JPS6369517A - Treatment of stock oil - Google Patents

Treatment of stock oil

Info

Publication number
JPS6369517A
JPS6369517A JP61211871A JP21187186A JPS6369517A JP S6369517 A JPS6369517 A JP S6369517A JP 61211871 A JP61211871 A JP 61211871A JP 21187186 A JP21187186 A JP 21187186A JP S6369517 A JPS6369517 A JP S6369517A
Authority
JP
Japan
Prior art keywords
crude
oil
magnetic particles
electromagnetic filter
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61211871A
Other languages
Japanese (ja)
Other versions
JPH04683B2 (en
Inventor
Junichi Yano
純一 矢野
Shinichi Hara
原 晋一
Mitsuhiro Ohashi
満広 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Eneos Corp
Original Assignee
Daido Steel Co Ltd
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd, Nippon Mining Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP61211871A priority Critical patent/JPS6369517A/en
Publication of JPS6369517A publication Critical patent/JPS6369517A/en
Publication of JPH04683B2 publication Critical patent/JPH04683B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To improve the removal rate of magnetic particles by passing stock oil contg. magnetic particles through an electromagnetic filter at 150-260 deg.C. CONSTITUTION:The crude oil at ordinary temp. is sent into a distillation device 1, and distilled into gasoline, kerosene, etc., by a universally known process. The reduced crude (heavy oil) remaining after distillation is passed through the electromagnetic filter 2, and the magnetic particles contained in the crude are removed by attraction. When the crude is passed through the electromagnetic filter 2, the temp. of the crude is controlled to 150-260 deg.C. As a means for heating the crude to such a temp., the temp. of the crude discharged from the distillation device 1 is utilized, or the crude is heated by a heating means. The crude leaving the filter 2 is sent to the succeeding stage 4 through a desulfurizer 3.

Description

【発明の詳細な説明】 本願発明は次に述べる問題点の解決を目的とする。[Detailed description of the invention] The present invention aims to solve the following problems.

(産業上の利用分野) この発明は原料油中からそこに
含まれている磁性粒子を除去する原料油の処理方法に関
するものである。
(Industrial Application Field) The present invention relates to a method for treating raw oil for removing magnetic particles contained in the raw oil.

(従来の技術) 原料油を直接脱硫法によって脱硫する
場合、その脱硫は、触媒を用いて水素化分解反応によっ
て行なわれる。この場合、原料油(例えば常圧残油等の
重質油)中に磁性粒子が多いと、触媒反応の劣化や反応
塔内でのスラッジの堆積が多いという問題がある。そこ
で従来は、メソシュフィルタによって上記原料油から磁
性粒子を除去することが行なわれている。しかしメツシ
ュフィルタでは微細粒子の除去性能が悪く、また機械的
に捕捉を行なうものである為に逆洗が困難であるという
問題点があった。
(Prior Art) When raw oil is desulfurized by a direct desulfurization method, the desulfurization is performed by a hydrocracking reaction using a catalyst. In this case, if there are many magnetic particles in the feedstock oil (for example, heavy oil such as atmospheric residual oil), there are problems such as deterioration of the catalytic reaction and increased accumulation of sludge in the reaction tower. Conventionally, therefore, magnetic particles have been removed from the raw material oil using a mesh filter. However, mesh filters have problems in that they have poor ability to remove fine particles and are difficult to backwash because they are captured mechanically.

そこで本願発明者は、電磁フィルタを用いることを試み
た。しかし処理対象を常温で通液しても、」二記磁性粒
子の除去率は低い値しか得られぬ悩みがあった。更に発
明者は、上記電磁フィルタに通ず原料油の温度を、上記
磁性粒子の磁化特性(第2図に示されるように温度が高
い程磁化の程度が低下する)が低下しない範囲の例えば
80℃程度にすることを試みた。しかし実用の域に達す
るような上記磁性粒子の除去率の向上は得ることができ
なかった。
Therefore, the inventor of the present application attempted to use an electromagnetic filter. However, there was a problem in that even when the liquid was passed through the treatment object at room temperature, only a low removal rate of the magnetic particles could be obtained. Furthermore, the inventor has determined that the temperature of the feedstock oil that passes through the electromagnetic filter is within a range that does not reduce the magnetization characteristics of the magnetic particles (as shown in FIG. 2, the higher the temperature, the lower the degree of magnetization). I tried to keep it around ℃. However, it has not been possible to improve the removal rate of the magnetic particles to a level that is practical.

