JPS6368874A - Hologram exposure device - Google Patents
Hologram exposure deviceInfo
- Publication number
- JPS6368874A JPS6368874A JP21301786A JP21301786A JPS6368874A JP S6368874 A JPS6368874 A JP S6368874A JP 21301786 A JP21301786 A JP 21301786A JP 21301786 A JP21301786 A JP 21301786A JP S6368874 A JPS6368874 A JP S6368874A
- Authority
- JP
- Japan
- Prior art keywords
- optical path
- path length
- pieces
- luminous flux
- liquid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 claims abstract description 48
- 239000007788 liquid Substances 0.000 claims abstract description 25
- 239000000463 material Substances 0.000 claims description 4
- 230000004907 flux Effects 0.000 abstract 6
- 229920002120 photoresistant polymer Polymers 0.000 description 5
- 238000010586 diagram Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 2
- 238000012790 confirmation Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 229920003986 novolac Polymers 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Holo Graphy (AREA)
Abstract
Description
【発明の詳細な説明】
(技術分野)
本発明はホログラム露光装置に関し、より詳細にはレー
ザープリンター等におけるスキャナーのホログラムを作
製する手段に適用しうるホログラム露光装置にをするも
のである。DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a hologram exposure apparatus, and more particularly to a hologram exposure apparatus that can be applied to a means for producing a hologram for a scanner in a laser printer or the like.
(従来の技術)
同一光源からのレーザー光をビームスプリッタで分割し
、こうして得られた2光束を感光材料上に導いてホログ
ラム干渉縞を露光する装置が知られている。この装置に
おいて、一般に感光材料として用いられるポジ型フォト
レジス1〜は、殆んどのものが可視光であって青色域短
波長側に感する性質を有する。又、この装置において、
光源によって定まるレーザー光の可干渉距離が短かい場
合には2光束の光路長の差を可干距離以内に調節しなけ
ればならないとの制約がある。(Prior Art) An apparatus is known in which a laser beam from the same light source is split by a beam splitter, and the two beams thus obtained are guided onto a photosensitive material to expose hologram interference fringes. In this apparatus, most of the positive type photoresists 1 to 1 which are generally used as photosensitive materials have the property of being sensitive to visible light and to the short wavelength side of the blue region. Also, in this device,
When the coherence length of the laser beam determined by the light source is short, there is a restriction that the difference in optical path length between the two beams must be adjusted to within a trivial distance.
従来から光源として用いられてきたArレーザー(45
79A)は、短波長側で長い可干渉距離を有するため、
光路長の差を可干渉距離以内に調節する際の許容度が大
きい利点があるものの、高価なこと及びノボラック樹脂
によりポジ型フォ1へレジストとの感度のマツチングが
思わしくない等の問題がある。Ar laser (45
79A) has a long coherence distance on the short wavelength side, so
Although it has the advantage of having a large tolerance when adjusting the difference in optical path length to within the coherence distance, it has problems such as being expensive and having undesirable sensitivity matching with the positive type photo resist due to the novolak resin.
このため上記の問題を有しない、つまり安価で且つポジ
型フォトレジストの感度特性にも適合する青色域441
6Aの波長を有するH e −Cdレーザーが使用され
るが、現在のところ可干渉距離が僅か20mmと短かく
、このため2光束の光路長差を5mn程度以内に光学系
配置精度等を高めないとホログラム回折格子の回折効率
に分布ができてしまう。しかし、2光束の光路長を正確
に等しく組立てること及び調節することはきわめて困難
である。Therefore, the blue region 441 does not have the above problems, that is, it is inexpensive and compatible with the sensitivity characteristics of positive photoresists.
A He-Cd laser with a wavelength of 6A is used, but currently the coherence length is short, only 20 mm, and therefore the optical system arrangement accuracy cannot be improved by keeping the optical path length difference between the two beams within about 5 mm. This results in a distribution in the diffraction efficiency of the hologram diffraction grating. However, it is extremely difficult to assemble and adjust the optical path lengths of the two beams to be exactly equal.
(目 的)
従って本発明の目的は、可干渉距離の短いレーザーを用
いたホログラム露光装置において、容易に2光束の光路
長を実質的に等しく調節することのできる手段を付加し
た、改良されたホログラム露光装置を提供することにあ
る。(Objective) Therefore, the object of the present invention is to provide an improved hologram exposure apparatus using a laser with a short coherence length, which is equipped with a means for easily adjusting the optical path lengths of two light beams to be substantially equal. An object of the present invention is to provide a hologram exposure device.
