JPS6368796A - Rotary compressor - Google Patents

Rotary compressor

Info

Publication number
JPS6368796A
JPS6368796A JP21230486A JP21230486A JPS6368796A JP S6368796 A JPS6368796 A JP S6368796A JP 21230486 A JP21230486 A JP 21230486A JP 21230486 A JP21230486 A JP 21230486A JP S6368796 A JPS6368796 A JP S6368796A
Authority
JP
Japan
Prior art keywords
pressure
pressure side
inlet port
high pressure
side plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21230486A
Other languages
Japanese (ja)
Inventor
Seigo Yanase
誠吾 柳瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP21230486A priority Critical patent/JPS6368796A/en
Publication of JPS6368796A publication Critical patent/JPS6368796A/en
Pending legal-status Critical Current

Links

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

PURPOSE:To prevent the deterioration of radiant efficiency of a condenser, by arranging a high pressure side inlet port at the side of a side plate, thereby preventing the lubricating oil attaching on the surface of the side plate from being induced by a high-temperature and high pressure gas flow to mix into a refrigerant circuit. CONSTITUTION:When a compressor 1 is run, high-temperature, high pressure gas in a closed vessel 2 is delivered into a condenser 31 and an evaporator 16, which form a refrigerant circuit, from an inlet port 23 and an outlet port 25 on the high pressure side in addition to a discharge pipe 25. At this time, mist of lubricating oil 32 contained in the gas attaches on the surface 6a of a side plate 6, runs down to around the high pressure side inlet port 23, and flows into the delivery pipe 24. As a result, the lubricating oil 32 is mixed into a liquid refrigerant, thereby lower radiating efficiency of the condenser 31. To cope with this, the high pressure side inlet port 23 is arranged at a side surface 6c of the side plate 6. With this contrivance, the inlet port is prevented from being situated on the surface 6a of the side plate 6, and consequently the lubricating oil 32 is prevented from flowing into the refrigerant circuit.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は冷蔵庫、ショーケース等の冷凍装置に使用され
るロータリコンプレッサに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a rotary compressor used in refrigeration equipment such as refrigerators and showcases.

従来の技術 ]ンブレッサをサイクリング運転することにより庫内を
冷却する装置においては、停止時に、システム内の高圧
側に存在する高温冷媒が低圧の冷却器に流れ込み熱負荷
となるため、装置の消費電力景が増大する。この現象を
防止するために、コンプレッサ内に停止時に低圧側、高
圧側の冷媒路を閉鎖する技術が提案されている。
[Conventional technology] In a device that cools the inside of a refrigerator by cycling a refrigerant, when the system is stopped, high-temperature refrigerant existing on the high-pressure side of the system flows into the low-pressure cooler and becomes a heat load, which reduces the power consumption of the device. The scenery increases. In order to prevent this phenomenon, a technique has been proposed in which the refrigerant passages on the low-pressure side and the high-pressure side are closed in the compressor when the compressor is stopped.

以下第3図を参照しながら上述したコンプレッサについ
て説明する。
The above-mentioned compressor will be explained below with reference to FIG.

第3図において、1はロータリコンプレッサで、2は密
閉容器、3はロータ3a、ステータ3bよシなる電動要
素、4は圧縮要素である。5はロータ3aに圧入固定し
たクランク軸でサイドプレート6.7に形成した軸受部
8a、7aに回転自在に軸支される。8はシリンダプレ
ートで、クランク軸6の偏心部6aに装着したロータ9
が回転自在に装着されている。10はロータ9の外周と
シリンダプレート8の内周およびサイドプレートe。
In FIG. 3, 1 is a rotary compressor, 2 is a closed container, 3 is an electric element such as a rotor 3a and a stator 3b, and 4 is a compression element. A crankshaft 5 is press-fitted into the rotor 3a and rotatably supported by bearings 8a and 7a formed on the side plates 6.7. 8 is a cylinder plate, and a rotor 9 is attached to the eccentric portion 6a of the crankshaft 6.
is rotatably mounted. 10 is the outer periphery of the rotor 9, the inner periphery of the cylinder plate 8, and the side plate e.

