JPS636847Y2 - - Google Patents

Info

Publication number
JPS636847Y2
JPS636847Y2 JP10051082U JP10051082U JPS636847Y2 JP S636847 Y2 JPS636847 Y2 JP S636847Y2 JP 10051082 U JP10051082 U JP 10051082U JP 10051082 U JP10051082 U JP 10051082U JP S636847 Y2 JPS636847 Y2 JP S636847Y2
Authority
JP
Japan
Prior art keywords
slit
moving
axis
movement
holders
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10051082U
Other languages
Japanese (ja)
Other versions
JPS595869U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP10051082U priority Critical patent/JPS595869U/en
Publication of JPS595869U publication Critical patent/JPS595869U/en
Application granted granted Critical
Publication of JPS636847Y2 publication Critical patent/JPS636847Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Electron Tubes For Measurement (AREA)

Description

【考案の詳細な説明】 本考案はエネルギーアナライザ等に使用される
スリツト可変装置に関する。
[Detailed Description of the Invention] The present invention relates to a slit variable device used in energy analyzers and the like.

電子顕微鏡においては、しばしば試料透過電子
線のエネルギー分析が行われる。第1図はこのよ
うなエネルギー分析の概略を示すもので、薄膜状
試料1に細く絞られた電子線2を照射し、その透
過電子線3をこの静電極からなるアナライザ4に
導くとアナライザ4の出射方向Zに垂直なxy平
面のy方向に沿つて電子線3が3a,3b,3c
のように分離される。このy方向におる電子線強
度の分布は、第2図のようなスペクトルとなる
が、このスペクトルを得るには、xy平面のx方
向に平行なスリツト装置5とその後段に電子検出
器6を設け、エネルギアナライザ4に印加される
アナライザ電圧Eを掃引し、該掃引電圧Eに対す
る検出器6の出力を記録表示すればよい。この時
微細なスペクトルを得るにはスリツト装置5には
スリツト間隔5aをなるべく小さくしなければな
らない。一方、第2図中のスペクトルピークPに
注目し、このピーク波形のエネルギー幅△Eに対
応する比較的大きなスリツト幅となるようなスリ
ツト装置5を選び、エネルギアナライザ4の印加
電圧をE1に設定してスペクトルPに対応する電
子線がスリツト装置5を通過させるようにした状
態で電子線2による試料1の走査を行い、該走査
と同期したCRT(図示しない)に検出器6の出力
を供給すればスペクトルPを生じる物質構造の試
料内の分布が観察できる。
In an electron microscope, energy analysis of an electron beam transmitted through a sample is often performed. FIG. 1 shows an outline of such energy analysis, in which a thin film sample 1 is irradiated with a narrowly focused electron beam 2, and the transmitted electron beam 3 is guided to an analyzer 4 made of this electrostatic electrode. The electron beam 3 is 3a, 3b, 3c along the y direction of the xy plane perpendicular to the emission direction Z of
It is separated as follows. The distribution of the electron beam intensity in the y direction becomes a spectrum as shown in FIG. 2, but in order to obtain this spectrum, a slit device 5 parallel to the x direction of the xy plane and an electron detector 6 are installed in the subsequent stage. The analyzer voltage E applied to the energy analyzer 4 may be swept, and the output of the detector 6 with respect to the sweep voltage E may be recorded and displayed. At this time, in order to obtain a fine spectrum, the slit interval 5a of the slit device 5 must be made as small as possible. On the other hand, paying attention to the spectrum peak P in FIG. 2, select a slit device 5 that has a relatively large slit width corresponding to the energy width ΔE of this peak waveform, and set the applied voltage of the energy analyzer 4 to E1. The sample 1 is scanned by the electron beam 2 while the electron beam corresponding to the spectrum P is set to pass through the slit device 5, and the output of the detector 6 is sent to a CRT (not shown) that is synchronized with the scanning. If supplied, the distribution of the material structure that produces the spectrum P within the sample can be observed.

以上のように電子顕微鏡におけるエネルギアナ
ライザの使用方法には二通りあり、スリツト装置
は夫々の使用方法に応じて予め異なつた幅のスリ
ツトを2枚或るいは3枚用意し、測定毎に交換し
て用いていた。しかしながら、スリツト幅の固定
されたものを選択して用いる場合には、任意のス
リツト幅が得られず測定条件の僅かな変化を打ち
消すためにスリツト幅を微少に増減させることは
勿論できなかつた。
As mentioned above, there are two ways to use an energy analyzer in an electron microscope, and the slit device has two or three slits of different widths prepared in advance depending on the method of use, and they are replaced every time a measurement is made. I was using it. However, when selecting and using a slit with a fixed width, it is impossible to obtain an arbitrary slit width, and it is of course impossible to slightly increase or decrease the slit width to cancel out slight changes in measurement conditions.