(発明が解決しようとする問題点) この発明は」:記
従来の問題点を除き、電磁フィルタの使用によって逆洗
を可能にでき、しかも原料油中から磁性粒子を高い除去
率で除去することができるようにした原料油の処理方法
を提供しようとするものである。
(Problems to be Solved by the Invention) This invention enables backwashing by using an electromagnetic filter, and removes magnetic particles from raw oil at a high removal rate, except for the problems described above. The purpose of the present invention is to provide a method for processing raw material oil that enables the following.

本願発明の構成は次の通りである。The configuration of the present invention is as follows.

(問題点を解決する為の手段)本願発明は、磁性粒子を
含んでいる原料油を電磁フィルタに進ぜしめて、上記原
料油中の磁性粒子を除去する原料油の処理方法において
、上記原料油は略150〜260℃の温度でもって上記
電磁フィルタを通すものであって、その作用は次の通り
である。
(Means for Solving the Problems) The present invention provides a method for treating raw oil in which the raw oil containing magnetic particles is passed through an electromagnetic filter to remove the magnetic particles in the raw oil. The electromagnetic filter is passed through the electromagnetic filter at a temperature of approximately 150 to 260°C, and its function is as follows.

(作用) 原料油はその温度が略150〜260℃の状
態で電磁フィルタを通されることによって、原料油中に
含まれる磁性粒子が除去される。
(Function) By passing the raw material oil through an electromagnetic filter at a temperature of approximately 150 to 260° C., magnetic particles contained in the raw material oil are removed.

(実施例)以下本願の実施例を示す図面について説明す
る。直接m ii法による重油脱硫系統を示す第1図に
おいて、1は原油常圧蒸留装置、2は電磁フィルタ、3
は脱硫装置、4は次段の工程を夫々示す。
(Embodiments) The drawings showing the embodiments of the present application will be explained below. In Fig. 1 showing a heavy oil desulfurization system using the direct mii method, 1 is a crude oil atmospheric distillation device, 2 is an electromagnetic filter, and 3 is a crude oil desulfurization system.
4 indicates a desulfurization device, and 4 indicates the next step.

上記のような脱硫系統において、常温の原油は蒸留装置
lに送り込まれ、そこで周知の如くガソリン、灯油等が
蒸留される。上記のような蒸留によって残った常圧残油
(重質油)は電磁フィルタ2に通され、上記残油中に含
まれている磁性粒子の磁気的な吸着による除去が行われ
る。上記磁性粒子としては、原油中に元来台まれている
硫化鉄の外、装置の腐蝕によって残油中に混入したもの
もある。上記のように残油が電磁フィルタ2に通される
場合、その残油の温度は略150〜260℃の範囲の温
度にされる。残油を上記のような温度にする為の手段と
しては、蒸留装置1から送り出される上記残油が上記の
範囲の温度を持っている場合にはその温度が利用され、
残油はそのまま電磁フィルタ2に通される。又上記の範
囲よりも低い場合には、′N、磁フィルタ2の前段の(
イ)の箇所に加温装置を設けて上記残油を加温すると良
い。
In the desulfurization system as described above, crude oil at room temperature is sent to a distillation unit 1, where gasoline, kerosene, etc. are distilled as is well known. The atmospheric residual oil (heavy oil) remaining after the above distillation is passed through an electromagnetic filter 2, where magnetic particles contained in the residual oil are removed by magnetic adsorption. In addition to iron sulfide, which is originally present in crude oil, the magnetic particles may also be mixed into residual oil due to equipment corrosion. When the residual oil is passed through the electromagnetic filter 2 as described above, the temperature of the residual oil is set to a temperature in the range of approximately 150 to 260°C. As a means for bringing the residual oil to the above temperature, if the residual oil sent out from the distillation apparatus 1 has a temperature within the above range, that temperature is used,
The remaining oil is passed through the electromagnetic filter 2 as it is. Also, if it is lower than the above range, 'N, (
It is advisable to install a heating device at point (a) to heat the residual oil.