了で画定される圧縮室11を低圧室12と高圧室13に
仕切るベーンであり、10aはベーン溝である。14は
サイドプレートθ、7、シーリンダプレート8を重合固
定するボルトである。16は蒸発器16かも冷媒ガスを
圧縮室11に導びく吸入管で、サイドプレート6の圧入
ボア1eに圧入固定されている。圧入ボア16のシリン
ダプレート8側の鏡板端面はディスク状の吸入弁17の
バルブシート面を構成している。この圧入ボア1eに連
らなりベーン10に近接し、シリンダプレート8に連通
ずる吸入路18には、前記吸入弁17が収納されるとと
もに、常に弱い力でこの弁17を閉鎖状態を保つバイア
スバネ19が収納されている。また20は吸入弁17の
開放時の動きを規制する段部である。21は圧縮室11
の圧縮された冷媒ガスを直接あるいはプリクーラパイプ
(図示せず)を経由して密閉容器2内に導出する吐出弁
である(第4図)。22は高圧バルブ装置であシ、クラ
ンク軸6とほぼ同一高さに配置されている。
10a is a vane groove that partitions a compression chamber 11 defined by a ridge into a low pressure chamber 12 and a high pressure chamber 13. Numeral 14 is a bolt for fixing the side plate θ, 7 and cylinder plate 8 together. Reference numeral 16 denotes an evaporator 16, which is a suction pipe for guiding refrigerant gas to the compression chamber 11, and is press-fitted into the press-fit bore 1e of the side plate 6. The end surface of the end plate of the press-fit bore 16 on the cylinder plate 8 side constitutes a valve seat surface of a disk-shaped intake valve 17. The suction valve 17 is housed in the suction passage 18 that is connected to the press-fit bore 1e, is close to the vane 10, and communicates with the cylinder plate 8, and is equipped with a bias spring that always keeps the valve 17 closed with a weak force. 19 are stored. Further, 20 is a stepped portion that restricts the movement of the suction valve 17 when it is opened. 21 is the compression chamber 11
This is a discharge valve that discharges compressed refrigerant gas into the closed container 2 directly or via a precooler pipe (not shown) (FIG. 4). Reference numeral 22 denotes a high-pressure valve device, which is arranged at approximately the same height as the crankshaft 6.

この高圧バルブ22は、サイドプレート6にクランク軸
6の軸方向にのびる複数個の高圧側入口ポート23と、
密閉容器2を貫通する吐出管24に連通する高圧側出口
ポート25を備えている。更にシリンダプレート28に
は、隣接した前記各ポー)23.25に相対応して形成
した共通のバルブシリンダ26が備えてあり、このバル
ブシリンダ26の底部には低圧側ポート27が形成しで
ある。28はディスク状の高圧バルブで、−側にて前記
入口、出口ポート23.25を閉鎖可能で、他側にて低
圧側ポート27を閉鎖可能である。29は常に高圧側入
口、出口ポー)23.25を閉鎖するように付勢するバ
イアスバネである。3oは低圧側ポート27と一方のサ
イドプレート7側の開口27aよりシリンダプレート8
の低圧室12に直接連通する導圧路であυ、開口2了a
はサイドプレート7により閉鎖される。
This high pressure valve 22 includes a plurality of high pressure side inlet ports 23 extending in the axial direction of the crankshaft 6 on the side plate 6,
A high-pressure side outlet port 25 is provided which communicates with a discharge pipe 24 that penetrates the closed container 2. Further, the cylinder plate 28 is provided with a common valve cylinder 26 formed correspondingly to each of the adjacent ports 23, 25, and a low pressure side port 27 is formed at the bottom of this valve cylinder 26. . 28 is a disk-shaped high pressure valve, which can close the inlet and outlet ports 23, 25 on the negative side, and close the low pressure side port 27 on the other side. Reference numeral 29 denotes a bias spring that always biases the high pressure side inlet and outlet ports 23 and 25 to close. 3o is the cylinder plate 8 from the low pressure side port 27 and the opening 27a on one side plate 7 side.
It is a pressure conduction path that directly communicates with the low pressure chamber 12 of υ, and the opening 2 is
are closed by side plates 7.

以上のように構成されたロータリコンプレッサについて
、以下その動作について説明する。
The operation of the rotary compressor configured as above will be explained below.

