JPS6368582A - Production of alpha,alpha-dimethyl-delta-valerolactone - Google Patents

Production of alpha,alpha-dimethyl-delta-valerolactone

Info

Publication number
JPS6368582A
JPS6368582A JP21281586A JP21281586A JPS6368582A JP S6368582 A JPS6368582 A JP S6368582A JP 21281586 A JP21281586 A JP 21281586A JP 21281586 A JP21281586 A JP 21281586A JP S6368582 A JPS6368582 A JP S6368582A
Authority
JP
Japan
Prior art keywords
acid
dimethyl
hydrogen bromide
valerolactone
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21281586A
Other languages
Japanese (ja)
Inventor
Takeshi Inagaki
毅 稲垣
Takeshi Irie
剛 入江
Katsumi Nakamura
克己 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Chemical Industry Co Ltd
Original Assignee
Nitto Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Chemical Industry Co Ltd filed Critical Nitto Chemical Industry Co Ltd
Priority to JP21281586A priority Critical patent/JPS6368582A/en
Priority to ES86114272T priority patent/ES2016553B3/en
Priority to DE8686114272T priority patent/DE3673492D1/en
Priority to EP86114272A priority patent/EP0219117B1/en
Priority to US06/919,641 priority patent/US4734511A/en
Publication of JPS6368582A publication Critical patent/JPS6368582A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pyrane Compounds (AREA)

Abstract

PURPOSE:To easily obtain the titled compound useful as a remedy for arteriosclerosis and hyperlipoproteinemia in high yield, by adding dimethylpentenoic acid to a solution of hydrogen bromide and cyclizing the resultant dimethylbromovaleric acid by alkali treatment. CONSTITUTION:2,2-Dimethyl-5-bromovaleric acid is produced by adding 2,2- dimethyl-4-pentenoic acid to solution prepared by dissolving hydrogen bromide in a solvent and subjecting the acid to addition reaction of hydrogen bromide. The objective compound can be produced by treating and cyclizing the synthesized acid with an alkali. The 2,2-dimethyl-4-pentenoic acid used as a raw material is preferably synthesized by heating allyl isobutyrate in the presence of sodium hydride or lithium hydride.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はα、α−ジメチル−δ−バレロラクトンの製造
法に関する。更に詳しくは抗動脈硬化錠菓、抗脂性蛋白
過剰錠菓、例えばLopid (米国、パークデービス
社製) CH。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for producing α,α-dimethyl-δ-valerolactone. More specifically, anti-arteriosclerosis tablets, anti-lipidic protein-excess tablets, such as Lopid (manufactured by Parke Davis, USA) CH.

CHl 等の、 C)hcHzcHz  CC0OH基を持つ化
合物のCH3 原料として有用なα、α−ジメチル−δ−バレロラクト
ンの74 造法に関する。
This invention relates to a method for producing α,α-dimethyl-δ-valerolactone, which is useful as a CH3 raw material for compounds having a C)hcHzcHz CCOOH group, such as CHl.

従来技術 従来、α、α−ジメチル−6−バレロラクトン(以下D
VLと略記する)の製造法としては次のような方法が知
られている。
Prior Art Conventionally, α,α-dimethyl-6-valerolactone (hereinafter referred to as D
The following methods are known as methods for producing VL (abbreviated as VL).

(112,2−ジメチルグルクール酸の無水物を還元す
る方法。
(Method for reducing the anhydride of 112,2-dimethylglucuric acid.

この方法の原料である2、2−ジメチルグルタール酸の
無水物はイソブチルアルデヒドとアクリロニトリルを出
発原料として、マイケル付加反応、加水分解反応、酸化
反応、ラクトン化反応と多数の工程を経て合成され、収
率も低い。
The anhydride of 2,2-dimethylglutaric acid, which is the raw material for this method, is synthesized using isobutyraldehyde and acrylonitrile as starting materials through a number of steps including Michael addition reaction, hydrolysis reaction, oxidation reaction, and lactonization reaction. The yield is also low.

