JPS6368142A - Ultrasonic diagnostic apparatus - Google Patents

Ultrasonic diagnostic apparatus

Info

Publication number
JPS6368142A
JPS6368142A JP61212670A JP21267086A JPS6368142A JP S6368142 A JPS6368142 A JP S6368142A JP 61212670 A JP61212670 A JP 61212670A JP 21267086 A JP21267086 A JP 21267086A JP S6368142 A JPS6368142 A JP S6368142A
Authority
JP
Japan
Prior art keywords
transducer
transmitting
sound
transducers
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61212670A
Other languages
Japanese (ja)
Inventor
高見沢 欣也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61212670A priority Critical patent/JPS6368142A/en
Priority to US07/075,603 priority patent/US4821574A/en
Priority to EP87306498A priority patent/EP0256686A1/en
Publication of JPS6368142A publication Critical patent/JPS6368142A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ultra Sonic Daignosis Equipment (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) こO発明は超音波を用いで生体内の情報を得る@音波診
断装置に係り、特に生体内での局所的な超音波音速を計
測する機能を有した超音波診断装置に関する。
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Application Field) This invention relates to a @sonic diagnostic device that uses ultrasound to obtain information inside a living body, and in particular, it relates to a ultrasound diagnostic device that uses ultrasound to obtain information inside a living body. The present invention relates to an ultrasonic diagnostic device having a function of measuring the speed of sound waves.

(従来の技術) 超音波を用いた診断法は被険者に負担をかけずに軟部組
織O診断ができ、しかも無浸襲であるという利点を持っ
ており、近年の高速走査畏t2)進歩によって急速に普
及してきた。この超音波診断法はパルス反射法であるた
め、透過法と比較して操作性に優れ、適用され得る診断
部位示あまり限定されないことも広く普及した理由に挙
げられる。
(Prior art) Diagnostic methods using ultrasound have the advantage of being able to diagnose soft tissues without placing any burden on the patient, and are non-invasive, and have the benefit of recent advances in high-speed scanning. It has rapidly spread due to Since this ultrasonic diagnostic method is a pulse reflection method, it is superior in operability compared to the transmission method, and the diagnostic sites to which it can be applied are not so limited are also cited as reasons for its widespread use.

このような超音波診断法に対して最近1画家の定量化の
要求が高まっている0画像の定量化は。
For such ultrasonic diagnostic methods, there has recently been an increasing demand for quantification of 0 images.

特に臓器疾患の良性、悪性の鑑別診断において有効と考
えられている。しかしなから、従来つパルス反射法では
反射波強度は生体内組織間の音響インピーダンス(@度
と音速の積)の差のみならず反射面の形状、反射面に対
する超音波ビームの入射角、生体中での超音波吸収量等
にも依存しており、tたこれらの情報を分離して検出す
ることが困難であることから1画像の定量化は極めて難
しがりた。
It is considered particularly effective in differential diagnosis of benign and malignant organ diseases. However, in the conventional pulse reflection method, the reflected wave intensity is determined not only by the difference in acoustic impedance (the product of degree and sound speed) between tissues in the body, but also by the shape of the reflecting surface, the angle of incidence of the ultrasound beam on the reflecting surface, and the Quantification of a single image has been extremely difficult because it is difficult to separate and detect these pieces of information.

一方、音波のみを計測する方法は従来、透過蟹超f波C
Tにおいて行なわれており、未だ研究段階ではあるが性
能が徐々に向上しつつある(文献: Greenlea
f、J、F、et、al、 Acoustical H
olography。
On the other hand, the conventional method of measuring only sound waves is transmitted ultra-f-wave C.
Although it is still in the research stage, its performance is gradually improving (Reference: Greenlea
f, J, F, et, al, Acoustical H
olography.

vol、61975)*しかし、透過法は超音彼伝wi
杼路に骨やガスのある部位には適用できないため、乳腺
検査等ごく限られた領域でしかIll!用できないとい
う大きな欠点を有している。
vol, 61975) *However, the transmission method is
It cannot be applied to areas with bones or gas in the shaft, so it can only be used in very limited areas such as mammary gland examinations. The major drawback is that it cannot be used.

