JPS6369478A - Speed control method - Google Patents

Speed control method

Info

Publication number
JPS6369478A
JPS6369478A JP61211901A JP21190186A JPS6369478A JP S6369478 A JPS6369478 A JP S6369478A JP 61211901 A JP61211901 A JP 61211901A JP 21190186 A JP21190186 A JP 21190186A JP S6369478 A JPS6369478 A JP S6369478A
Authority
JP
Japan
Prior art keywords
speed
motor
observer
machine
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61211901A
Other languages
Japanese (ja)
Inventor
Keiji Sakamoto
坂本 啓二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fanuc Corp
Original Assignee
Fanuc Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanuc Corp filed Critical Fanuc Corp
Priority to JP61211901A priority Critical patent/JPS6369478A/en
Publication of JPS6369478A publication Critical patent/JPS6369478A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Electric Motors In General (AREA)

Abstract

PURPOSE:To simplify the arithmetic operation of observers by providing a motor part and a machine part with individual observers in which the angular displacement of the machine part computed through the estimate of the load disturbance of the observer of the motor section is regarded as a true value. CONSTITUTION:Observers are composed of a section estimating the speed of a motor and a section estimating the tip speed of a machine, which are separated from each other. By signal(a), a constant ratio as the estimate of the speed of the motor is fed back, and by signal(b), a constant ratio as the estimate of the speed of the machine is fed back. By regarding the signal(c) of disturbance torque as a true value, the true value of the tip speed(angular displacement) of the machine is to be formed with signal(d). As a result, the composition of the observers can be simplified, and the speed can be estimated without the need of complicated arithmetic operations.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、モータとバネ係数をもって結合された機械部
を制御対象とする速度制御方式に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a speed control method in which a mechanical part coupled to a motor with a spring coefficient is controlled.

(従来の技術) DCモータにより、低剛性の機械負荷、例えばロボット
のアームを駆動する場合の速度制御系においては、速度
指令と実速度との偏差によりトルク指令を得て、このト
ルク指令でモータを駆動して機械負荷を指令速度で移動
させるようにしている。この種の速度制御系の概略構成
は、第4図ののようなブロック線図で表わすことができ
る0図において、Jmはロータイナーシャ、Jしは負荷
慣性イナーシャ、Kはバネ係数である。
(Prior art) In a speed control system where a DC motor drives a low-rigidity mechanical load, such as a robot arm, a torque command is obtained from the deviation between the speed command and the actual speed, and this torque command is used to control the motor. is driven to move the mechanical load at a commanded speed. The schematic structure of this type of speed control system can be represented by a block diagram as shown in FIG. 4. In FIG. 4, Jm is the rotor inertia, J is the load inertia inertia, and K is the spring coefficient.

このような速度制御系においては、モータの速度信号■
の比較的に正確な測定が可能であれば、機械負荷先端速
度(角度位置)は正確に検出することができるが、一般
に、センサは、コストが高い上に、取り付は場所や精度
の問題があるため、推定器(オブザーバ)を用いて速度
を推定する場合がある。
In such a speed control system, the motor speed signal ■
If relatively accurate measurement of the mechanical load tip speed (angular position) is possible, the mechanical load tip speed (angular position) can be detected accurately, but sensors are generally expensive and mounting problems due to location and accuracy. Therefore, an estimator (observer) may be used to estimate the speed.

第5図は、オブザーバを用いて第4図の速度制御系の出
力である機械部の速度を推定する場合のブロック線図で
ある0図において、一点鎖線の部分がオブザーバを構成
しており、K1−に4は常数である。このような、オブ
ザーバを用いた速度制御系の状態方程式は次のように表
わされる。
FIG. 5 is a block diagram when estimating the speed of the mechanical part, which is the output of the speed control system in FIG. 4, using an observer. In FIG. 4 is a constant in K1-. The state equation of such a speed control system using an observer is expressed as follows.