しかも核酸無水物の還元には複雑で入手困難なルテニウ
ム系触媒が使用され、かつ収率も低い欠点がある。(B
ull、 Chem、 Soc、 Jpn+ 57゜(
2)  δ−バレロラクトンをヨウ化メチルとジイソプ
ロピルリチウムアミドを用いてアルキル化する方法。
Moreover, the reduction of nucleic acid anhydrides requires the use of complex and difficult-to-obtain ruthenium-based catalysts, and has the drawback of low yields. (B
ul, Chem, Soc, Jpn+ 57゜(
2) A method of alkylating δ-valerolactone using methyl iodide and diisopropyllithiumamide.

この方法はδ−バレロラクトン及びジイソプロピルリチ
ウムアミドがいずれも高価で、得られるものも高価とな
る欠点がある。(J、 C,S。
This method has the disadvantage that both δ-valerolactone and diisopropyllithium amide are expensive, and the product obtained is also expensive. (J, C, S.

Chem、 Comm、  (1973) 、 711
 )(3)4−メチル−1,4−ベンタンジオールを9
7〜100%硫酸と100%蟻酸、または97〜100
%硫酸と酸化銅及び−酸化炭素により処理し、次いでl
(,0と反応させる方法。
Chem, Comm, (1973), 711
)(3) 4-methyl-1,4-bentanediol to 9
7-100% sulfuric acid and 100% formic acid, or 97-100
% sulfuric acid and copper oxide and -carbon oxide, then l
(How to react with 0.

この方法における原料の4−メチル−1,4−ベンタン
ジオールばT−ブチロラクトンとメチルブロマイドをマ
グネシューム存在下で反応させて製造するが、この反応
は反応収率が低いため、得られるα、α−ジメチル−δ
−バレロラクトンの収率も悪い欠点がある。
The raw material 4-methyl-1,4-bentanediol in this method is produced by reacting T-butyrolactone and methyl bromide in the presence of magnesium, but since this reaction has a low reaction yield, the resulting α, α- dimethyl-δ
-The yield of valerolactone is also a drawback.

(Chem、 Lett、 (1982) 、 118
7)(412,2−ジメチル−1,5−ベンタンジオー
ルをアリルハライドとパラジウム触媒を用いて酸化する
方法。
(Chem, Lett, (1982), 118
7) A method of oxidizing (412,2-dimethyl-1,5-bentanediol) using allyl halide and a palladium catalyst.

この方法における原料の2,2−ジメチル−1,5−ベ
ンタンジオールは、2.2−ジメチルグルクール酸のジ
エステルまたは酸無水物を還元して合成する。そのため
、従来法(1)で示したように、該ジエステルまたは酸
無水物の合成が容易でなく、その還元もLiAl114
等を用いるため、工程も煩雑で高価なものとなる。さら
にラクトン化は下記に示すラクトンの副生物が生成し、
DVLの選択率が低い欠点がある。
2,2-dimethyl-1,5-bentanediol, which is a raw material in this method, is synthesized by reducing diester or acid anhydride of 2,2-dimethylglucuric acid. Therefore, as shown in conventional method (1), synthesis of the diester or acid anhydride is not easy, and its reduction is also difficult.
etc., making the process complicated and expensive. Furthermore, lactonization produces the following lactone by-products,
There is a drawback that the selectivity of DVL is low.

(J、  org、  Chem、  48. 128
6 (1983)  )+512.2−ジメチル1.5
−ベンタンジオールをルテニウム系触媒を用いて脱水素
化しラクトン化させる方法。
(J, org, Chem, 48. 128
6 (1983) )+512.2-dimethyl 1.5
- A method of dehydrogenating and lactonizing bentanediol using a ruthenium-based catalyst.

この方法における原料の2,2−ジメチル=1.5−ベ
ンタンジオールの入手が従来法(4)で示したように容
易でない。またラクトン化では前記の異性体ラクトンが
生成し、DVLの選択率が低い欠点がある。
Obtaining the raw material 2,2-dimethyl=1,5-bentanediol in this method is not easy as shown in the conventional method (4). Furthermore, lactonization produces the above-mentioned isomeric lactones, which has the drawback of low selectivity for DVL.

(Tetrahedron、 Lett、 24.26
77 (1983) )(612,2−ジメチルビニル
酪酸エステルとコバルトカルボニルを反応させる方法。
(Tetrahedron, Lett, 24.26
77 (1983)) (Method of reacting 612,2-dimethylvinylbutyric acid ester and cobalt carbonyl.