一方、パルス反射法で1器内の音速を図る方法が近年考
案されている。第7図は赤松等によって報告された肝蝋
内音速測定法を示したものである。
On the other hand, a method has been devised in recent years to measure the sound velocity within a single device using the pulse reflection method. Figure 7 shows the method for measuring the sound velocity in liver wax reported by Akamatsu et al.

これは強い指向性を持った2つの超音波トランスデユー
サ51$52を各々送信用、受信用として用い、送信用
超音波トランスデユーサ51から送信された超音波が各
トランスデユーサ51s52■中心軸ppl、QQIの
交点0付近にて反射し。
This uses two ultrasonic transducers 51$52 with strong directivity for transmission and reception, respectively, and the ultrasonic waves transmitted from the transmitting ultrasonic transducer 51 are centered on each transducer 51s52. It is reflected near the intersection 0 of the axes ppl and QQI.

受信用超音波トランスデユーサ52に到達して受信され
るまでの時間を測定し、この時間と各トランスデユーサ
51.52間の巨魁Xおよび角度θから算出される予想
伝搬距離とから、肝臓内の平均音速を求める方法である
The time it takes for the ultrasonic wave to reach the receiving ultrasonic transducer 52 and to be received is measured, and from this time and the expected propagation distance calculated from the distance X and angle θ between the transducers 51 and 52, the liver This is a method to find the average sound speed within.

この方法は肝臓内全体が一様な音!#特性を持つ例えば
肝硬変などのび慢性疾患の診断には有効と考えられるが
、得られる音速は伝搬経路内での平均音速であるため1
局部的な疾患には適用できなi−また、肝臓内部とは音
速の異なる表皮あるいは脂肪層をも超音波が伝搬するた
めbit速の測定誤差が大きいという問題がある。
This method produces a uniform sound throughout the liver! It is considered to be effective in diagnosing chronic diseases such as liver cirrhosis that have # characteristics, but the obtained sound speed is the average sound speed within the propagation path, so 1
It cannot be applied to localized diseases. Furthermore, since the ultrasonic waves propagate through the epidermis or fat layer, which has a different sound speed than the inside of the liver, there is a problem that the measurement error in bit speed is large.

このような問題に対して本発明者はパルス反射法による
局所音速測定法について先に提案をおこなりた。
In response to such problems, the present inventor previously proposed a local sound velocity measurement method using a pulse reflection method.

第3図はその原理図を示すもので、送信用トランスデユ
ーサ41.44と受信用トランスデユーサ42.43を
図の如く体表面に配置し送受信超f波ビームで囲まれた
領域ABCDにおける音速Coの推定をおこなう、トラ
ンスデユーサ41から送信されたW波がAおよびBにあ
る散乱体で散乱しトランスデユーサ42および43で受
信されるまでの時間t11* tlmはそれぞれで示さ
れる。同様にしてトランスデユーサ44から送信された
音速がDおよびCで敗乱しトランスデユーサ42および
43で受信される場合の伝搬時間を諺11tllは ゛・・−’HC+“・・+(AD+CD)/Co  −
,2゜1、、−1.C+1.C となる、ただしI  ’GAItKAI’FC1tHC
はそれぞれGA、EA、PC,HCICおけル伝ffi
時間−1する。ここで送信ビームの入射角をθoEF−
do  とすれば伝搬時間Δtは Δt−t、、−t、、+t、、−t、、−(AB+BC
+AD+CD)/C。
Figure 3 shows a diagram of its principle, in which transmitting transducers 41, 44 and receiving transducers 42, 43 are placed on the body surface as shown in the figure, and the region ABCD surrounded by the transmitted and received ultra-f-wave beams is The time t11*tlm from when the W wave transmitted from the transducer 41 is scattered by the scatterers at A and B until it is received by the transducers 42 and 43, during which the sound speed Co is estimated, is shown in each case. Similarly, when the sound velocity transmitted from the transducer 44 is disrupted by D and C and received by the transducers 42 and 43, the propagation time is 11tll. /Co-
,2゜1,,-1. C+1. C, but I 'GAItKAI'FC1tHC
are GA, EA, PC, HCIC respectively.
Time -1. Here, the incident angle of the transmitted beam is θoEF−
do, then the propagation time Δt is Δt-t,,-t,,+t,,-t,,-(AB+BC
+AD+CD)/C.