又上記残油の温度が上記範囲よりも高い場合には、上記
(イ)の箇所に冷却装置を設けて上記残油を冷却すると
良い。また上記加熱或いは冷却は、電磁フィルタ2内に
加熱或いは冷却手段を設けて、電磁フィルタ2内にてそ
れらを行ってもよい。上記残油は上記の温度範囲で電磁
フィルタ2に通されることにより、そのフィルタ2にお
いては、硫化鉄等の磁性粒子が高い除去率で除去される
。フィルタ2を通過した上記残油は脱硫装置3に送られ
、そこで周知の直接脱硫法による脱硫が行われる。この
場合、amフィルタ2において上述の如く硫化鉄等の磁
性粒子が高い除去率で除去されている為、脱硫装置3に
おける触媒反応は高く維持されると共に、反応塔内での
スラッジの堆積も極めて少なく維持される。上記脱硫装
置3を経た脱硫残油は次段工程4へ送られ、周知の処理
が行われる。
If the temperature of the residual oil is higher than the above range, it is preferable to provide a cooling device at the location (a) to cool the residual oil. Further, the heating or cooling described above may be performed within the electromagnetic filter 2 by providing a heating or cooling means within the electromagnetic filter 2. By passing the residual oil through the electromagnetic filter 2 in the above temperature range, magnetic particles such as iron sulfide are removed at a high removal rate in the filter 2. The residual oil that has passed through the filter 2 is sent to a desulfurization device 3, where it is desulfurized by a well-known direct desulfurization method. In this case, since magnetic particles such as iron sulfide are removed at a high removal rate in the am filter 2 as described above, the catalytic reaction in the desulfurization device 3 is maintained at a high level, and the accumulation of sludge in the reaction tower is extremely low. less maintained. The desulfurized residual oil that has passed through the desulfurization device 3 is sent to the next step 4, where it undergoes well-known treatment.

向上記のような電磁フィルタ2による硫化鉄等の磁性粒
子の除去処理を行う場合、電磁フィルタ2に捕捉された
磁性粒子の量が増加したならば電磁フィルタ2を周知の
如く逆洗処理し、再び上記のような硫化鉄の除去作業を
行うようにすれば良い。
When removing magnetic particles such as iron sulfide using the electromagnetic filter 2 as described above, if the amount of magnetic particles captured by the electromagnetic filter 2 increases, the electromagnetic filter 2 is backwashed as well-known, All you have to do is repeat the iron sulfide removal process as described above.

次に、以上は電磁フィルタ2を蒸留装置1と脱硫装置3
の間に設ける例を説明したが、上記電磁フィルタ2は蒸
留装置lの前段側に設けて原油中から予め硫化鉄等の磁
性粒子を除去し、その磁性粒子が除去された原油を蒸留
装置1に送るようにしても良く、本件明細書中において
は、電磁フィルタ2に通される常圧残油や原油等を含め
て原料油とも呼ぶ。
Next, in the above, the electromagnetic filter 2 is connected to the distillation device 1 and the desulfurization device 3.
Although an example has been described in which the electromagnetic filter 2 is installed in the front stage of the distillation device 1, magnetic particles such as iron sulfide are removed from the crude oil in advance, and the crude oil from which the magnetic particles have been removed is transferred to the distillation device 1. In this specification, the normal pressure residual oil, crude oil, etc. passed through the electromagnetic filter 2 are also referred to as feedstock oil.

次に原料油を電磁フィルタ2に通す場合における、上記
の如き略150〜260℃の温度の選定について説明す
る。電磁フィルタ2による磁気分離性能は捕捉を対象と
する粒子の磁化に大きく左右される。そこで磁性粒子の
一例として、硫化鉄の磁化の温度依存性を調べた結果を
示せば第2図のグラフの通りである。
Next, the selection of the above-mentioned temperature of about 150 to 260° C. when passing the raw material oil through the electromagnetic filter 2 will be explained. The magnetic separation performance of the electromagnetic filter 2 largely depends on the magnetization of the particles to be captured. The graph in FIG. 2 shows the results of investigating the temperature dependence of magnetization of iron sulfide as an example of magnetic particles.

又上記原料油中に含まれる硫化鉄は第3図に示すように
硫化鉄5の周りにアスファルテン6という高粘度の物質
が付着している。そして硫化鉄に対するアスフ1ルチン
の付着量には温度依存性がある。そこで上記硫化鉄の磁
化の値を八とし、硫化鉄にアスファルテンが付着したも
のの重量を硫化鉄の重量で除した値をBとし、上記Aを
Bで除した数値と温度との関係を示せば第4図のグラフ
に示される通りである。このグラフから上記温度として
は略200℃が最適であり、また略150〜260℃の
範囲が好ましい範囲であることが判明した。
Further, as shown in FIG. 3, the iron sulfide contained in the raw material oil has a highly viscous substance called asphaltene 6 attached around the iron sulfide 5. The amount of asflutin attached to iron sulfide is temperature dependent. Therefore, let the magnetization value of the iron sulfide be 8, and let the value obtained by dividing the weight of asphaltene attached to the iron sulfide by the weight of the iron sulfide be B, and show the relationship between the value obtained by dividing the above A by B and the temperature. This is as shown in the graph of FIG. From this graph, it was found that the optimum temperature is about 200°C, and the preferable range is about 150 to 260°C.