この方法はコバルトカルボニルのような毒性の強い試薬
を用いると共に、240℃、290気圧と言う高温高圧
で反応させるので、高温高圧装置が必要であり、かつ操
業も困難である欠点がある。
This method uses a highly toxic reagent such as cobalt carbonyl, and the reaction is carried out at a high temperature and pressure of 240° C. and 290 atmospheres, so it requires a high-temperature, high-pressure apparatus and is difficult to operate.

(ヘルギー特許第616141号) 以上のように゛、従来の方法では、原料及び反応試薬の
入手または合成が困難なため高価なものになったり、ま
たは反応収率が低かったり、あるいはDVLの選択率が
悪く、異性体が多量に生成したりする。そのため、工業
化に適したDVLの合成法はいまだに確立されていない
(Helgie Patent No. 616141) As mentioned above, in conventional methods, raw materials and reaction reagents are difficult to obtain or synthesize, resulting in high costs, low reaction yields, or DVL selectivity. is not good, and a large amount of isomers are produced. Therefore, a method for synthesizing DVL suitable for industrialization has not yet been established.

発明の目的 本発明は従来法における欠点を解消すべくなされたもの
で、その目的は特異な薬剤及び高価な薬剤を使用するこ
となく、容易に入手できる原料を使用して容易にかつ高
収率で、経済的にDVLを製造する方法を提供すること
にある。
OBJECT OF THE INVENTION The present invention has been made to overcome the drawbacks of conventional methods, and its purpose is to easily and with high yield using easily available raw materials without using special or expensive chemicals. The object of the present invention is to provide a method for manufacturing DVL economically.

発明の構成 本発明者らは前記目的を達成すべく鋭意研究の結果、イ
ソ酪酸アリルエステルを水素化ナトリウムまたは水素化
リチウムの存在下で加熱する、:とによって容易に得ら
れる2、2−ジメチル−4−ペンテノイック酸を原料と
し、これを臭化水素を溶解した溶液に添加することによ
り臭化水素を付加して2.2−ジメチル−5−ブロム吉
草酸を合成し、これをアルカリ処理すると、容易に高収
率でDVLが製造し得られることを究明し得た。この知
見に基いて本発明を完成するに至った。
Composition of the Invention In order to achieve the above object, the present inventors conducted extensive research and found that 2,2-dimethyl which can be easily obtained by heating isobutyric acid allyl ester in the presence of sodium hydride or lithium hydride. Using -4-pentenoic acid as a raw material, hydrogen bromide is added to a solution containing hydrogen bromide to synthesize 2,2-dimethyl-5-bromovaleric acid, which is then treated with an alkali. It has been found that DVL can be easily produced and obtained in high yield. Based on this knowledge, we have completed the present invention.

その合成過程を式で示すと次の通りである。The synthesis process is shown as follows.

本発明における原料である2、2−ジメチル−4−ペン
テノイック酸(以下DMPと略記する)は、イソ酪酸ア
リルエステルのアリル基の転移により容易に得られる。
2,2-dimethyl-4-pentenoic acid (hereinafter abbreviated as DMP), which is a raw material in the present invention, can be easily obtained by transferring the allyl group of isobutyric acid allyl ester.

その方法は、反応容器に溶媒及びイソ酪酸アリルに対し
、1.0〜1.6倍モルの水素化ナトリウムあるいは水
素リチウムを仕込み、80〜130℃、好ましくは11
0〜120℃で加熱攪拌する。続いてこの容器に、イソ
酪酸アリルを1〜8時間かけて滴下し、その後1〜5時
間80〜130℃で加熱攪拌熟成し、冷却後メタノール
及び水を加えて反応を停止させる。この液を溶媒層と水
層に分離し、水層を塩酸で酸性(pH=1)にするとD
MPが遊離する。これを有機溶媒で抽出し、蓄溜等によ
って分離する。
In this method, 1.0 to 1.6 times the mole of sodium hydride or lithium hydrogen is charged to the solvent and allyl isobutyrate in a reaction vessel, and the temperature is 80 to 130°C, preferably 11
Heat and stir at 0 to 120°C. Subsequently, allyl isobutyrate is added dropwise to this container over a period of 1 to 8 hours, and then the mixture is aged with stirring at 80 to 130° C. for 1 to 5 hours, and after cooling, methanol and water are added to stop the reaction. Separate this liquid into a solvent layer and an aqueous layer, and make the aqueous layer acidic (pH = 1) with hydrochloric acid.D
MP is released. This is extracted with an organic solvent and separated by accumulation or the like.