第3図は停止中の状態を示しており、逆上弁作用する低
圧弁1了は閉鎖しており、また高圧バルブ28は高圧側
入口ポート23および高圧側出口ポート26の双方を同
時に閉鎖している。このとき高圧バルブ28は高圧側出
口ポート26の上流・下流間の圧力差、即ち、蒸発器1
eの配置されている冷却室温度における凝縮飽和圧力と
、密閉容器2の温度における飽和圧力との圧力差による
力およびわずかなバイアスバネ29の力により閉鎖して
いる。
FIG. 3 shows the stopped state, in which the low pressure valve 1, which acts as a reverse valve, is closed, and the high pressure valve 28 closes both the high pressure side inlet port 23 and the high pressure side outlet port 26 at the same time. ing. At this time, the high pressure valve 28 controls the pressure difference between the upstream and downstream of the high pressure side outlet port 26, that is, the evaporator 1
It is closed by the force due to the pressure difference between the condensation saturation pressure at the temperature of the cooling chamber where e is located and the saturation pressure at the temperature of the closed container 2, and by the slight force of the bias spring 29.

従って、密閉容器2内の高温高圧ガスは凝縮器31およ
び蒸発器16への流れを阻止され、蒸発器1eへの侵入
熱負荷を軽減する。
Therefore, the high-temperature, high-pressure gas in the closed container 2 is prevented from flowing to the condenser 31 and the evaporator 16, reducing the heat load entering the evaporator 1e.

次に起動時について説明する。Next, the startup time will be explained.

電動要素3の通電によりクランク軸5が回転し、圧縮室
11の低圧室12の圧力低下が生じる。この圧力低下は
高圧バルブ28とバルブシリンダ26間の比較的ラフな
りリアランス(例えば0.11al程度)においても、
高圧側入口ポート23が閉鎖しているため確実に極めて
短時間に行なわれる。この圧力低下は、当然導圧路30
.低圧側ポート27.バルブシリンダ26内の圧力低下
となり、高圧側入口ポート23即あ密閉容器2内圧力と
バルブシリンダ26内の圧力差が高圧バルブ28に作用
し、強力に高圧側出口のちは、ガス流の動圧も加味され
て高圧バルブ28はバイアスバネ29の力に抗して低圧
側ポート27を閉鎖し、開弁動作を完了する。一方吸入
弁17も開路し、通常の冷却運転が行なわれる。
The crankshaft 5 is rotated by energization of the electric element 3, and the pressure in the low pressure chamber 12 of the compression chamber 11 is reduced. This pressure drop occurs even when there is a relatively rough clearance between the high pressure valve 28 and the valve cylinder 26 (for example, about 0.11 al).
Since the high-pressure side inlet port 23 is closed, this is reliably carried out in a very short time. This pressure drop naturally occurs in the pressure guide path 30.
.. Low pressure side port 27. The pressure inside the valve cylinder 26 decreases, and the pressure difference between the pressure inside the closed container 2 and the pressure inside the valve cylinder 26 acts on the high-pressure valve 28, and the dynamic pressure of the gas flow is strongly reduced at the high-pressure side inlet port 23. Taking this into consideration, the high pressure valve 28 closes the low pressure side port 27 against the force of the bias spring 29, completing the valve opening operation. On the other hand, the suction valve 17 is also opened, and normal cooling operation is performed.

次に停止時の動作について説明する。Next, the operation when stopped will be explained.

クランク軸6が回転停止すると、吸入管16内のガス流
の停止によシ吸入弁17が閉鎖する。またシリンダ11
内を高圧室13と低圧室12に区画しているオイルシー
ルが破れ、密閉容器2内の高圧ガスは例えばベーン10
とベーン溝10aのクリアランス等より低圧室12内を
昇圧する。この昇圧作用は、導圧路30をへて低圧側ポ
ート27におよびかつ、導圧路30の容積が小さく形成
できるため昇圧時間を短縮できる。低圧側ポート27内
の圧力と密閉容器2内の圧力が均圧すると、バイアスバ
ネ29の力により高圧バルブ28は低圧側ポート2了を
離れ、高圧側入口ポート23と高圧側出口ポート26を
同時に閉鎖する。
When the crankshaft 6 stops rotating, the gas flow in the suction pipe 16 stops, and the suction valve 17 closes. Also cylinder 11
The oil seal that divides the inside into high pressure chamber 13 and low pressure chamber 12 is broken, and the high pressure gas inside the closed container 2 is leaked to the vane 10, for example.
The pressure inside the low pressure chamber 12 is increased by the clearance between the vane groove 10a and the like. This pressure increasing effect extends to the low pressure side port 27 through the pressure guiding path 30, and since the volume of the pressure guiding path 30 can be formed small, the pressure increasing time can be shortened. When the pressure inside the low-pressure side port 27 and the pressure inside the closed container 2 are equalized, the high-pressure valve 28 leaves the low-pressure side port 2 due to the force of the bias spring 29, and simultaneously opens the high-pressure side inlet port 23 and the high-pressure side outlet port 26. Close.