(構 成)
本発明は」二記の目的を達成させるため、2光束の中の
少なくとも一方の光路上に、レーザー光を透過し得る液
体シリンダーを設けたことを特徴としたものである。以
下、本発明の一実施例に基づいて具体的に説明する。(Structure) In order to achieve the second object, the present invention is characterized in that a liquid cylinder that can transmit laser light is provided on at least one optical path of two light beams. Hereinafter, a detailed explanation will be given based on one embodiment of the present invention.
本発明の実施に適するホログラム露光装置の一例を示し
た第3図において、符号1はレーザー光源を示し、本例
ではHe −Cdレーザーが用いられている。In FIG. 3 showing an example of a hologram exposure apparatus suitable for implementing the present invention, reference numeral 1 indicates a laser light source, and in this example, a He--Cd laser is used.
レーザー光源1から出射されたレーザー光はミラーM1
により反射点Eで進行方行を変えられてビームスプリッ
タ−2に進み、分割点りで2光束に分割される。上記分
割に係る一方の光束はミラーM2により反射点Bで反射
されてから、対物レンズL1、ピンホール板4のピンホ
ール、コリメーターレンズL2、マスク板8のホールを
順次経て感光材料であるホログラムディスク10に達す
る。The laser light emitted from the laser light source 1 passes through the mirror M1
The direction of the light beam is changed at the reflection point E, and the beam proceeds to the beam splitter 2, where it is split into two beams at the splitting point. One of the light beams related to the above division is reflected at the reflection point B by the mirror M2, and then passes through the objective lens L1, the pinhole of the pinhole plate 4, the collimator lens L2, and the hole of the mask plate 8 in order, and then passes through the hologram which is a photosensitive material. Disk 10 is reached.
又、分割に係る他の光束は、ミラーM3により反射点C
で反射されてから、対物レンズL3、ピンホール板12
のピンホール、コリメータレンズL4、前記と同様マス
ク板8のホールを順次経てホログラム10に達する。In addition, the other light beams related to the division are reflected at the reflection point C by the mirror M3.
After being reflected by the objective lens L3, the pinhole plate 12
, the collimator lens L4, and the hole in the mask plate 8 as described above to reach the hologram 10.
かかる構成において、ホログラムディスク10上にホロ
グラム干渉縞を形成するには2光束の光路長つまりに丁
)とにで士の差を5Iw1以内に調節する必要がある。In such a configuration, in order to form hologram interference fringes on the hologram disk 10, it is necessary to adjust the optical path lengths of the two beams, that is, the difference between them, to within 5Iw1.
この調節手段として、例えば、ミラーM1、M2、M3
やビームスプリッタ−2の傾き具合を変える方法がある
が、これらミラー等にはある程度厚みがあることから第
2図に示される如く回転中心0−0と反射面MOとが一
致するとは限らず、回転角変化に対する反射光束のずれ
変化量の予測が困難である。この点は、特定の空間周波
数の回折格子を作るためには2光束の入射角も正確も正
確に合わせなければならない点を考えると一層困難であ
ることがわかる。As this adjustment means, for example, mirrors M1, M2, M3
There is a method to change the inclination of the beam splitter 2, but since these mirrors have a certain thickness, the center of rotation 0-0 and the reflecting surface MO do not necessarily coincide as shown in FIG. It is difficult to predict the amount of shift change in the reflected light beam with respect to changes in the rotation angle. This point proves to be even more difficult when considering that in order to create a diffraction grating with a specific spatial frequency, the incident angles of the two beams must be precisely matched.
現実には小さな治具等を用いて光軸上で可干渉距離内に
2光束の長さの差が収まるようにミラー等の傾きを調節
してから、対物レンズを用いたビームエキスパンダー等
を光路上に入れるが、これを入れると2光束の長さの差
に多少の狂いを生ずる。そして、このため回折格子に分
布ができる。In reality, a small jig or the like is used to adjust the inclination of a mirror, etc. so that the difference in length between the two beams falls within the coherence distance on the optical axis, and then a beam expander using an objective lens is used to direct the beam. It can be placed on the road, but if it is installed, the difference in length between the two light beams will be slightly distorted. This causes a distribution in the diffraction grating.
これを補正するためミラーM2やミラーM3の傾きを再
調整しなければならずその結果、ホログラムディスク1
0上での入射角が狂うためさらにミラーの傾を変えるこ
とが必要となる。その結果又、微妙に光路長も影響を受
けるので、結局何度か調節を繰り返しつつ目的の状態に
近づけていかなLJればならない。In order to correct this, the inclinations of mirror M2 and mirror M3 must be readjusted, and as a result, the hologram disk 1
Since the angle of incidence on 0 is distorted, it is necessary to further change the inclination of the mirror. As a result, the optical path length is also slightly affected, so in the end, the LJ must be adjusted several times to get closer to the desired state.