この転位工程で用いる溶媒としては、例えばベンゼン、
トルエン、ジオキサン等が挙げられる。
Examples of solvents used in this rearrangement step include benzene,
Examples include toluene and dioxane.

またDMPの抽出に用いる溶媒としては、例えばベンゼ
ン、トルエン、ヘキサン、酢酸エチル、クロロホルム、
エチルエーテル等が挙げられる。
Examples of solvents used for extracting DMP include benzene, toluene, hexane, ethyl acetate, chloroform,
Examples include ethyl ether.

DMPへの臭化水素の付加反応は、DMPに対し0.5
〜1.5倍モルの臭化水素を吸収させた溶媒に、DMP
を少量の溶媒に溶解させたものを加え、−30〜50℃
で0.5〜5時間熟成することによって行う。これに使
用する溶媒としては、例えばヘキサン、ペンタン、エー
テル、トルエン、四塩化炭素。
The addition reaction of hydrogen bromide to DMP is 0.5 to DMP.
Add DMP to a solvent that has absorbed ~1.5 times the mole of hydrogen bromide.
Add the solution dissolved in a small amount of solvent and heat to -30 to 50℃.
This is done by aging for 0.5 to 5 hours. Examples of solvents used for this include hexane, pentane, ether, toluene, and carbon tetrachloride.

ベンゼン、ジオキサン、 T)IF 、酢酸などが挙げ
られる。
Examples include benzene, dioxane, T)IF, acetic acid, and the like.

臭化水素を溶解する溶媒の使用量は、DMPに対して重
量で1〜25倍、好ましくは8〜20倍である。また臭
化水素溶液にDMPを加えるためにDMPを溶解させる
溶媒は、臭化水素を溶解した溶媒と同じものを使用する
のが、溶媒回収の点から好ましい。その溶媒使用量はD
MPに対し重量で1〜5倍好ましくは1〜3倍である。
The amount of the solvent used to dissolve hydrogen bromide is 1 to 25 times, preferably 8 to 20 times, the weight of DMP. Further, in order to add DMP to the hydrogen bromide solution, it is preferable to use the same solvent in which the DMP is dissolved as the solvent in which the hydrogen bromide is dissolved, from the viewpoint of solvent recovery. The amount of solvent used is D
It is 1 to 5 times the weight of MP, preferably 1 to 3 times.

このDMPの臭化水素の付加は、臭化がDMPO末端位
(5位)に付加しなければならない。4位に付加すると
、アルカリ処理で五員環°ラクトンが副生ずるので好ま
しくなり。
This addition of hydrogen bromide to DMP requires that the bromide be added to the terminal position (position 5) of DMPO. Addition at the 4-position is preferable because a five-membered ring lactone is produced as a by-product during alkali treatment.

従来オレフィンに臭化水素を付加する場合行ねれている
オレフィンに臭化水素を吹込む方法は五員環ラクトンが
副生成する。
The conventional method of adding hydrogen bromide to an olefin, in which hydrogen bromide is blown into an olefin, produces a five-membered ring lactone as a by-product.

しかし、前記の臭化水素を溶媒に溶した溶液にDMPを
添加する方法では、五員環ラクトンの副生がないのでこ
の方法によることが必要である。
However, the above-mentioned method of adding DMP to a solution of hydrogen bromide in a solvent does not produce a five-membered ring lactone as a by-product, so this method is necessary.