従ってコンプレッサ停止中において、密閉容器2内の高
圧高温ガスを凝縮器31.蒸発器1eへ流出するのを阻
止する。
Therefore, while the compressor is stopped, the high pressure and high temperature gas in the closed container 2 is transferred to the condenser 31. This prevents it from flowing into the evaporator 1e.

発明が解決しようとする問題点 しかしながら上記のような構成では、コンプレッサ運転
時、密閉容器2内の高温高圧ガスが、高圧側入口ポート
23.高圧側出口ポート26吐出管24から、凝縮器3
1.蒸発器16へ吐出される時、高温高圧ガス中に含ま
れた霧状の潤滑油32がサイドプレート表面6bに付着
し、高圧側入口ポート23付近に流下し、高温高圧ガス
流に誘引され、吐出管24へ流入する。潤滑油32が、
吐出管24より凝縮器31.蒸発器16から形成される
冷媒回路へ流入すると、液冷媒に潤滑油が混入し、凝縮
器31内の液相部分が増大するため、有効放熱部分が減
少し、凝縮器31の放熱効率が著しく劣化することにな
る。又、気相部分では、凝縮器31の管内面に潤滑油が
付着することにより熱伝導率が低下し、この部分でも放
熱効率の劣化が生じる。
Problems to be Solved by the Invention However, in the above configuration, when the compressor is in operation, the high-temperature, high-pressure gas in the closed container 2 flows through the high-pressure side inlet port 23. From the high pressure side outlet port 26 discharge pipe 24 to the condenser 3
1. When being discharged to the evaporator 16, the atomized lubricating oil 32 contained in the high-temperature, high-pressure gas adheres to the side plate surface 6b, flows down near the high-pressure side inlet port 23, and is attracted by the high-temperature, high-pressure gas flow. It flows into the discharge pipe 24. The lubricating oil 32 is
From the discharge pipe 24, the condenser 31. When the liquid refrigerant flows into the refrigerant circuit formed from the evaporator 16, lubricating oil is mixed into the liquid refrigerant and the liquid phase portion in the condenser 31 increases, so the effective heat radiation portion decreases and the heat radiation efficiency of the condenser 31 is significantly reduced. It will deteriorate. Furthermore, in the gas phase portion, thermal conductivity decreases due to lubricating oil adhering to the inner surface of the tube of the condenser 31, and heat radiation efficiency also deteriorates in this portion.

この結果、凝縮温度が上昇しこれに伴ない高圧側圧力が
異常に高くなり、ロー・タリコンプレノサに過大な負荷
がかかることになり、正常な冷却運転が出来なくなる0
又、凝縮器31の放熱効率が劣化する為、ロータリ1ン
ブレツサが本来布している冷凍能力を充分引き出すこと
が出来ず、冷却能力の低下という事態も招来することと
なる。
As a result, the condensing temperature rises, resulting in an abnormally high pressure on the high pressure side, which places an excessive load on the rotary compressor, making it impossible to perform normal cooling operation.
In addition, since the heat dissipation efficiency of the condenser 31 deteriorates, the original refrigerating capacity of the rotary 1 breechizer cannot be fully utilized, resulting in a decrease in the cooling capacity.

本発明は上記問題点に鑑み、冷媒回路内への潤滑油の流
入を阻止し凝縮器の放熱効率に影響を与えないロータリ
コンプレッサを提供するものである。
In view of the above problems, the present invention provides a rotary compressor that prevents lubricating oil from flowing into the refrigerant circuit and does not affect the heat dissipation efficiency of the condenser.