本考案はこのような問題を解決し、スリツト幅
全域にわたつて精度の高い微調整が行え、大きな
スリツト幅では粗調整が行えるような可変スリツ
ト装置を提供することを目的とするもので、軸Z
に垂直なxy平面内に設けられた二枚のスリツト
板と、各スリツト板のスリツト形成用のスリツト
辺が常にx方向と平行を保ちつつそのy方向位置
を規制する二つのスリツトホルダと、該両ホルダ
と当接しx方向に移動することによつて前記各ス
リツト辺のy方向間隔Sを可変するための移動軸
とを備えた装置において、第1移動軸の移動量△
xに対する前記各スリツト辺のY方向の移動量△
y1と、第2移動軸の移動量△xに対する前記各ス
リツト辺のY方向の移動量△y2が異なるよう構成
したことを特徴としている。
The purpose of the present invention is to solve these problems and provide a variable slit device that can perform highly accurate fine adjustment over the entire slit width and coarse adjustment for large slit widths. Z
two slit plates provided in the xy plane perpendicular to the slit plate, two slit holders that regulate the position of the slit in the y direction while keeping the slit side of each slit plate always parallel to the x direction; In a device comprising a moving axis for varying the distance S in the y direction between the slit sides by contacting the holder and moving in the x direction, the amount of movement Δ of the first moving axis is
Amount of movement of each slit side in the Y direction with respect to x △
y 1 and the amount of movement Δy 2 of each slit side in the Y direction relative to the amount of movement Δx of the second movement axis are different.

以下本考案の一実施例を添付図面に基づき詳述
する。
An embodiment of the present invention will be described below in detail with reference to the accompanying drawings.

第3図は本考案の一実施例を示す断面図で、図
中10は例えば電子顕微鏡の鏡筒であり、この鏡
筒10には気密を保つてスリツト保持体11が貫
通している。この保持体11は鏡筒10に固定し
てもよいが、図示外の駆動機構を用いて電子線軸
Zと直角な平面で移動可能に構成してもよい。該
保持体11の鏡筒内部には板バネ12a1,12a2
及び12b1,12b2の夫々一端が固定され、各対
をなす板バネの他端にはホルダ13a,13bが
夫々固定されている。このホルダ13aにはスリ
ツト板14aが固着され、又13bにはスリツト
板14bが固着され両スリツト板のスリツト辺の
間隙によつて微小スリツトSを形成する。
FIG. 3 is a sectional view showing an embodiment of the present invention. In the figure, 10 is a lens barrel of, for example, an electron microscope, and a slit holder 11 passes through the lens barrel 10 in an airtight manner. This holder 11 may be fixed to the lens barrel 10, but it may also be configured to be movable in a plane perpendicular to the electron beam axis Z using a drive mechanism not shown. Inside the lens barrel of the holder 11 are plate springs 12a 1 , 12a 2 .
12b 1 and 12b 2 are fixed at one end, and holders 13a and 13b are fixed at the other end of each pair of leaf springs. A slit plate 14a is fixed to the holder 13a, and a slit plate 14b is fixed to the holder 13b, and a minute slit S is formed by the gap between the slit sides of both slit plates.