次に実際の処理結果における温度と硫化鉄除去率との関
係を示せば第5図のグラフの通りである。
Next, the relationship between temperature and iron sulfide removal rate in actual treatment results is shown in the graph of FIG. 5.

この条件は磁界としては5 k Oe s原料油の硫化
鉄濃度は18pp−である。このグラフから、上記20
0℃付近が最も高い除去率が示されて最適な温度である
ことが裏付けられ、また、それよりも温度が低く又は高
くなるに従い除去率は低下するが、略150〜260℃
の範囲において80乃至85%以上の高い除去率が得ら
れ、その範囲の温度が好ましい温度条件であることが裏
付けられた。
Under these conditions, the magnetic field is 5 k Oes, and the iron sulfide concentration of the raw oil is 18 pp-. From this graph, the above 20
The highest removal rate is shown around 0°C, proving that it is the optimal temperature, and as the temperature gets lower or higher, the removal rate decreases, but it is around 150 to 260°C.
A high removal rate of 80 to 85% or more was obtained in this range, proving that the temperature in this range is a preferable temperature condition.

次に電磁フィルタ2において用いるのが好ましい磁界の
強さについて説明する。第6図には上記磁界の強さと硫
化鉄除去率との関係が示されている。このような関係は
、第7図に示される如き硫化鉄の磁化特性に起因すると
ころが大きい。尚第6図の測定条件は、原料油の温度が
200℃で、原料油における硫化鉄の濃度が18ppm
の場合である。
Next, the strength of the magnetic field preferably used in the electromagnetic filter 2 will be explained. FIG. 6 shows the relationship between the strength of the magnetic field and the iron sulfide removal rate. Such a relationship is largely due to the magnetization characteristics of iron sulfide as shown in FIG. The measurement conditions in Figure 6 are that the temperature of the raw oil is 200°C, and the concentration of iron sulfide in the raw oil is 18 ppm.
This is the case.

この第6図から上記電磁フィルタ2において用いる磁界
の強さは3kOe以上が好ましいと言える。
From FIG. 6, it can be said that the strength of the magnetic field used in the electromagnetic filter 2 is preferably 3 kOe or more.

(発明の効果) 以上のように本発明にあっては、原料
油を電磁フィルタ2に通すことによってその原料油に含
まれる磁性粒子を除去することができ、原料油中に多量
の磁性粒子が存在することによる後段の工程への悪影響
を除去できる効果がある。
(Effects of the Invention) As described above, in the present invention, magnetic particles contained in the raw oil can be removed by passing the raw oil through the electromagnetic filter 2, and a large amount of magnetic particles in the raw oil can be removed. This has the effect of eliminating the negative impact on subsequent processes due to its presence.

しかも上記のように磁性粒子の除去は電磁フィルタ2に
よって行なうものだから、フィルタへの磁性粒子の付着
量が多くなったときにはフィルタ2を逆洗することによ
って、速やかに繰り返し磁性粒子の除去を行ない得る状
態にできる特長がある。
Moreover, as described above, since magnetic particles are removed by the electromagnetic filter 2, when the amount of magnetic particles adhering to the filter increases, by backwashing the filter 2, the magnetic particles can be quickly and repeatedly removed. It has the feature of being able to change the state.

更に上記のように電磁フィルタ2を用いるものであり、
しかも処理対象である原料油中にアスファルテンが含ま
れている場合であっても、上記電磁フィルタ2には原料
油を略150〜260℃の温度条件で通ぜしめるから、
上記磁性粒子を高い錬去率で除去できる効果がある。
Furthermore, as mentioned above, the electromagnetic filter 2 is used,
Moreover, even if the raw material oil to be treated contains asphaltene, the raw material oil is passed through the electromagnetic filter 2 at a temperature of approximately 150 to 260°C.
It has the effect of being able to remove the magnetic particles with a high removal rate.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本願の実施例を示すもので、第1図は直接脱硫法
の重油脱硫系統図、第2図は温度と硫化鉄の磁化との関
係を示すグラフ、第3図は硫化鉄に対するアスファルテ
ンの付着状態を示す図、第4図は温度と、硫化鉄にアス
ファルテンが付着したものの磁性との関係を示すグラフ
、第5図は温度と硫化鉄除去率との関係を示すグラフ、
第6図は磁界の強さと硫化鉄除去率との関係を示すグラ
フ、第7図は磁界の強さと硫化鉄の磁化との関係を示す
グラフ。 2・・・電磁フィルタ、3・・・脱硫装置。 第1因 I 第2図 温度(℃) 第3図 温度(1) 第5図 温度(℃) 第6図 第7図 磁界(kOe)
The drawings show examples of the present application, and Fig. 1 is a heavy oil desulfurization system diagram using the direct desulfurization method, Fig. 2 is a graph showing the relationship between temperature and magnetization of iron sulfide, and Fig. 3 is a graph showing the relationship between asphaltene and iron sulfide. Figure 4 is a graph showing the relationship between temperature and the magnetism of asphaltene adhered to iron sulfide; Figure 5 is a graph showing the relationship between temperature and iron sulfide removal rate;
FIG. 6 is a graph showing the relationship between magnetic field strength and iron sulfide removal rate, and FIG. 7 is a graph showing the relationship between magnetic field strength and magnetization of iron sulfide. 2... Electromagnetic filter, 3... Desulfurization device. Factor 1 I Figure 2 Temperature (℃) Figure 3 Temperature (1) Figure 5 Temperature (℃) Figure 6 Figure 7 Magnetic field (kOe)