この方法によると、過酸化物のようなラジカル開始剤を
触媒として使用することなく、容易に臭化水素を付加さ
せることができる。そのため、反応終了後、触媒あるい
は触媒が分解して生成する化合物を除く必要がなく、精
製が容易であり、また過酸化物触媒による取扱いの注意
等の必要がなく、操業も容易である効果を有する。
According to this method, hydrogen bromide can be easily added without using a radical initiator such as peroxide as a catalyst. Therefore, after the reaction is complete, there is no need to remove the catalyst or the compounds produced by the decomposition of the catalyst, making it easy to purify, and there is no need to be careful when handling the peroxide catalyst, making operation easy. have

臭化水素付加により得られた2、2−ジメチル−5−ブ
ロム吉草酸(以下DMBrと記載する)をアルカリで処
理すると閉環してDVLが得られる。
When 2,2-dimethyl-5-bromovaleric acid (hereinafter referred to as DMBr) obtained by addition of hydrogen bromide is treated with an alkali, the ring is closed and DVL is obtained.

アルカリ処理はDMBrに対して1.0〜3.0倍モル
のアルカリを含んだ5〜50%アルカリ水r= ?b、
を加えて、0〜50℃で30分〜3時間混合攪拌するこ
とにより行う。反応後反応液に塩酸を加え、pH1とす
るとDVLと水層に分乱し、DVLが得られる。
Alkaline treatment is performed using 5-50% alkaline water containing 1.0-3.0 times the mole of alkali relative to DMBr = ? b,
The mixture is mixed and stirred at 0 to 50°C for 30 minutes to 3 hours. After the reaction, hydrochloric acid is added to the reaction solution to adjust the pH to 1, and the mixture is separated into DVL and aqueous layers to obtain DVL.

アルカリ処理のアルカリとしては、アルカリ金属の水酸
化物、炭酸塩1例えばNa0Il 、 KOH。
The alkali for the alkali treatment includes alkali metal hydroxides and carbonates such as Na0Il and KOH.

NazC= 、 K、CO,等が挙げられる。その量は
DMBrに対して1.0モルのアルカリが必要で、1.
Q〜3.0モル倍、好ましくは1.1〜2.0倍モルを
使用する。
Examples include NazC= , K, CO, and the like. The amount is 1.0 mol of alkali relative to DMBr, and 1.
Q to 3.0 times the mole, preferably 1.1 to 2.0 times the mole.

このようにして得られるDVLは純度が高いが、一層高
純度のものが必要な場合には蒸留精製すればよい。
The DVL thus obtained has high purity, but if even higher purity is required, it may be purified by distillation.

実施例1゜ 攪拌機、温度計、冷却器を備えた40フラスコにヘキサ
ン100 mlを仕込み一25℃に冷却した。
Example 1 100 ml of hexane was charged into a 40 flask equipped with a stirrer, a thermometer, and a condenser, and the flask was cooled to -25°C.

これに臭化水素ガス6.70gを遮光下に吹込み吸収さ
せた。この溶液に一25℃、遮光下でDMPIOgをヘ
キサン15m1に溶解したものを加え、徐々に室温まで
昇温させながら3時間熟成撹拌した。
6.70 g of hydrogen bromide gas was blown into this while being shielded from light and absorbed. A solution of DMPIOg dissolved in 15 ml of hexane was added to this solution at -25° C. under light shielding, and the mixture was aged and stirred for 3 hours while gradually raising the temperature to room temperature.

その後、反応液を減圧濃縮し、得られた油状濃縮液17
.31 gに10%Na2CO3水80m1を加え、室
温で3時間攪拌して閉環反応を行った。得られた液に濃
塩酸10m1を加えてpH1とした後、クロロホルムで
抽出、乾燥し、減圧濃縮した。
Thereafter, the reaction solution was concentrated under reduced pressure, and the obtained oily concentrate 17
.. 80 ml of 10% Na2CO3 water was added to 31 g, and the mixture was stirred at room temperature for 3 hours to perform a ring-closing reaction. After adding 10 ml of concentrated hydrochloric acid to the obtained liquid to adjust the pH to 1, the mixture was extracted with chloroform, dried, and concentrated under reduced pressure.

これによりDVL !190g  (収率99.0%、
 ′f!、度97.7%)を得た。これを蒸留精製する
ことにより高純度(99,5%、沸点108〜113℃
/ 20 maHg)のDVLが得られた。
With this, DVL! 190g (yield 99.0%,
'f! , 97.7%). This is purified by distillation to achieve high purity (99.5%, boiling point 108-113℃).
/20 maHg) was obtained.

