrode 16 and is shielded from the electric field E leaking into the gas space 11, and does not contribute to discharge. On the other hand, AC discharge between the X and Y electrodes occurs in such a way that each electrode surface alternately acts as a cathode, producing cathode glow, but in this case, the current when the polarity of the applied voltage is reversed is the same. As far as possible, the area where cathode glow occurs is equal on both the X and Y electrode surfaces. Therefore, in this type of panel where the widths of the X and Y electrodes are the same, when the lower layer Y electrode 14 side serves as a cathode and discharges, the upper layer X electrode 1
A discharge is generated by spreading in the extending direction of the Y electrode 14 by an amount corresponding to the area of the discharge invalid portion Sa immediately below the Y electrode 14.

ところが、この発明に従つて隣接する上層のX
電極16間にフローテイング構成の放電規定電極
片21を設けておけば、放電に伴う電界の内、Y
電極の伸張方向に不当に拡散する電界は当該電極
片に吸引され、その結果同伸張方向への放電の延
びを抑圧できるわけである。第3図は放電の様子
を模式的に示す電極支持基板側の断面図であつ
て、これに従つてかかる放電の拡張抑圧動作をさ
らに詳しく説明する。この図においていま下層の
Y電極14がカソード状態となるようX−Y電極
間に電圧を印加したものとすると、図の放物線A
に示すようなX電極16の両側で対称形の電気力
線が生じる。この場合、放電規定電極片21は上
層X電極16間のほぼ中央に配しているので、X
−Y電極間で発生する電界を大きく乱すことはな
い。かくして、電界分布が最も高密度のX−Y電
極の交差部近傍において放電が発生し、この放電
は時間の経過につれて電界分布が粗くなる方向す
なわち下層のY電極14の伸張方向に延びる。こ
の間、当該Y電極対応の誘電体層17表面には、
正の電荷がY電極14の伸張方向に沿つて延びる
ような形で順次蓄積されていき、遂には放電規定
電極片21対応の誘電体層表面にも蓄積される。
すると当該規定電極片21はフローテイング構造
であるため、この電荷に引かれて電位状態が下層
Y電極側の電位一辺到から上層X電極側の電位に
近づくよう変化する。しかしてこの電位変化はガ
ス空間に加わる実効的な電圧を下げる方向である
ため、それによつて放電電界が抑圧され、結果と
して放電は当該規定電極片21より先には延びな
くなる。再び第1図を参照して、斜線を施して示
した部分Sxが上層X電極16の放電面として機
能する部分であり、2重斜線を施して示した部分
Syが下層Y電極14の放電面として機能する部
分である。両部分SxとSyの面積は均等であり、
下層Y電極側で無効領域となる電極交差部Saの
面積相当の放電拡張は放電規定電極片21によつ
て阻止される結果、XY両方向における放電面の
長さは略同一となる。
However, according to the present invention, the adjacent upper layer X
By providing a floating discharge regulating electrode piece 21 between the electrodes 16, Y
The electric field that is unduly diffused in the direction of extension of the electrode is attracted to the electrode piece, and as a result, the extension of discharge in the direction of extension can be suppressed. FIG. 3 is a cross-sectional view of the electrode supporting substrate side schematically showing the state of discharge, and the operation of suppressing expansion of discharge will be explained in more detail according to this diagram. In this figure, if a voltage is applied between the X and Y electrodes so that the lower layer Y electrode 14 becomes a cathode state, then the parabola A in the figure
Symmetrical lines of electric force are generated on both sides of the X electrode 16 as shown in FIG. In this case, since the discharge regulating electrode piece 21 is arranged approximately in the center between the upper layer X electrodes 16,
- The electric field generated between the Y electrodes is not significantly disturbed. Thus, a discharge occurs near the intersection of the X-Y electrodes where the electric field distribution is highest, and this discharge extends in the direction in which the electric field distribution becomes coarser over time, that is, in the direction in which the underlying Y electrode 14 extends. During this time, on the surface of the dielectric layer 17 corresponding to the Y electrode,
Positive charges are accumulated one after another in a form extending along the extending direction of the Y electrode 14, and are finally accumulated on the surface of the dielectric layer corresponding to the discharge regulating electrode piece 21.
Then, since the specified electrode piece 21 has a floating structure, it is attracted by this charge and the potential state changes from the potential on the lower layer Y electrode side to approach the potential on the upper layer X electrode side. However, since this potential change is in the direction of lowering the effective voltage applied to the gas space, the discharge electric field is thereby suppressed, and as a result, the discharge does not extend beyond the specified electrode piece 21. Referring again to FIG. 1, the hatched portion Sx is the portion that functions as the discharge surface of the upper layer X electrode 16, and the double hatched portion Sx is the portion that functions as the discharge surface of the upper layer X electrode 16.
Sy is a portion of the lower layer Y electrode 14 that functions as a discharge surface. The areas of both parts Sx and Sy are equal,
As a result of the discharge regulating electrode piece 21 preventing discharge expansion corresponding to the area of the electrode intersection Sa, which is an ineffective region on the lower Y electrode side, the lengths of the discharge surface in both the X and Y directions become approximately the same.