Claims (1)

【特許請求の範囲】[Claims] 磁性粒子を含んでいる原料油を電磁フィルタに通ぜしめ
て、上記原料油中の磁性粒子を除去する原料油の処理方
法において、上記原料油は略150〜260℃の温度で
もって上記電磁フィルタを通すことを特徴とする原料油
の処理方法。
In a method for treating raw oil in which the magnetic particles in the raw oil are removed by passing the raw oil containing magnetic particles through an electromagnetic filter, the raw oil is passed through the electromagnetic filter at a temperature of approximately 150 to 260°C. A method for processing raw oil, which is characterized by passing it through.
JP61211871A 1986-09-09 1986-09-09 Treatment of stock oil Granted JPS6369517A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61211871A JPS6369517A (en) 1986-09-09 1986-09-09 Treatment of stock oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61211871A JPS6369517A (en) 1986-09-09 1986-09-09 Treatment of stock oil

Publications (2)

Publication Number Publication Date
JPS6369517A true JPS6369517A (en) 1988-03-29
JPH04683B2 JPH04683B2 (en) 1992-01-08

Family

ID=16612995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61211871A Granted JPS6369517A (en) 1986-09-09 1986-09-09 Treatment of stock oil

Country Status (1)

Country Link
JP (1) JPS6369517A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013513714A (en) * 2009-12-14 2013-04-22 エクソンモービル リサーチ アンド エンジニアリング カンパニー Method and system for removing polar molecules from refinery streams

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6254790A (en) * 1985-05-08 1987-03-10 Nippon Oil Co Ltd Method of removing iron contained in mineral oil derived from petroleum

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6254790A (en) * 1985-05-08 1987-03-10 Nippon Oil Co Ltd Method of removing iron contained in mineral oil derived from petroleum

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013513714A (en) * 2009-12-14 2013-04-22 エクソンモービル リサーチ アンド エンジニアリング カンパニー Method and system for removing polar molecules from refinery streams

Also Published As

Publication number Publication date
JPH04683B2 (en) 1992-01-08

Similar Documents

Publication Publication Date Title
US4482450A (en) Process for catalytic reaction of heavy oils
EP0626440A1 (en) Fine magnetic particle-containing stock oil supply system
US4256578A (en) Waste oil recovery process
EP2362856A1 (en) Mercury removal process
AU2010216134B2 (en) Mercury removal from hydrocarbons
JPS6369517A (en) Treatment of stock oil
KR970000805B1 (en) Method of refining ferrous ion-containing acid solution
US5702590A (en) Process for the removal of mercury
JPH06134469A (en) Method for treating silicon cutting waste liquid
JP3715570B2 (en) Removal of radium in water
US3562151A (en) Demetalation with cyanide ion
JP2001347264A (en) Water treatment equipment and water treatment method
JPH10235373A (en) Water treatment
JPH01289894A (en) Method of removing trace quantity of mercury contained in hydrocarbon oil
JP3092203B2 (en) Activated carbon breakthrough prediction method
JPH1157747A (en) Treatment of fluorine-containing waste water
RU2075444C1 (en) Method of purifying waste water to remove lead ions
JPH10337423A (en) Back washing method of heavy gravity oil filter
SU1632947A1 (en) Method of purification of sewage from cyanides
KR970011327B1 (en) Water clarifying method
SU1386585A1 (en) Method of purifying waste water
SU1458322A1 (en) Water treating process
JP2904774B2 (en) Hydrotreatment of petroleum distillate bottoms
JPS6317989A (en) Removing method for solid material in heavy oil
JPH01107891A (en) Treatment of waste liquid acidified with sulfuric acid