実施例2゜ 攪拌機、温度計、冷却器を備えた四つロフラスコに、6
0%の水素化ナトリウム40.6gとトルエン50m1
を仕込み110℃で加熱攪拌した。これにイソ酪酸アリ
ルエステル100gを5時間かけて滴下し、滴下後、さ
らに3時間110℃で加熱攪拌した。
Example 2 In a four-loaf flask equipped with a stirrer, thermometer, and condenser, 6
40.6g of 0% sodium hydride and 50ml of toluene
The mixture was heated and stirred at 110°C. To this, 100 g of allyl isobutyric acid was added dropwise over 5 hours, and after the dropwise addition, the mixture was further heated and stirred at 110° C. for 3 hours.

反応終了後室温まで冷却し、メタノール18m1を加え
て未反応の水素化ナトリウムを分解させた。
After the reaction was completed, the mixture was cooled to room temperature, and 18 ml of methanol was added to decompose unreacted sodium hydride.

そして水200 mlを加えて不溶物を溶解した後、ト
ルエン層と水層とに分解した。
Then, 200 ml of water was added to dissolve insoluble matter, and then the mixture was decomposed into a toluene layer and an aqueous layer.

分なした水層を濃塩酸で酸性(pH1)にし、生じた油
層を回収した。水層をトルエンで抽出し、抽出したトル
エン溶液を先に回収した油層とを合わせ、濃縮後減圧蒸
留し、DMPを得1こ。
The separated aqueous layer was made acidic (pH 1) with concentrated hydrochloric acid, and the resulting oil layer was collected. The aqueous layer was extracted with toluene, the extracted toluene solution was combined with the previously collected oil layer, concentrated, and then distilled under reduced pressure to obtain 1 piece of DMP.

初留 〜65°c/2璽m11g     2.7g主
留  65〜73’c/ 2 mmtlg   85.
5g収率は85.5%(純度97.9%)であった。
First stop ~65°c/2mmtlg 2.7g Main stop 65~73'c/2mmtlg 85.
The yield of 5g was 85.5% (purity 97.9%).

このDMP 85.5gをヘキサン145 mlにン容
解し、室温で、1lBr 58.5gを含むヘキサン1
500m lの溶液に加え、そのまま室温で2時間撹拌
熟成させた。
85.5 g of this DMP was dissolved in 145 ml of hexane, and at room temperature, 1 ml of hexane containing 58.5 g of 1 lBr was dissolved.
The mixture was added to 500 ml of solution and left to age with stirring at room temperature for 2 hours.

これを実施例1と同様に10%NazCOt 680 
rnlで処理して閉環反応を行った。得られたDVLは
82.9g  (イソ酪酸アリルよりの収率82.9%
)(純度96.5%)であった。
This was mixed with 10% NazCOt 680 in the same manner as in Example 1.
A ring-closing reaction was performed by treatment with rnl. The obtained DVL was 82.9g (82.9% yield from allyl isobutyrate).
) (purity 96.5%).

実施例3゜ 実施例1の反応容器にヘキサン100 mlを仕込み、
0℃で1lBr 3.55gを吹込み吸収させた。この
溶液に0℃でDMP 5.0Ogをヘキサン10m1に
熔解したものを15分間かけて滴下し、その後徐々に室
温まで昇温しながら3時間攪拌熟成した。
Example 3゜Pour 100 ml of hexane into the reaction vessel of Example 1,
3.55 g of 1 lBr was blown and absorbed at 0°C. A solution prepared by dissolving 5.0 Og of DMP in 10 ml of hexane was added dropwise to this solution at 0° C. over 15 minutes, and then the mixture was stirred and aged for 3 hours while gradually raising the temperature to room temperature.

その後、実施例1と同様に、10%Na2COi水50
m1で処理し、DVL 4.97g (収率99.3%
、純度99.2%)を得た。
Thereafter, in the same manner as in Example 1, 50% of 10% Na2COi water was used.
4.97 g of DVL (yield 99.3%)
, purity 99.2%) was obtained.