問題点を解決するための手段 上記問題点を解決するために本発明のロータリコンプレ
ッサは、密閉容器と、この密閉容器内に収納される圧縮
要素とモータとを備え、前記圧縮要素は、クランク軸を
軸支する軸受部を有するサイドプレートと、ロータを回
転自在に収納するシリンダプレート表、前記サイドプレ
ートとシリンダプレートとを重合して圧縮室を構成し、
前記圧縮室を低圧室と高圧室に仕切るベーンと一前記低
圧室と前記高圧室とに各々連通し、前記ベーンと近接し
て配置された逆止弁作用をなす吸入弁と吐出弁とを備え
、前記密閉容器内に常時連通する高圧側入口ポートと、
吐出管に常時連通する高圧側出口ポートと、前記圧縮室
の低圧室に直接連通する低圧側ポートとを備え、前記高
圧側入口ポートと前記高圧側出口ポートを一側面にて同
時に閉鎖し、他側面で前記低圧側ポートを閉鎖可能なデ
ィスク状の高圧バルブを備え、前記高圧側入口ポートを
前記サイドプレート側面に備えたという構成のものであ
る。
Means for Solving the Problems In order to solve the above problems, a rotary compressor of the present invention includes a closed container, a compression element and a motor housed in the closed container, and the compression element is connected to a crankshaft. a side plate having a bearing portion for pivotally supporting the rotor; a cylinder plate table rotatably housing the rotor; the side plate and the cylinder plate are overlapped to form a compression chamber;
A vane that partitions the compression chamber into a low pressure chamber and a high pressure chamber, and a suction valve and a discharge valve that communicate with the low pressure chamber and the high pressure chamber, respectively, and that function as a check valve and are disposed in close proximity to the vane. , a high-pressure side inlet port that constantly communicates with the inside of the closed container;
A high-pressure side outlet port that constantly communicates with the discharge pipe and a low-pressure side port that directly communicates with the low-pressure chamber of the compression chamber, the high-pressure side inlet port and the high-pressure side outlet port are simultaneously closed on one side, and the other side is closed. A disk-shaped high pressure valve capable of closing the low pressure side port is provided on the side surface, and the high pressure side inlet port is provided on the side surface of the side plate.

作  用 本発明は上記した構成によって、コンプレッサ運転時密
閉容器内の高温高圧ガスが高圧側入口ポートから、冷媒
回路へ吐出される時、高圧側入口ポートがサイドプレー
ト側面にあるため、高温高圧の吸き替えしによりサイド
プレート表面に付着した潤滑油が流下しても高温高圧ガ
スは、潤滑油を誘引することなく冷媒回路へ吐出される
こととなる。
According to the above-described configuration, when the high-temperature and high-pressure gas in the closed container is discharged from the high-pressure side inlet port to the refrigerant circuit during compressor operation, the high-pressure side inlet port is located on the side plate side, so that the high-temperature and high-pressure gas is discharged from the high-pressure side inlet port to the refrigerant circuit. Even if the lubricating oil adhering to the side plate surface flows down due to resuction, the high-temperature, high-pressure gas is discharged to the refrigerant circuit without attracting the lubricating oil.

実施例 以下本発明の一実施例について図面を参照しな略する。Example An embodiment of the present invention will be described below without reference to the drawings.

第1図において23は高圧側入口ポートでサイドプレー
トの側面に設けられている。
In FIG. 1, reference numeral 23 denotes a high-pressure side inlet port, which is provided on the side surface of the side plate.

以上のように構成されたロータリコンプレッサにおいて
以下その動作について説明する。尚説明の重複をさける
ため従来例と同一動作については、詳細な説明を省略す
る。第1図は停止中の状態を示しており、第2図は、運
転時の状態を示す。ロータリ1ンブレツサ運転時、密閉
容器内の高温高圧ガス中に含まれた霧状の潤滑油32が
サイドプレート表面ebに付着し、流下する。しかし、
すイドプレート側面5cに高圧側入口ポート23が設け
であるために、従来の様に高温高圧ガス流に誘引されて
潤滑油が凝縮器31.蒸発器16から形成される冷媒回
路に流入することはなくなる。
The operation of the rotary compressor configured as above will be explained below. In order to avoid duplication of explanation, detailed explanations of operations that are the same as those of the conventional example will be omitted. FIG. 1 shows the state at rest, and FIG. 2 shows the state during operation. During operation of the rotary 1 engine, a mist of lubricating oil 32 contained in the high-temperature, high-pressure gas in the closed container adheres to the side plate surface eb and flows down. but,
Since the high-pressure side inlet port 23 is provided on the side plate 5c, the lubricating oil is attracted by the high-temperature, high-pressure gas flow and flows into the condenser 31. It no longer flows into the refrigerant circuit formed from the evaporator 16.