尚、第4図はx軸方向からスリツト板を眺めた
略図である。15は保持体11内に気密を保つて
移動可能に配置された第1移動軸で第5図に詳細
に示す如く、真空内先端部15aは、緩かな傾斜
Aのテーパ又は勾配が形成されている。18は保
持体11内に気密を保つて移動可能に配置された
第2移動軸で真空内先端部18aは急峻な傾斜B
のテーパ又は勾配が形成され、そのいずれかの傾
斜面はホルダ13a,13bの端部に接してい
る。尚、第1移動軸15と第2移動軸18との位
置関係は、第6図により詳細に示されている。該
第1移動軸15及び第2移動軸18の他の端部に
は、鍔部15b及び鍔部18bが形成され、該鍔
部15b及び鍔部18bと保持体11との間にコ
イルバネ16及びコイルバネ19が挿入され、第
1移動軸15及び第2移動軸18を鏡筒外に向け
て常に押すように構成されている。17は第1移
動軸15を移動させるための第1制御棒であり、
20は第2移動軸18を移動させるための第2制
御棒で、該制御棒17,20の先端は夫々鍔部1
5b、鍔部18bの端面に当接し、該制御棒1
7,20は図示外の駆動装置によつて移動できる
よう構成されている。
Note that FIG. 4 is a schematic view of the slit plate viewed from the x-axis direction. Reference numeral 15 denotes a first moving shaft that is movably arranged in an airtight manner within the holder 11, and as shown in detail in FIG. There is. Reference numeral 18 denotes a second moving shaft that is movably arranged in an airtight manner within the holder 11, and the tip portion 18a in the vacuum has a steep slope B.
A taper or slope is formed, and either of the slopes is in contact with the ends of the holders 13a, 13b. The positional relationship between the first moving shaft 15 and the second moving shaft 18 is shown in more detail in FIG. A flange 15b and a flange 18b are formed at the other ends of the first moving shaft 15 and the second moving shaft 18, and a coil spring 16 and a flange 18b are formed between the holder 11 and the flange 15b and 18b. A coil spring 19 is inserted to constantly push the first moving shaft 15 and the second moving shaft 18 toward the outside of the lens barrel. 17 is a first control rod for moving the first moving shaft 15;
Reference numeral 20 denotes a second control rod for moving the second moving shaft 18, and the tips of the control rods 17 and 20 are connected to the flanges 1, respectively.
5b, comes into contact with the end surface of the flange 18b, and the control rod 1
7 and 20 are configured to be movable by a drive device not shown.

以上の構成において、図示外の駆動装置により
制御棒17又は20をM方向に移動させると、そ
れに当接する移動軸15又は18は軸方向に移動
する。その結果、先端部15a又は18aが板バ
ネ12a1,12a2,12b1,12b2に抗してホル
ダ13a,13bを押し開きスリツトSの幅は広
くなる。又該制御棒17又は20をN方向に移動
させると、コイルバネ16又は19により移動軸
15又は18は右方(N方向)に押し戻されホル
ダ13a,13bの間隙が狭くなり、従つてスリ
ツトSの幅は狭くなる。第7図は微調整用の第1
移動軸15が移動する場合のホルダ13a,13
bとの接触状態を示しており、本実施例において
は先端部15aは傾斜Aで形成されているため、
該移動軸15を移動させた場合は傾斜Aに接した
ブロツク13a,13bが押し開かれスリツト幅
Sが変化する。又第8図は粗調整用の第2移動軸
18が移動する場合のホルダ13a,13bとの
接触状態を示しており、傾斜Bによつてスリツト
幅Sが変化する。
In the above configuration, when the control rod 17 or 20 is moved in the M direction by a drive device not shown, the moving shaft 15 or 18 in contact therewith is moved in the axial direction. As a result, the tip portion 15a or 18a pushes the holders 13a, 13b open against the leaf springs 12a 1 , 12a 2 , 12b 1 , 12b 2 and the width of the slit S becomes wider. When the control rod 17 or 20 is moved in the N direction, the moving shaft 15 or 18 is pushed back to the right (N direction) by the coil spring 16 or 19, and the gap between the holders 13a and 13b becomes narrower, so that the slit S The width becomes narrower. Figure 7 shows the first
Holders 13a, 13 when the moving shaft 15 moves
In this embodiment, the tip 15a is formed with an inclination A.
When the moving shaft 15 is moved, the blocks 13a and 13b in contact with the slope A are pushed open and the slit width S changes. Further, FIG. 8 shows the state of contact with the holders 13a and 13b when the second moving shaft 18 for rough adjustment moves, and the slit width S changes depending on the inclination B.