従つてこの発明によれば、一般に下層電極の伸
張方向に延びる傾向のあつた放電スポツトを整形
してシヤープにすることができるので、下層電極
の伸張方向に隣接した放電点間での過度のプラズ
マ結合に起因した誤放電を防止して放電点間ピツ
チを縮小し、解像度の向上を図るのに都合が良
い。これに加えて、前述した実施例によるパネル
構造によれば、放電規定電極片を有しない通常の
パネルに比べて、放電開始電圧Vfを約10ボルト
増加することができた。具体的には、本発明のパ
ネルではVf≒160ボルト、通常パネルではVf
150ボルトであり、かつ両パネルの最小維持電圧
Vsminが共に約130ボルトである。しかしてVfと
Vsminとの差で定める動作電圧マージンは、20
ボルトから30ボルトに上昇して50%の増加とな
る。
Therefore, according to the present invention, discharge spots that generally tend to extend in the stretching direction of the lower electrode can be shaped and sharpened, thereby preventing excessive plasma between discharge points adjacent to the lower electrode in the stretching direction. This is convenient for preventing erroneous discharges due to coupling, reducing the pitch between discharge points, and improving resolution. In addition, according to the panel structure according to the embodiment described above, the discharge starting voltage V f could be increased by about 10 volts compared to a normal panel having no discharge regulating electrode piece. Specifically, V f ≒160 volts for the panel of the present invention, and V f ≒ 160 volts for the conventional panel.
150 volts and the minimum sustaining voltage for both panels
Both Vsmin are about 130 volts. However, with Vf
The operating voltage margin determined by the difference from Vsmin is 20
Increases from volts to 30 volts for a 50% increase.

第4図はこの発明の変形例を示す平面図で、同
図aおよびbは放電規定電極片21を丸形および
長円形に変形した実施例を示し、また同図c〜f
は前記規定電極片を2分割してその分割電極片2
1a,21bを各々等距離をもつて個々に上層X
電極16に対応させた例を示している。
FIG. 4 is a plan view showing a modified example of the present invention, and FIG.
divides the specified electrode piece into two and divides the divided electrode piece 2
1a and 21b individually at the upper layer X with equal distance from each other.
An example corresponding to the electrode 16 is shown.

さらに、本発明を色変換または多色表示化する
場合は、第2図で示すように上層X電極16に対
向したカバー用ガラス基板13の内壁面に所望の
発光色を持つ蛍光体22を設ければよい。この多
色表示パネルによれば、隣接放電点間の相互干渉
が少ないので、クロストークのない高解像度多色
表示を提供しうる。
Furthermore, in the case of color conversion or multicolor display of the present invention, a phosphor 22 having a desired emission color is provided on the inner wall surface of the cover glass substrate 13 facing the upper layer X electrode 16, as shown in FIG. That's fine. According to this multicolor display panel, since there is little mutual interference between adjacent discharge points, it is possible to provide a high resolution multicolor display without crosstalk.