・・・(1) ・・・(2) よって、第5図のように構成した場合の同−次元オブザ
ーバは、 j 1.0] ・・・ (3) と表わされる。とCろが、実際にはこのような連続系で
の処理を離散系での処理に変更する必要があり、変数x
、yをベクトル表示すると、誓=Aex+lBe au
        −(4)v−CC11g、     
       ・・・(5)となる、但し、Ae 、I
Be 、Ceはそれぞれベクトル量とする。θ次元ホル
ダを仮定すると、離散系における式は、 x (i+1)=Ad*ic (i)+rf3du・・
・(6) y (i)=Cdx (i)       ・・・(7
)で表わされる。ここに、 A d = exp(A T ) Bd=Iexp(At)dt−Be Cd=Ce             ・・・(8)で
ある、但し、Tはサンプリング周期とする。
...(1) ...(2) Therefore, the same-dimensional observer configured as shown in FIG. 5 is expressed as j 1.0] ... (3). However, in reality, it is necessary to change such processing in a continuous system to processing in a discrete system, and the variable x
, y is expressed as a vector, then = Aex + lBe au
-(4)v-CC11g,
...(5), however, Ae, I
Be and Ce are each vector quantities. Assuming a θ-dimensional holder, the equation in the discrete system is x (i+1)=Ad*ic (i)+rf3du...
・(6) y (i)=Cdx (i) ...(7
). Here, A d = exp (A T ) Bd = I exp (At) dt - Be Cd = Ce (8), where T is the sampling period.

また、 exp(At )  = d−’((S N−Ac) 
 ’ ) ・・・(9)と表わされる、ただし、■は単
位ベクトルである。
Also, exp(At) = d-'((SN-Ac)
' )...(9) where ■ is a unit vector.

(発明が解決しようとする問題点) 第4図に示したような制御対象を考えると1行列Adす
なわぢexp(AT)の展開式は、(9)式より5I−
Ac=0で求められる固有値、つまり根によって係数が
定まる。ところが、バネ定数K、負荷イナーシャやJL
の変動に対して、上記のようなオブザーバではパラメー
タが錯綜して係数の演算手続きが煩雑となり、複雑な演
算手段を利用して実行しなければならず、現実的ではな
いという問題があった。
(Problems to be Solved by the Invention) Considering the controlled object shown in FIG. 4, the expansion formula for one matrix Ad, i.e.
The coefficient is determined by the eigenvalue, that is, the root, determined by Ac=0. However, the spring constant K, load inertia and JL
With respect to fluctuations in , the above-mentioned observer has a problem in that the parameters are complicated and the coefficient calculation procedure becomes complicated, and it has to be performed using a complicated calculation means, which is not practical.

そこで、本発明はこのような従来技術の問題点の解消を
1]的として、速度制御系の状態観測をオブザーバによ
り正確、且つ効率良く実行して機械速度を推定できるよ
うにした速度制御方式を提供するものである。
Therefore, the present invention aims to solve the problems of the prior art (1) by providing a speed control method that allows an observer to accurately and efficiently observe the state of the speed control system and estimate the machine speed. This is what we provide.

(問題点を解決するための手段) 未発明は、モータとバネ係数をもって結合された機械部
を制御対象とする速度制御方式において、モータ部およ
び機械部に、前記モータへ負荷から加わる外乱の推定値
を出力するモータ部のオブザーバと、この推定値から機
械部の角変位量を計算してそれを真価とみなして構成さ
れる機械部のすブザーバとを有し、前記機械部のオブザ
・−バの推定値を機械部の速度推定値としていることを
特徴とする速度制御方式を提供するものである。
(Means for Solving the Problems) The present invention is to estimate disturbances applied to the motor and the mechanical part from a load on the motor in a speed control system that controls a mechanical part coupled with a motor with a spring coefficient. It has an observer for the motor section that outputs a value, and an observer for the mechanical section that calculates the angular displacement amount of the mechanical section from this estimated value and considers it as the true value. The present invention provides a speed control method characterized in that the estimated value of the bar is used as the estimated speed of the mechanical part.

(作用) 本発明は、モータ軸に連結された低剛性機械負荷の速度
をオブザーバにより推定する際に、オブザーバをモータ
部と機械部に個別に設け、モータ部のすブザーバに対す
る負荷外乱の推定値から得られる機械部の角変位量を真
値とみなすことにより、機械部のオブザーバの推定値を
機械部の速度推定値として用いている。
(Function) When the speed of a low-rigidity mechanical load connected to a motor shaft is estimated by an observer, the present invention provides separate observers for the motor section and the mechanical section, and provides an estimated value of load disturbance to the motor section. By regarding the amount of angular displacement of the mechanical part obtained from the equation as the true value, the estimated value of the observer of the mechanical part is used as the estimated value of the speed of the mechanical part.