実施例4゜ 実施例1の反応容器にヘキサン100 mlを仕込み、
−20°CでtlBr 4.5 gを吹込み吸収させた
。この溶液にDMP 7.OOgをヘキサン10m1に
熔解したものを一20°Cで一度に加えた。その後徐々
に室温まで昇温しながら3時間攪拌熟成した。
Example 4゜Pour 100 ml of hexane into the reaction vessel of Example 1,
4.5 g of tlBr was injected and absorbed at -20°C. Add DMP to this solution7. A solution of OOg in 10ml hexane was added all at once at -20°C. Thereafter, the mixture was stirred and aged for 3 hours while gradually raising the temperature to room temperature.

その後実施例1と同様に10%NazCOz水65m1
で処理し、DVL 6.73g (収率96.1%、純
度97.3%)を得た。
Thereafter, 65 ml of 10% NazCOz water was added as in Example 1.
6.73 g of DVL (yield 96.1%, purity 97.3%) was obtained.

実施例5゜ HBr 4.40gを含んだヘキサン100 mlに、
0℃。
Example 5 To 100 ml of hexane containing 4.40 g of HBr,
0℃.

遮光下で、0.15g/minでHBrを吹込みなから
DMPlogをヘキサン15m1に溶解したものを0.
5 ml/minの滴下速度で約60分間かけて添加し
た。滴下終了と同時にHBrの吹込みを止めて、0℃よ
り徐々に15℃まで昇温させながら45分間攪拌した。
Under light shielding, HBr was blown at 0.15 g/min, and DMPlog was dissolved in 15 ml of hexane.
It was added over about 60 minutes at a dropwise rate of 5 ml/min. At the same time as the dropwise addition was completed, the blowing of HBr was stopped, and the mixture was stirred for 45 minutes while gradually raising the temperature from 0°C to 15°C.

その後、実施例1と同様に10%NazCO3水80m
1で処理し、DVL 9.75g (収率97.5%、
純度97.2%)を得た。
Then, as in Example 1, 80 m of 10% NazCO3 water was added.
1, 9.75 g of DVL (yield 97.5%,
A purity of 97.2%) was obtained.

比較例1゜ 実施例1の反応容器に、DMPlog、ヘキサン100
 mlを仕込み、これに過酸ベンゾイル100 mgを
加え、攪拌しながら室温でHBrガスを0.15g/m
inで1時間吹込んだ。吹込み終了後2時間攪拌し熟成
した。その後、実施例1と同様に10%Na、CO。
Comparative Example 1゜Into the reaction vessel of Example 1, DMPlog, hexane 100
ml, add 100 mg of benzoyl peroxide to this, and add 0.15 g/m of HBr gas at room temperature while stirring.
I blew it in for 1 hour. After the blowing was completed, the mixture was stirred and aged for 2 hours. Then, as in Example 1, 10% Na and CO were added.

水10m1で処理し、閉環した。It was treated with 10 ml of water to close the ring.

DVLの収率は85.3%で五員環ラクトン8.5%。The yield of DVL was 85.3% and the five-membered ring lactone was 8.5%.

未知物質3.4%生成していた。3.4% of unknown substances were produced.

発明の効果 本発明の方法によると、次のような価れた効果を有する
Effects of the Invention The method of the present invention has the following advantages.

1)、原料として、イソ酪酸アリルエステルから容易に
得られるDMPを使用し、これより高収率でDVLが得
られるので、容易に安価に得られる。
1) DMP, which is easily obtained from isobutyric acid allyl ester, is used as a raw material, and DVL can be obtained in a higher yield than this, so it can be obtained easily and inexpensively.

2)、触媒を使用することなく、また五員環ラクトン等
の副生物が生成することなく製造し得られるため、副生
物、触媒及びその分解物を分離する必要がなく、精製か
節阜であり、その製造も容易である。
2) Since it can be produced without using a catalyst and without producing by-products such as five-membered ring lactones, there is no need to separate by-products, catalysts, and their decomposition products, making it easy to purify and save time. It is easy to manufacture.