第9図は本実施例の第1移動軸15又は第2移
動軸18が移動した場合の傾斜A又はBによるス
リツト幅の変化を示したグラフである。いま、第
1移動軸15が一定の移動量△xに対してはホル
ダ13a,13bは△y1/2だけ移動し、従つて
スリツト幅Sも△S1=2△y1/2だけ変化するの
に対し、第2移動軸18が一定の移動量△xに対
してはホルダ13a,13bは△y2/2だけ移動
し、従つてスリツト幅Sも△S2=2△y2/2だけ
変化する。ところで、第9図に示す如く緩かな傾
斜Aを、第1移動軸15の中心軸に対し例えば
A゜として、急峻な傾斜Bを第2移動軸18の中
心軸に対して例えば△S2=2△S1を満足するB゜
とすることもできる。即ち、該移動軸15及び1
8の移動精度や移動速度が一定であるとすると、
傾斜Aによつて傾斜Aの全域にわたつて高精度の
微調整が可能となり、傾斜Bによつて粗調整では
あるがスリツトの可変速度を速くして操作するこ
とが可能となる。従つて、スリツト幅の可変範囲
が広い場合、例えば200μmより20μmに変化させ
たい場合には、200μmより50μmまでは粗調整機
能(第2移動軸18)で短時間で設定し、50μm
から20μmまでは、微調整機能(第1移動軸15)
を使用するとこによつてスリツト幅の可変を精度
良く行うことができる。又、このように二本の移
動軸を微調整専用の移動軸と粗調整専用の移動軸
として使用すれば、微調整用移動軸をあるスリツ
ト幅に固定したままの状態で粗調整を行うことが
できるので、粗調整によるスリツト使用後に直ち
に従前の固定スリツト幅に再現性よく戻すことが
可能となる。
FIG. 9 is a graph showing the change in the slit width due to the inclination A or B when the first moving axis 15 or the second moving axis 18 of this embodiment is moved. Now, for a constant movement amount Δx of the first moving axis 15, the holders 13a and 13b move by Δy 1 /2, and therefore the slit width S also changes by ΔS 1 =2Δy 1 /2. On the other hand, when the second moving axis 18 moves by a constant amount Δx, the holders 13a and 13b move by Δy 2 /2, and therefore the slit width S also becomes ΔS 2 =2Δy 2 / Only 2 changes. By the way, as shown in FIG.
As A°, the steep inclination B may be set to B° that satisfies, for example, ΔS 2 =2ΔS 1 with respect to the central axis of the second moving shaft 18. That is, the moving axes 15 and 1
Assuming that the movement accuracy and movement speed of 8 are constant,
The slope A allows fine adjustment with high accuracy over the entire area of the slope A, and the slope B allows for coarse adjustment but at a faster variable speed of the slit. Therefore, if the slit width has a wide variable range, for example, if you want to change it from 200 μm to 20 μm, you can set it from 200 μm to 50 μm in a short time using the coarse adjustment function (second movement axis 18), and then change it to 50 μm.
Fine adjustment function (first moving axis 15) from to 20μm
By using this, the slit width can be varied with high precision. In addition, if the two moving axes are used as a moving axis for fine adjustment and a moving axis for coarse adjustment in this way, coarse adjustment can be performed while the fine adjustment moving axis remains fixed at a certain slit width. Therefore, it is possible to immediately return to the previous fixed slit width with good reproducibility after using the slit by rough adjustment.