すなわち関心領域における音速Co は伝搬時間差Δt
を求めることにより次式から求めることができる。
That is, the sound speed Co in the region of interest is the propagation time difference Δt
It can be determined from the following equation by determining .

しかるに上記第3図に示す局所音速測定においては送信
受信それぞれ2ケのトランスデユーサを体表に配置し、
この特待られる4種の伝搬時間tll!+wtlsj□
から関心領域内の音速を求めに際し。
However, in the local sound velocity measurement shown in Figure 3 above, two transducers are placed on the body surface for each transmitter and receiver.
These four types of special propagation times tll! +wtlsj□
When finding the speed of sound in the region of interest from

送受信トランスデユーサと関心領域の途中にビームの進
行を阻止するような媒9ietが存在する場合には前記
4つO伝搬時間のうち一部は計測不可能となり1局所音
速を正確に求めることができなくなるとhう問題がある
If there is a medium between the transmitting/receiving transducer and the region of interest that prevents the beam from proceeding, a portion of the 4O propagation times cannot be measured, making it impossible to accurately determine the local sound velocity. There is a problem when you can't do it anymore.

(発明が解決しようとする問題点) このように従来■製置にあっては送受信トランスデユー
サと関心領域の途中にビームの進行を阻止するような媒
質が存在する場合には局所音速を正確に求めることがで
きなくなるという問題がある。
(Problem to be solved by the invention) In this way, in conventional manufacturing, if there is a medium between the transmitting/receiving transducer and the region of interest that blocks the beam, it is difficult to accurately determine the local sound velocity. The problem is that it is no longer possible to ask for

本発明はこのような問題点の解決を目的としてなされた
ものである。
The present invention has been made to solve these problems.

〔発明の構成〕[Structure of the invention]

(問題点を解決する手段) 本発明は2ケの送信用トランスデユーサと2ケの受信用
トランスデユーサを組み合わせで得られる4種類の体内
反射信号を加算合成した後で波形のピーク位置ちるいは
重心等を算出することによって伝搬時間を計測すること
を特徴とする。
(Means for Solving Problems) The present invention calculates the peak position of the waveform after adding and synthesizing four types of internally reflected signals obtained by combining two transmitting transducers and two receiving transducers. It is characterized by measuring the propagation time by calculating the center of gravity or the like.

(作用) 4つの受信9号を金穴した後で伝搬時間を算出するため
算出不能となる確率は大幅に減少し常に安定した局所音
速計測が可能となる。また木繊は体内の不均質性のため
、超音波ビームが極度に拡散した場合においても、正確
な音速を求めるため■有効な手段となり得る。
(Function) Since the propagation time is calculated after the four receivers No. 9 are detected, the probability that the calculation will not be possible is greatly reduced, and stable local sound velocity measurement is always possible. Furthermore, due to the inhomogeneity of wood fiber inside the body, it can be an effective means for determining the accurate speed of sound even when the ultrasonic beam is extremely diffused.

(実施例) 実施例についで述べる前に既述した従来法における問題
点について具体例を用すで説明する6例えば第4図に示
すように送信用トランスデユーサ在する場合には第5図
(a)に示すような受信イg号P亀(t)Pa(l P
g(t) Pa(t)が得られる。ただしp+(t)は
GAE  P、(t)はGBF  P、(t)はHCP
’  P、[t)はHDE  を伝搬し、受信された波
形を示す、このときの伝搬時間’11 ttt ill
 tllを重心から算出しようとすれば となるが、媒質450九め0点あるいはD点からの散乱
波は受信困難となシt、t□を正確に求めることはでき
ない、したがってこのような場合には従来局所的な音速
を推定することは不可能であった。
(Example) Before describing the example, the problems with the conventional method described above will be explained using a specific example6.For example, if there is a transmitting transducer as shown in FIG. As shown in (a), the received Ig number P turtle (t) Pa (l P
g(t) Pa(t) is obtained. However, p+(t) is GAE P, (t) is GBF P, (t) is HCP
'P, [t) indicates the waveform propagated through the HDE and received, the propagation time at this time '11 ttt ill
If you try to calculate tll from the center of gravity, it will be difficult to receive the scattered waves from the medium 4509 point 0 or point D. Therefore, it is not possible to accurately calculate t and t□, so in such a case, Until now, it has been impossible to estimate the local speed of sound.