このような複雑な操作は、第1図に示されるような液体
シリンダー20を第3図に示す2光束の両者又は何らか
の光路上であって2点鎖線で示される部位に配置するこ
とにより解消することができる。Such complicated operations can be solved by arranging the liquid cylinder 20 as shown in FIG. 1 at the position shown by the two-dot chain line on both of the two light beams shown in FIG. 3 or on some optical path. be able to.
すなわち、ホログラムディスク1oに対する2光束の入
射角をミラー等の傾きを調整することにより正確に合わ
せたならば、2光束の中、光路長の短かい方の光束中に
液体シリンダー20を配置するのである。或いは予め両
光路中にそれぞれ液体シリンダーを配置しておくのであ
る。In other words, if the angle of incidence of the two light beams on the hologram disk 1o is accurately matched by adjusting the inclination of a mirror, etc., the liquid cylinder 20 can be placed in the light beam with the shorter optical path length among the two light beams. be. Alternatively, liquid cylinders may be placed in advance in both optical paths.
第1図に示される如く、油圧シリンダ20を構成する本
体21の一端には透明窓22が保持されており本体21
に収められたピストン24にも、透明窓26が設けてあ
り、さらにこのビス1ヘン24の他端側中央部は光束を
通過させるために中空状になっている。ピストン24に
はポル1へ28が植設されており、このボルトは本体2
1に螺合された上、貫通部でナツト29で止められてい
る。As shown in FIG. 1, a transparent window 22 is held at one end of a main body 21 constituting a hydraulic cylinder 20.
The piston 24 housed in the screw head 24 is also provided with a transparent window 26, and the center portion of the other end of the screw 1 hem 24 is hollow to allow the light beam to pass therethrough. A bolt 28 is installed in the piston 24 to the port 1, and this bolt is attached to the main body 2.
1 and is fastened with a nut 29 at the penetrating portion.
従って、ナツトを一方向に回せば、ピストン24をシリ
ンダ内容積増加方向に微動させることができる。ビスI
〜ン24を上記と逆向に移動させる場合はボルト28を
押圧しつつナツト29を上記と逆向きに回転させる。Therefore, by turning the nut in one direction, the piston 24 can be slightly moved in the direction of increasing the cylinder internal volume. Bis I
To move the bolt 24 in the opposite direction, rotate the nut 29 in the opposite direction while pressing the bolt 28.
シリンダ内には水又は油その信置色域の波長光を透過し
得る適宜の液体が充満している。そして、上記ピストン
24の往復移動によりシリンダ内に液の過不足が生ずる
ことがないようにするべく、本体21より液だめ30が
立設され上記液が溜めである。The cylinder is filled with water, oil, or any other suitable liquid that can transmit light of wavelengths within the trusted color range. In order to prevent excess or deficiency of liquid in the cylinder due to the reciprocating movement of the piston 24, a liquid reservoir 30 is provided upright from the main body 21 to store the liquid.
又各透明窓22.26には、液体と空気との境界で反射
光を生じないようにするため、両面に屈折率に応じた一
層又は多層の反射防止膜Fが塗布されている。Further, each transparent window 22, 26 is coated with a single-layer or multi-layer antireflection film F depending on the refractive index on both sides in order to prevent reflected light from occurring at the boundary between the liquid and the air.
」二記の液体シリンダ20を光路上に介在させると実質
上、光路長を調節することができるのは、液体媒質中で
は、液体の屈折率をnとして1 / nに光速が低下す
るからである。例えば、第1図において透明窓22.2
6間の距離をSとすわば、この距離Sにおける液中の実
質上の光路長は約S×nに相当するのである。The reason why it is possible to substantially adjust the optical path length by intervening the liquid cylinder 20 described in 2 on the optical path is because in a liquid medium, the speed of light decreases to 1/n, where n is the refractive index of the liquid. be. For example, in FIG.
If the distance between 6 and 6 is S, then the actual optical path length in the liquid at this distance S corresponds to approximately S×n.
さらに詳細には、各透明窓22.26中においても上記
、液中におけると同様の実質光路長の増大現象が生ずる
が、これは微小であるので無視して差支えない。More specifically, the phenomenon of increase in the substantial optical path length similar to that in the liquid occurs in each transparent window 22, 26, but this phenomenon is so small that it can be ignored.