尚、本考案は以上の実施例装置に限定されるも
のではなく、本実施例においては第1移動軸と第
2移動軸を同一方向から移動することを考慮して
左右に設けたが、第1移動軸と第2移動軸を対向
させても良く、又各移動軸先端部の傾斜は分析目
的に合せて決定してもよい。
Note that the present invention is not limited to the device of the above embodiment, and in this embodiment, the first moving axis and the second moving axis are provided on the left and right in consideration of moving from the same direction. The first movement axis and the second movement axis may be opposed to each other, and the inclination of the tip of each movement axis may be determined depending on the purpose of analysis.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はエネルギ分析器の概略図、第2図は電
子線強度とエネルギの関係を示す図、第3図は本
考案の一実施例を示す断面図、第4図はスリツト
板の断面略図、第5図は各移動軸の先端部の拡大
図、第6図は各移動軸の配置図、第7図は第1移
動軸が移動する場合の状態を示す図、第8図は第
2移動軸が移動する場合の状態を示す図、第9図
は各移動軸が移動した場合のスリツト幅の変化を
示す図である。 1……試料、2……電子線、3……透過電子
線、4……アナライザ、5……スリツト装置、6
……検出器、10……鏡筒、11……スリツト保
持体、12a1,12a2,12b1,12b2……板バ
ネ、13a,13b……ホルダ、14a,14b
……スリツト板、15……第1移動軸、16……
コイルバネ、17……第1制御棒、18……第2
移動軸、19……コイルバネ、20……第2制御
棒。
Fig. 1 is a schematic diagram of an energy analyzer, Fig. 2 is a diagram showing the relationship between electron beam intensity and energy, Fig. 3 is a cross-sectional view showing an embodiment of the present invention, and Fig. 4 is a schematic cross-sectional diagram of a slit plate. , FIG. 5 is an enlarged view of the tip of each moving axis, FIG. 6 is a layout diagram of each moving axis, FIG. 7 is a diagram showing the state when the first moving axis moves, and FIG. 8 is an enlarged view of the second moving axis. FIG. 9 is a diagram showing the state when the moving axes are moved. FIG. 9 is a diagram showing the change in the slit width when each moving axis is moved. DESCRIPTION OF SYMBOLS 1... Sample, 2... Electron beam, 3... Transmission electron beam, 4... Analyzer, 5... Slit device, 6
...detector, 10 ... lens barrel, 11 ... slit holder, 12a 1 , 12a 2 , 12b 1 , 12b 2 ... leaf spring, 13a, 13b ... holder, 14a, 14b
...Slit plate, 15...First movement axis, 16...
Coil spring, 17...first control rod, 18...second
Moving axis, 19...Coil spring, 20...Second control rod.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 軸Zに垂直なxy平面内に設けられた二枚のス
リツト板と、各スリツト板のスリツト形成用のス
リツト辺が常にx方向と平行を保ちつつそのy方
向位置を規制する二つのスリツトホルダと、該両
ホルダと当接しx方向に移動することによつて前
記各スリツト辺のy方向間隔Sを可変するための
第1と第2の移動軸とを備え、該第1移動軸の移
動量△xに対する前記各スリツト辺のY方向の移
動量△y1と、該第2移動軸の移動量△xに対する
前記各スリツト辺のY方向の移動量△y2が異なる
よう構成したことを特徴とする可変スリツト装
置。
Two slit plates provided in the xy plane perpendicular to the axis Z, two slit holders that regulate the position of the slit in the y direction while always keeping the slit side of each slit plate parallel to the x direction, First and second moving axes are provided for varying the distance S in the y direction between the slit sides by contacting both the holders and moving in the x direction, and the amount of movement Δ of the first moving axis is provided. A moving amount Δy 1 of each of the slit sides in the Y direction with respect to x and a moving amount Δy 2 of each of the slit sides in the Y direction with respect to the moving amount Δx of the second movement axis are configured to be different. Variable slit device.
JP10051082U 1982-07-02 1982-07-02 variable slit device Granted JPS595869U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10051082U JPS595869U (en) 1982-07-02 1982-07-02 variable slit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10051082U JPS595869U (en) 1982-07-02 1982-07-02 variable slit device

Publications (2)

Publication Number Publication Date
JPS595869U JPS595869U (en) 1984-01-14
JPS636847Y2 true JPS636847Y2 (en) 1988-02-26

Family

ID=30237739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10051082U Granted JPS595869U (en) 1982-07-02 1982-07-02 variable slit device

Country Status (1)

Country Link
JP (1) JPS595869U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2993682A1 (en) * 2014-09-04 2016-03-09 Fei Company Method of performing spectroscopy in a transmission charged-particle microscope

Also Published As

Publication number Publication date
JPS595869U (en) 1984-01-14

Similar Documents

Publication Publication Date Title
US6713760B2 (en) Analysis of semiconductor surfaces by secondary ion mass spectrometry and methods
DE69019412T2 (en) Absorption microscopy and / or spectroscopy with scanning microscopy control.
DE69122343T2 (en) Atomic force microscopy
DE69232339T2 (en) Cantilever unit and atomic force microscope, magnetic force microscope, as well as reproduction and information processing apparatus with it
DE69526688T2 (en) High resolution scanning electron spectroscopy with imaging
DE69406739T2 (en) Electron beam device
US20060237639A1 (en) Scanning probe microscope assembly and method for making spectrophotometric, near-filed, and scanning probe measurements
EP0155225A2 (en) Method and devices for the analysis of photosensitive materials by means of microwaves
US6566653B1 (en) Investigation device and method
DE2358590C3 (en) Atomic absorption spectrophotometer
US3881108A (en) Ion microprobe analyzer
US4698502A (en) Field-emission scanning auger electron microscope
EP2067016A1 (en) Device for scanning a sample surface covered with a liquid
US6580069B1 (en) Atom probe
DE69020425T2 (en) Surface potential measuring system.
JPS636847Y2 (en)
DE19633441C1 (en) Method and device for accurate mass determination in a time-of-flight mass spectrometer
JPH0510822B2 (en)
JPS6242444Y2 (en)
US5015862A (en) Laser modulation of LMI sources
Picard et al. Operational features of a new electron diffraction unit
JPH0758297B2 (en) Non-contact potential measuring device
DE4331002A1 (en) Laser mass spectrometer
JP2550023B2 (en) Liquid metal ion probe microscope
US6049078A (en) Transmitting tip for scanning tunneling microscopy system