(実施例) 以下、図により本発明の実施例について説明する。第2
図は、モータ側に共振系のないモデルを考えた場合のブ
ロック図である。この場合には、モータ速度信号x2は
測定可能〒あり、■点では(X2−X2 ) 、■点で
はに2 (X2−X2)となり、モ・−タイナーシャを
Jm、外乱をD (s)とすると、トルクバランスは、 kz  (X2  X2)  −Jm = (k2/s” +kl  s+に2)’1  ・D
 (s)・・・(10) で表わされる。ここで、第4図の制御系は第3図のブロ
ック線図で表わされ、(10)式における外乱D (5
)の推定値をその真値とみなせば、機械先端の速度X4
は測定できることになる。
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings. Second
The figure is a block diagram when considering a model without a resonance system on the motor side. In this case, the motor speed signal x2 can be measured, and it becomes (X2-X2) at the point ■ and 2 (X2-X2) at the point ■. Then, the torque balance is kz (X2
(s)...(10) Represented by: Here, the control system in FIG. 4 is represented by the block diagram in FIG. 3, and the disturbance D (5
) is regarded as its true value, the speed of the machine tip X4
can be measured.

そこで、本発明においては、第1図のブロック線図に示
すように、オブザーバを、モータの速度を推定する部分
と1機械先端速度を推定する部分とに分けて構成するも
のである。すなわち、第5図のオブザーバの廣戎を、第
1図では2つに分け、信号0はモータの速度の推定値と
して一定割合をフィードバックし、信号■は機械速度の
推定値として一定割合をフィードバックする。また、外
乱トルクの信号◎は真価としてみなすことにより、信号
■は機械先端の速度(角変位量)X4の真価が形成され
ものとする。即ち、外乱トルクは、相当高い確率で真値
となるものと推定して、0部の信号を形成する。
Therefore, in the present invention, as shown in the block diagram of FIG. 1, the observer is configured to be divided into a part for estimating the speed of the motor and a part for estimating the speed of one machine tip. In other words, the observer's wide range in Figure 5 is divided into two parts in Figure 1. Signal 0 feeds back a fixed percentage as the estimated value of the motor speed, and signal ■ feeds back a fixed percentage as the estimated value of the machine speed. do. Further, by regarding the disturbance torque signal ◎ as the true value, it is assumed that the signal ■ is formed by the true value of the speed (angular displacement amount) X4 of the machine tip. That is, the disturbance torque is estimated to have a true value with a fairly high probability, and a 0-part signal is formed.

このように、本発明においては、オブザーバ(より機械
先端の速度を推定する際に、モータ速度を推定する部分
と機械速度を推定する部分とに分け、モータ部の推定器
で推定する外乱トルクを真価とみなすことによりオブザ
ーバの構成を簡略化して複雑な演算を要することなく、
速度が推定できる。
In this way, in the present invention, when estimating the speed of the machine tip, the observer (when estimating the speed of the machine tip) is divided into a part for estimating the motor speed and a part for estimating the machine speed, and the disturbance torque estimated by the estimator of the motor part is By considering the real value, the observer configuration can be simplified and complex calculations are not required.
Speed can be estimated.