本発明の実施の際しては、例えば次の手順に従う。先ず
第3図に示される光学系を組立てる際に、ある基準のピ
ストン位置を決めておき、それに対応する実質上の光路
長SXnを求めておき、これを考慮に入れて光学系を設
定する。そして、ミラーホルダーの回転軸と反射面との
不一致(第2図参照)等から生ずる2光束の微妙な差を
、液体シリンダーのピストン位置を変えることによって
調節するのである。When implementing the present invention, for example, the following procedure is followed. First, when assembling the optical system shown in FIG. 3, a certain reference piston position is determined, the corresponding substantial optical path length SXn is determined, and the optical system is set taking this into consideration. Subtle differences between the two light beams caused by mismatch between the rotation axis of the mirror holder and the reflecting surface (see Fig. 2) are adjusted by changing the position of the piston of the liquid cylinder.
上記において、2光束の光路長が一致しているか否かの
確認は、具体的には次のようにして行なう。それは、先
ず、第4図に拡大して示すように、フォトレジスト32
上に回折格子を露光し適宜の観測手段を以て、回折効率
分布を調べる。In the above, confirmation of whether the optical path lengths of the two light beams match is specifically performed as follows. First, as shown enlarged in FIG. 4, the photoresist 32 is
A diffraction grating is exposed on the top and the diffraction efficiency distribution is examined using an appropriate observation means.
すると、2光束の光路長が一致している場合には中央の
光路長が等しくなるので、回折効率分布も第6図に示す
ように中央で高くなる。従って、回折効率分布が第6図
のようになっているときは、調節の必要はない。Then, when the optical path lengths of the two light beams are the same, the optical path lengths at the center become equal, and the diffraction efficiency distribution also becomes high at the center, as shown in FIG. Therefore, when the diffraction efficiency distribution is as shown in FIG. 6, there is no need for adjustment.
上記と異なり、2光束の光路長が不一致の場合には第5
図に示す如く、回折効率分布が右上か若しくは左上りに
なる。Unlike the above, if the optical path lengths of the two beams do not match, the fifth
As shown in the figure, the diffraction efficiency distribution is on the upper right or upper left.
かかる場合には、次のようにして調節する。第1図に示
す液体シリンダー20を、第3図のビームスプリッタ−
2で分割された2光束中の、光路長が短かいと思われる
方の光路上、符号32又符34で示す位置に入れるので
ある。前記した如く、予め各光路上にそれぞれ液体シリ
ンダーを配置しである場合はその必要はない。ここで上
記回折効率の分布(第6図参照)から、どの程度光路長
を増せば2光束の光路長を一致され得るかがnmのオー
ダーで予測できるので、シリンダー内の液及び透明窓2
2.26の屈折率より距離Sを具体的に如何なる値にす
ればよいかが算出される。In such a case, adjust as follows. The liquid cylinder 20 shown in FIG. 1 is connected to the beam splitter shown in FIG.
It is placed at the position indicated by 32 or 34 on the optical path of the two light beams divided by 2, which is thought to have a shorter optical path length. As described above, if liquid cylinders are arranged on each optical path in advance, this is not necessary. Here, from the above-mentioned diffraction efficiency distribution (see Figure 6), it can be predicted in the order of nm how much the optical path length should be increased to make the optical path lengths of the two beams equal.
From the refractive index of 2.26, it is calculated what value the distance S should specifically be.
そこで、この計算結果に基づいて所定量、所定方向にピ
ストン24を移動させる。そして、再び露光して確認す
る。Therefore, the piston 24 is moved by a predetermined amount and in a predetermined direction based on this calculation result. Then, expose again and check.
以上のような方法で、殆んど一回の調整で2光束の光路
長を実質上合致させることができる。前にも述べたよう
に光路長の調節は、原理的には光学系を構成するミラー
の平行移動によっても可能であるが、その場合は入射角
の変動も伴なう。その点本例の如くミラーの移動を伴な
わずに、途中の実効光路長を調節する場合には、ミラー
ホルダー類にそれ程の精密さが要求されなくなると共に
、光路長を等しくするための操作がきわめて容易である
という利点がある。With the method described above, the optical path lengths of the two light beams can be made to substantially match with almost one adjustment. As mentioned above, the optical path length can be adjusted in principle by parallel movement of the mirrors that constitute the optical system, but in this case, the angle of incidence also changes. On the other hand, when adjusting the effective optical path length on the way without moving the mirror as in this example, the mirror holders do not need to be as precise, and the operation to equalize the optical path length is not necessary. It has the advantage of being extremely easy.
但し、調節の精度を高めるためには、透明窓22.26
間に精密に平行状態が維持されなければならない。However, in order to increase the accuracy of adjustment, a transparent window 22.26
A precise parallel state must be maintained between them.