さて以上の説明から明らかなように、要するに
この発明は、電極支持基板上に絶縁膜を介して2
層の電極を配設したAC駆動形の面放電形ガス放
電パネルにおいて、下層の電極の真上でかつ上層
電極の配設面における該上層電極の両側に、フロ
ーテイング電極構成の放電規定電極片をほぼ等距
離関係で配設するとともに、その2層電極間の絶
縁膜の厚みDiと、上層電極と放電規定電極片間
の距離Dfの比(Df/Di)を2以上に設定したこ
とを特徴とするものであり、この種面放電パネル
に特有の放電スポツトの下層電極の伸張方向への
異常な広がりを防止して解像度の向上を図るのに
きわめて有益である。
Now, as is clear from the above explanation, in short, this invention provides two
In an AC-driven surface discharge type gas discharge panel in which a layer of electrodes is arranged, discharge regulating electrode pieces of a floating electrode configuration are placed directly above the lower layer electrode and on both sides of the upper layer electrode on the surface where the upper layer electrode is arranged. are arranged in a nearly equidistant relationship, and the ratio (Df/Di) of the thickness Di of the insulating film between the two layer electrodes and the distance Df between the upper layer electrode and the discharge regulating electrode piece is set to 2 or more. This feature is extremely useful for improving resolution by preventing the abnormal spread of the discharge spot in the direction of extension of the lower electrode, which is characteristic of this type of surface discharge panel.

因みに、特開昭55−1098号公報において、上層
電極の片側に近接した位置に下層電極と容量結合
するようなフローテイング構造の電極パツドを設
け、上層電極と当該電極パツドとの間に積極的に
放電を発生させるようにした面放電形ガス放電パ
ネルが提案されている。けれども、このパネル構
造では当該片側にだけしか放電が生じないので放
電スポツトが表示空間に比べて小さい、つまりフ
イリングフアクタが小さい。従つて隣接放電点に
おける放電スポツトの分離が大きくなり、解像度
の低い表示となる欠点がある。これに対して、本
発明のパネル構造では、上述したように上層電極
の両側において対称に放電スポツトが発生するか
ら、前記フイリングフアクタをきわめて高くする
ことができる。
Incidentally, in Japanese Unexamined Patent Application Publication No. 1098/1983, an electrode pad with a floating structure that is capacitively coupled with the lower layer electrode is provided at a position close to one side of the upper layer electrode, and a positive electrode pad is provided between the upper layer electrode and the electrode pad. A surface discharge type gas discharge panel that generates a discharge has been proposed. However, with this panel structure, discharge occurs only on one side, so the discharge spot is small compared to the display space, that is, the filling factor is small. Therefore, the separation of discharge spots at adjacent discharge points becomes large, resulting in a display with low resolution. On the other hand, in the panel structure of the present invention, since discharge spots are generated symmetrically on both sides of the upper layer electrode as described above, the filling factor can be made extremely high.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図はこの発明を適用した面放
電形のガス放電パネルの1例電極構造を示す平面
図と−′線に沿つた断面図、第3図はこの発
明の放電規定効果を説明するための放電の様子を
摸式的に示す電極支持基板の拡大断面図、第4図
a〜fはそれぞれこの発明の他の実施例を示す電
極配置図である。 10:表示パネル、11:ガス空間、12およ
び13:ガラス基板、14:Y電極、15:絶縁
膜、16:X電極、17:誘電体層、21:放電
規定電極片、22:蛍光体。
Figures 1 and 2 are a plan view and a cross-sectional view taken along the line -' showing an example electrode structure of a surface discharge type gas discharge panel to which the present invention is applied, and Figure 3 illustrates the discharge regulating effect of the present invention. FIGS. 4a to 4f are enlarged cross-sectional views of an electrode supporting substrate schematically showing the state of discharge for explanation, and are electrode layout diagrams showing other embodiments of the present invention. 10: display panel, 11: gas space, 12 and 13: glass substrate, 14: Y electrode, 15: insulating film, 16: X electrode, 17: dielectric layer, 21: discharge regulating electrode piece, 22: phosphor.