Claims (1)

【特許請求の範囲】 1)臭化水素を溶媒に溶した溶液に2,2−ジメチル−
4−ペンテノイック酸を添加することによる臭化水素の
付加反応により2,2−ジメチル−5−ブロム吉草酸を
合成し、これをアルカリ処理して閉環することを特徴と
するα,α−ジメチル−δ−バレロラクトンの製造法。 2)2,2−ジメチル−4−ペンテノイック酸が、イソ
酪酸のアリルエステルを水素化ナトリウムまたは水素化
リチウムの存在下で加熱処理することにより合成された
ものである特許請求の範囲第1項記載のα,α−ジメチ
ル−δ−バレロラクトンの製造法。
[Claims] 1) 2,2-dimethyl-
α,α-dimethyl-, which is characterized in that 2,2-dimethyl-5-bromovaleric acid is synthesized by an addition reaction of hydrogen bromide by adding 4-pentenoic acid, and this is treated with an alkali to undergo ring closure. Method for producing δ-valerolactone. 2) 2,2-dimethyl-4-pentenoic acid is synthesized by heat-treating allyl ester of isobutyric acid in the presence of sodium hydride or lithium hydride, according to claim 1. A method for producing α,α-dimethyl-δ-valerolactone.
JP21281586A 1985-10-17 1986-09-11 Production of alpha,alpha-dimethyl-delta-valerolactone Pending JPS6368582A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP21281586A JPS6368582A (en) 1986-09-11 1986-09-11 Production of alpha,alpha-dimethyl-delta-valerolactone
ES86114272T ES2016553B3 (en) 1985-10-17 1986-10-15 A METHOD TO PRODUCE ALPHA, ALPHA-DIMETHYL-DELTA-VALEROLACTONE.
DE8686114272T DE3673492D1 (en) 1985-10-17 1986-10-15 METHOD FOR PRODUCING ALPHA, ALPHA-DIMETHYL-DELTA-VALEROLACTONE.
EP86114272A EP0219117B1 (en) 1985-10-17 1986-10-15 A method for producing alpha,alpha-dimethyl-delta-valerolactone
US06/919,641 US4734511A (en) 1985-10-17 1986-10-16 Method for producing α,α-dimethyl-Δ-valerolactone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21281586A JPS6368582A (en) 1986-09-11 1986-09-11 Production of alpha,alpha-dimethyl-delta-valerolactone

Publications (1)

Publication Number Publication Date
JPS6368582A true JPS6368582A (en) 1988-03-28

Family

ID=16628815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21281586A Pending JPS6368582A (en) 1985-10-17 1986-09-11 Production of alpha,alpha-dimethyl-delta-valerolactone

Country Status (1)

Country Link
JP (1) JPS6368582A (en)

Similar Documents

Publication Publication Date Title
Cava et al. Condensed cyclobutane aromatic compounds. XXVI. Benzocyclobutadienoquinone: synthesis and simple transformations
Mukhopadhyay et al. Cobalt (II)-catalyzed conversion of allylic alcohols/acetates to allylic amides in the presence of nitriles
JPS6213353B2 (en)
JPS62161740A (en) Production of phenylpropionic acid derivative
US3816525A (en) Process for oxidation of vicinal diol groups into carboxyl groups with oxygen
US4734511A (en) Method for producing α,α-dimethyl-Δ-valerolactone
JPS6368582A (en) Production of alpha,alpha-dimethyl-delta-valerolactone
US3595878A (en) Methoxyphenyl- and phenyl-dialkyl-alpha-pyrone nitriles
JPH0578541B2 (en)
JPH0633248B2 (en) Method for producing 2-alkene-5-olides
JPH0565498B2 (en)
JPS6121474B2 (en)
SU876058A3 (en) Method of producing furocuamarine
JPS63190883A (en) Production of alpha,alpha-dimethyl-delta-valerolactone
JP3254746B2 (en) Terminal acetylene compound and method for producing the same
GB2051067A (en) Process for the Preparation of 3,3-dimethyl-allyl Alcohol
JPH029013B2 (en)
JPS63170335A (en) Synthesis of dl-cis-chrysanthemumic acid
JPS61171450A (en) Production of cis-jasmone
JPS6122045A (en) Production of biphenyltetracarboxylic acid
SU585151A1 (en) Method of preparing a-chlorketones
JP2542843B2 (en) Novel norbornane derivative and method for producing the same
SU1754704A1 (en) Method of 2,4,6-trimethylisophthalic aldehyde synthesis
JPS5918380B2 (en) Method for producing phenooxymethyl esters
JPH0578540B2 (en)