又、透明窓22.26間の距離を大きく採ることのでき
る液体シリンダーを用いれば、光学系の配置の自由度を
増すことができる。Further, by using a liquid cylinder that allows a large distance between the transparent windows 22 and 26, the degree of freedom in arranging the optical system can be increased.
(効 果)
本発明によれば、2光束の実質光路を簡単な操作で迅速
に行なうことができ、好都合である。(Effects) According to the present invention, the substantial optical path of two light beams can be quickly established with a simple operation, which is advantageous.
第1図は本発明に係る液体シリンダーの断面図、第2図
は光学系を構成するミラー及びミラーボルダ−の斜視図
、第3図は本発明の実施に適するボログラム露光装置の
全体構成図、第4図はフォトレジストへの入射光の状態
を説明した図、第5図、第6図はそれぞれ回折効率分布
図である。
20・・・液体シリンダー。FIG. 1 is a sectional view of a liquid cylinder according to the present invention, FIG. 2 is a perspective view of a mirror and mirror boulder constituting an optical system, and FIG. 3 is an overall configuration diagram of a bologram exposure apparatus suitable for carrying out the present invention. FIG. 4 is a diagram explaining the state of incident light on the photoresist, and FIGS. 5 and 6 are diffraction efficiency distribution diagrams, respectively. 20...Liquid cylinder.
Claims (1)
て干渉縞を感光材料上に露光するホログラム露光装置に
おいて、2光束の光路長を調節する手段として、レーザ
ー光を透過し得る液体シリンダーを少なくとも一方の光
路上に設けたことを特徴とするホログラム露光装置。In a hologram exposure device that uses a laser with a short coherence length to expose interference fringes on a photosensitive material by two-beam interference, at least one of the cylinders has a liquid cylinder that can transmit the laser beam as a means for adjusting the optical path length of the two light beams. A hologram exposure device characterized in that it is provided on an optical path of.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21301786A JPS6368874A (en) | 1986-09-10 | 1986-09-10 | Hologram exposure device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21301786A JPS6368874A (en) | 1986-09-10 | 1986-09-10 | Hologram exposure device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6368874A true JPS6368874A (en) | 1988-03-28 |
Family
ID=16632121
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21301786A Pending JPS6368874A (en) | 1986-09-10 | 1986-09-10 | Hologram exposure device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6368874A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009042267A (en) * | 2007-08-06 | 2009-02-26 | Pulstec Industrial Co Ltd | Hologram recording apparatus and method for adjusting optical path length of laser beam of hologram recording apparatus |
-
1986
- 1986-09-10 JP JP21301786A patent/JPS6368874A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009042267A (en) * | 2007-08-06 | 2009-02-26 | Pulstec Industrial Co Ltd | Hologram recording apparatus and method for adjusting optical path length of laser beam of hologram recording apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4036552A (en) | Retroreflective material made by recording a plurality of light interference fringe patterns | |
CA2008214C (en) | Chromatically corrected directional diffusing screen | |
US4235505A (en) | Multi-color holograms with white-light illumination | |
KR900018770A (en) | Method and apparatus for making reflective hologram | |
US8218213B2 (en) | Narrow angle hologram device and method of manufacturing same | |
US4715670A (en) | Apparatus for copying holographic diffraction gratings | |
US5124815A (en) | Method for forming holographic optical elements free of secondary fringes | |
US5016951A (en) | Fiber optic diffraction grating maker | |
US5640257A (en) | Apparatus and method for the manufacture of high uniformity total internal reflection holograms | |
JPS6368874A (en) | Hologram exposure device | |
US4693604A (en) | Interference method and interferometer for testing the surface precision of a parabolic mirror | |
US6633385B2 (en) | System and method for recording interference fringes in a photosensitive medium | |
US5672448A (en) | Multi-exposure system for hologram | |
US4178084A (en) | Device for measuring light incident on an image forming optical system | |
US4392709A (en) | Method of manufacturing holographic elements for fiber and integrated optic systems | |
JPH0416177Y2 (en) | ||
JP2803434B2 (en) | Diffraction grating plotter | |
JPH06250022A (en) | Display device | |
JPH02109086A (en) | Hologram printing equipment | |
JP2761899B2 (en) | Diffraction grating exposure system | |
KR100498870B1 (en) | Holographic reflector and reflector type liquid crystal display device using it | |
JP3063274B2 (en) | Method of manufacturing holographic optical element | |
JPH0524482B2 (en) | ||
JPH07175402A (en) | Manufacture of image hologram | |
Waddell et al. | The role of retro-reflective materials in holography |