この様にして、本実施例では、冷媒回路への潤滑油の流
出が防止出来る為、凝縮器の放熱能力を劣化させること
なく、ロータリコンプレッサが有する本来の冷凍能力を
確保することが出来、又ロータリコンプレッサ自体に過
大な負荷がかかることを防止出来、又高圧側入口ポート
がサイドプレート側面にあるため部品点数を増やすこと
なく、より効果的に潤滑油流出防止がはかれるものであ
る。
In this way, in this embodiment, the lubricating oil can be prevented from leaking into the refrigerant circuit, so the original refrigerating ability of the rotary compressor can be secured without deteriorating the heat dissipation ability of the condenser. It is possible to prevent an excessive load from being applied to the rotary compressor itself, and since the high-pressure side inlet port is located on the side of the side plate, it is possible to more effectively prevent lubricating oil from flowing out without increasing the number of parts.

発明の効果 以上の様に本発明は、吐出ガスの吸き替えしによシ、吐
出ガス中に含まれる潤滑油が、サイドグレート表面に付
着しても、高圧側入口ポートがサイドプレート側面に設
けであるため、潤滑油は、高温高圧ガス流に誘引されて
冷媒回路に流入しにくくなシ、この結果、従来問題とな
っていた凝縮器内への潤滑油流入を原因とする諸問題を
解決することができ、実用上の効果が大なるものがある
Effects of the Invention As described above, the present invention has an advantage in that the inlet port on the high pressure side is located on the side surface of the side plate even if the lubricating oil contained in the discharged gas adheres to the surface of the side plate. Because of this, the lubricating oil is attracted by the high-temperature, high-pressure gas flow and is difficult to flow into the refrigerant circuit.As a result, various problems caused by lubricating oil flowing into the condenser, which have been problems in the past, are avoided. There are some problems that can be solved and have great practical effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すロータリコンプレッサ
の断面図、第2図は第1図のn−n’線における断面図
で高圧バルブ装置の開弁状態を示す要部断面図、第3図
は従来のロータリコンプレッサの断面図、第4図は第3
図の■−■’線における断面図である。 1・・・・・・ロータリコンプレッサ、2・・・・・・
密閉容器、3・・・・・・電動要素、4・・・・・・圧
縮要素、6・・・・・・クランク軸、6,7・・・・・
・サイドプレート、6a、7a・・・・・・軸受部、8
・・・・・・シリンダープレート、9・・・・・・ロー
タ、10・・・・・・ベーン、11・山・・圧縮室、1
2・・・・・・低圧呈、13・・・・・・高圧室、16
・・・・・・吸入管、17・・・・・・吸入弁、19・
・・・・・バイアスバネ、21・・甲・吐出弁、23・
・・・・・高圧側入口ポート、24・・・・・・吐出管
、26・・・・・・高圧側出口ポート、27・・・・・
低圧側ポート、28・・・・・・高圧バルブ、30・・
・・・・導圧路。
FIG. 1 is a cross-sectional view of a rotary compressor showing an embodiment of the present invention, FIG. 2 is a cross-sectional view taken along line nn' in FIG. Figure 3 is a cross-sectional view of a conventional rotary compressor, and Figure 4 is a cross-sectional view of a conventional rotary compressor.
It is a sectional view taken along the line ■-■' in the figure. 1...Rotary compressor, 2...
Airtight container, 3... Electric element, 4... Compression element, 6... Crankshaft, 6, 7...
・Side plate, 6a, 7a...Bearing part, 8
... Cylinder plate, 9 ... Rotor, 10 ... Vane, 11 Mountain... Compression chamber, 1
2...Low pressure presentation, 13...High pressure chamber, 16
... Suction pipe, 17... Suction valve, 19.
...Bias spring, 21.. Instep/discharge valve, 23.
...High pressure side inlet port, 24...Discharge pipe, 26...High pressure side outlet port, 27...
Low pressure side port, 28... High pressure valve, 30...
...Pressure path.