Claims (1)

【特許請求の範囲】 1 ガス封入空間11を挟んで対向配置した1対
の基板12,13の一方の基板上に、絶縁膜15
を介して互いに交差する方向に配設された2層の
電極14,16をそなえてなる面放電形式のガス
放電パネルにおいて、 前記下層電極14の真上でかつ上層電極16の
配設面における該上層電極の両側に、前記2層の
電極交差部近傍に生じる放電の下層電極延長方向
への延びを規制するフローテイング電極構成の放
電規定電極片21をほぼ等距離関係で配設すると
ともに、その2層電極間の絶縁膜15の厚みDi
と、上層電極と放電規定電極片間の距離Dfの比
(Df/Di)を2以上に設定したことを特徴とする
ガス放電パネル。 2 2層の電極交差部で定まる放電点に対向した
他方の基板内壁面上に螢光体22を設けたことを
特徴とする特許請求の範囲第1項に記載のガス放
電パネル。
[Scope of Claims] 1. An insulating film 15 is formed on one of a pair of substrates 12 and 13 that are arranged opposite to each other with a gas-filled space 11 in between.
In a surface discharge type gas discharge panel comprising two layers of electrodes 14 and 16 arranged in a direction intersecting with each other, On both sides of the upper layer electrode, discharge regulating electrode pieces 21 having a floating electrode structure for regulating the extension of the discharge generated in the vicinity of the electrode intersection of the two layers in the lower layer electrode extension direction are disposed at approximately equal distance. Thickness Di of insulating film 15 between two-layer electrodes
and a gas discharge panel characterized in that the ratio of the distance Df between the upper electrode and the discharge regulating electrode piece (Df/Di) is set to 2 or more. 2. The gas discharge panel according to claim 1, wherein a phosphor 22 is provided on the inner wall surface of the other substrate facing the discharge point defined by the intersection of the two electrode layers.
JP55146022A 1980-10-17 1980-10-17 Gas discharge panel Granted JPS5769645A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55146022A JPS5769645A (en) 1980-10-17 1980-10-17 Gas discharge panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55146022A JPS5769645A (en) 1980-10-17 1980-10-17 Gas discharge panel

Publications (2)

Publication Number Publication Date
JPS5769645A JPS5769645A (en) 1982-04-28
JPS636968B2 true JPS636968B2 (en) 1988-02-15

Family

ID=15398322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55146022A Granted JPS5769645A (en) 1980-10-17 1980-10-17 Gas discharge panel

Country Status (1)

Country Link
JP (1) JPS5769645A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01215653A (en) * 1988-02-25 1989-08-29 Aisin Seiki Co Ltd Waterdrop removing device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0146383B1 (en) * 1983-12-20 1992-08-26 Eev Limited Apparatus for forming electron beams

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01215653A (en) * 1988-02-25 1989-08-29 Aisin Seiki Co Ltd Waterdrop removing device

Also Published As

Publication number Publication date
JPS5769645A (en) 1982-04-28

Similar Documents

Publication Publication Date Title
JP3224486B2 (en) Surface discharge type plasma display panel
US7282860B2 (en) Plasma display panel with a dielectric layer having depressions between projections and forming ventilation paths
US20030168977A1 (en) Plasma display panel
JPH0644907A (en) Plasma display panel
JP3698856B2 (en) Plasma display panel
US6714175B1 (en) Plasma display panel and method for driving the panel
JPH05266800A (en) Surface discharge type plasma display panel
JPH09283028A (en) Ac type plasma display panel
JPH10149774A (en) Plasma display panel and driving method thereof
JPH1173141A (en) Plasma display device
JP3958918B2 (en) Plasma display panel and manufacturing method thereof
JP2001035381A (en) Dischargeable display panel and display device
JPS6213786B2 (en)
JP2001216901A (en) Plasma display panel
JPH11306994A (en) Plasma display panel and its manufacture
JP3574809B2 (en) Flat panel display
JPH10275563A (en) Plasma display panel
US6407503B1 (en) Plasma display panel
US6628076B2 (en) Plasma display panel
KR100366099B1 (en) Plasma display panel forming differently width of partition wall
JPS636968B2 (en)
JP3120133B2 (en) Plasma display panel
JP2783011B2 (en) Surface discharge display board
JPH0765727A (en) Surface discharge type plasma display panel
JPH05234520A (en) Ac surface electric discharging type plasma display panel and manufacture thereof