(発明の効果) 以上説明したように、本発明においては、DCモータに
より低剛性負荷を駆動する速度制御系により推定する際
に、オブザーバをモータ部の速度推定を行なう部分と1
機械部の速度推定を行なう部分とに分け、機械部のオブ
ザーバは、モータ部のオブザーバの負荷外乱の推定値か
ら計算される機械部の角変位量を真値とみなして構成さ
れ、該機械部のオブザーバの速度推定値を機械部の速度
推定値として用いているので、離散系で形成されるル制
御対象に対しても、オブザーバの@算を簡略化して行な
える。
(Effects of the Invention) As explained above, in the present invention, when estimating with a speed control system that drives a low-rigidity load by a DC motor, an observer is used as a part that estimates the speed of the motor section and a part that estimates the speed of the motor section.
The observer of the mechanical part is configured to regard the angular displacement amount of the mechanical part calculated from the estimated value of the load disturbance of the observer of the motor part as the true value. Since the estimated speed of the observer is used as the estimated speed of the mechanical part, the calculation of the observer can be simplified even for a controlled object formed in a discrete system.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のブロック線図、第2図は共振系のない
モデルのブロック線図、第3図、第4図は制御対象のブ
ロック線図、第5図は従来例のブロック線図である。 Jm・・・ロータイナーシャ、JL・・・負荷慣性イナ
ーシャ、D (s)・・・外乱トルク。
Figure 1 is a block diagram of the present invention, Figure 2 is a block diagram of a model without a resonance system, Figures 3 and 4 are block diagrams of the controlled object, and Figure 5 is a block diagram of a conventional example. It is. Jm...Rotor inertia, JL...Load inertia, D(s)...Disturbance torque.

Claims (1)

【特許請求の範囲】[Claims] モータとバネ係数をもって結合された機械部を制御対象
とする速度制御方式において、モータ部および機械部に
、前記モータへ負荷から加わる外乱の推定値を出力する
モータ部のオブザーバと、この推定値から機械部の角変
位量を計算してそれを真値とみなして構成される機械部
のオブザーバとを有し、前記機械部のオブザーバの推定
値を機械部の速度推定値としていることを特徴とする速
度制御方式。
In a speed control method in which a mechanical part coupled to a motor with a spring coefficient is controlled, an observer of the motor part outputs an estimated value of disturbance applied to the motor from a load to the motor part and the mechanical part, and an observer of the motor part outputs an estimated value of a disturbance applied to the motor from a load, and a and a mechanical part observer configured to calculate the angular displacement amount of the mechanical part and regard it as a true value, and the estimated value of the mechanical part observer is used as the speed estimated value of the mechanical part. speed control method.
JP61211901A 1986-09-09 1986-09-09 Speed control method Pending JPS6369478A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61211901A JPS6369478A (en) 1986-09-09 1986-09-09 Speed control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61211901A JPS6369478A (en) 1986-09-09 1986-09-09 Speed control method

Publications (1)

Publication Number Publication Date
JPS6369478A true JPS6369478A (en) 1988-03-29

Family

ID=16613517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61211901A Pending JPS6369478A (en) 1986-09-09 1986-09-09 Speed control method

Country Status (1)

Country Link
JP (1) JPS6369478A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992014196A1 (en) * 1991-02-08 1992-08-20 Fanuc Ltd Gain scheduling

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992014196A1 (en) * 1991-02-08 1992-08-20 Fanuc Ltd Gain scheduling

Similar Documents

Publication Publication Date Title
RU2487796C2 (en) Controlling movement of robot resilient structures
US5124938A (en) Gyroless platform stabilization techniques
US9434073B2 (en) Robot apparatus and control method therefor
US4617502A (en) Method and apparatus for controlling a robot hand along a predetermined path
EP0583476A1 (en) Adaptive sliding mode control method for control object including spring system
US9952249B2 (en) Inertia estimating method and inertia estimation apparatus of position control apparatus
US20090076653A1 (en) Method and device for adjusting and controlling manipulators
US6456897B1 (en) Control method and numerical control for motion control of industrial machine tools
US20220088804A1 (en) Method for determining a weight and a center of gravity of a robot manipulator load
US20160297069A1 (en) Robot controlling method, robot apparatus, program and recording medium
EP0208788A1 (en) Speed control system for servo motors
US5357424A (en) Dynamic model parameter identification system
JPWO2006022201A1 (en) Robot evaluation system and evaluation method
JP2020101541A (en) Method and device for torque estimation
JPH07104856A (en) Vibration control method
JPH10128688A (en) Non-interfering control method of robot
US5091683A (en) Servo control apparatus
JPS6369478A (en) Speed control method
JPH06332535A (en) Robot controller
US11003159B2 (en) Numerical control device
JPH06225565A (en) Method of measuring load constant of motor drive system
US11613004B2 (en) Deflection amount estimating device, robot control device and method of estimating amount of deflection
JPH06225564A (en) Method of measuring load constant of motor drive system
JPH10249763A (en) Friction parameter control method for robot manipulator
JP5473889B2 (en) Force control device