Claims (1)

【特許請求の範囲】[Claims] 密閉容器と、この密閉容器内に収納される圧縮要素と電
動要素とを備え、前記圧縮要素は、クランク軸を軸支す
る軸受部を有するサイドプレートと、ロータを回転自在
に収納するシリンダプレートと、前記サイドプレートと
シリンダプレートとを重合して圧縮室を構成し、前記圧
縮室を低圧室と高圧室に仕切るベーンと、前記低圧室と
前記高圧室とに各々連通し、前記ベーンと近接して配置
される逆止弁作用をなす吸入弁と吐出弁とを備え、前記
密閉容器内に常時連通する高圧側入口ポートと吐出管に
常時連通する高圧側出口ポートと、導圧路にて、前記圧
縮室の低圧室に直接連通する低圧側ポートとを備え前記
高圧側入口ポートと前記高圧側出口ポートとを一側面に
て同時に閉鎖し、他端面で前記低圧側ポートを閉鎖可能
なディスク状の高圧側バルブを備え、前記高圧側入口ポ
ートを前記サイドプレート側面に備えたことを特徴とす
るロータリコンプレッサ。
The compressor includes a closed container, a compression element and an electric element housed in the closed container, and the compression element includes a side plate having a bearing portion that pivotally supports a crankshaft, and a cylinder plate that rotatably houses a rotor. , a compression chamber is formed by superimposing the side plate and the cylinder plate, a vane that partitions the compression chamber into a low pressure chamber and a high pressure chamber, and a vane that communicates with the low pressure chamber and the high pressure chamber, and is adjacent to the vane. a high-pressure side inlet port that constantly communicates with the closed container, a high-pressure side outlet port that constantly communicates with the discharge pipe, and a pressure guiding path, a low-pressure side port that directly communicates with the low-pressure chamber of the compression chamber, and a disk-shaped disk that can simultaneously close the high-pressure side inlet port and the high-pressure side outlet port on one side, and close the low-pressure side port on the other end side; A rotary compressor comprising a high pressure side valve, and the high pressure side inlet port is provided on a side surface of the side plate.
JP21230486A 1986-09-09 1986-09-09 Rotary compressor Pending JPS6368796A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21230486A JPS6368796A (en) 1986-09-09 1986-09-09 Rotary compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21230486A JPS6368796A (en) 1986-09-09 1986-09-09 Rotary compressor

Publications (1)

Publication Number Publication Date
JPS6368796A true JPS6368796A (en) 1988-03-28

Family

ID=16620351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21230486A Pending JPS6368796A (en) 1986-09-09 1986-09-09 Rotary compressor

Country Status (1)

Country Link
JP (1) JPS6368796A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0546821A (en) * 1991-08-09 1993-02-26 Shibaura Eng Works Co Ltd Method and system for issuing prepaid card

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0546821A (en) * 1991-08-09 1993-02-26 Shibaura Eng Works Co Ltd Method and system for issuing prepaid card

Similar Documents

Publication Publication Date Title
JP3051405B2 (en) A scroll compressor with an unloading valve between the economizer and the suction section
TWI313729B (en) Multistage rotary compressor
US3031861A (en) Compressor unit for refrigeration system
WO2009059488A1 (en) A rotary compressor with low pressure in its shell and methods for controlling its cold media and oil and application thereof
JP3718964B2 (en) Rotary compressor
JPS6368796A (en) Rotary compressor
JPH07269475A (en) Scroll compressor
JPS6368795A (en) Rotary compressor
JP3216343B2 (en) Reciprocating compressor
JP2002039635A (en) Air conditioner
KR100217121B1 (en) A rotary compressor
JP2517346B2 (en) Compressor control device
JPS63117192A (en) Cooling device for rotary compressor
JP2002054570A (en) Reciprocating compressor
JPH0224960Y2 (en)
JP2000027756A (en) Compressor
JPH01244192A (en) Multicylinder rotary compressor
JPH06300366A (en) Refrigerator
JPH03179193A (en) Rotary compressor
JPH0233103Y2 (en)
JPS6336072A (en) Electric compressor
JPS6238890A (en) Rotary compressor
JPS62147090A (en) Enclosed rotary compressor
JPH07117054B2 (en) Rotary compressor
JPS60142164A (en) Refrigerator with rotary compressor having fluid control function