本発明は伝搬時間を痒出する前に4つつ波形P。The present invention has four waveforms P before the propagation time begins.

+1)〜P4 ft) v合成でおこない、そ■合成波
形7:1重心から伝搬時間■算出をおこなうことにより
て前記問題点を改善をおこなおうとするものである。
+1) to P4 ft) v synthesis, and the propagation time (2) is calculated from the composite waveform's 7:1 center of gravity, thereby attempting to improve the above-mentioned problem.

2S:発明において合成された波形は第5図(b) !
D如くなり次式A(t)で示すことができる。
2S: The waveform synthesized in the invention is shown in Figure 5(b)!
D, and can be expressed by the following formula A(t).

A(t)−P、 (t)+P重ttl+ps (t)+
P、 (t)       −(6)ここでPs (t
)+P * (t)とP、 (t)十Pa (t)は受
信時刻が離れているため各々区別して計算することがで
きる。
A(t)-P, (t)+P weight ttl+ps (t)+
P, (t) −(6) where Ps (t
) + P * (t) and P, (t) 10 Pa (t) can be calculated separately because their reception times are far apart.

これら■重心をta  tb  とすれば−(力 となり、障害となる媒質45が存在しない時には一般に
J P、 (t)d を中JP畠(t)dt−Ioが成
立するからibm −(t、、+t、、 ) したがって △j−1−txt  −ttt+ to −jtm−2
(tb−ta)−(9)を(4)に代入して音速Coを
求めることができる。
If the center of gravity of these ■ is ta tb, -(force, and when there is no obstructive medium 45, JP Hatake (t) dt-Io holds in general for JP, (t) d, so ibm - (t, , +t,, ) Therefore △j-1-txt -ttt+ to -jtm-2
The speed of sound Co can be determined by substituting (tb-ta)-(9) into (4).

一方媒賀45が存在する場合にはp、(t):zOPa
(すzOとすれば tas=xt1.    tbwt、。
On the other hand, if the mediator 45 exists, p, (t):zOPa
(If szO, then tas=xt1.tbwt,.

となる、喜4因におけるA EとCFの伝哉速文が近似
的に等しい場合には関心領域(ACID)’7)局所音
速は正1に求めることができる。一方AE■音速とCF
D音速が等しくない場合には推定11差が生ずるも/D
つ木繊によれば従来法つような算出不能のような状態に
はならない。
If the transmission velocity sentences of AE and CF in the four factors of joy are approximately equal, the local sound velocity can be determined to be positive 1 in the area of interest (ACID)'7). On the other hand, AE ■ Speed of sound and CF
D If the sound speeds are not equal, there will be an estimated difference of 11/D
According to Tsugisen, the calculation is not impossible as in the conventional method.

木繊の特数は送受信トランスデユーサと関心領域O中間
に音波伝搬を著しく阻げるt3質45が存在した場合に
:は、この媒質を通過する音波O伝搬時間を自@的に排
除することによって大きな″n出哩差O′#、生を防ぐ
ことにある。上記説明では送信ビームと関心領域の間に
媒質45が存在する場合について述べたが受信ビームと
関心領域の間にある場合においても本発明は同様の効果
をもっている。
The special feature of wood fiber is that when there is a t3 substance 45 between the transmitting/receiving transducer and the region of interest O that can significantly impede the propagation of sound waves, it automatically eliminates the propagation time of the sound waves O passing through this medium. This is to prevent a large "n output difference O'#" from occurring.The above explanation deals with the case where the medium 45 exists between the transmitting beam and the region of interest, but when the medium 45 exists between the receiving beam and the region of interest. The present invention also has similar effects.

第1図は本発明り一部191に係り9体内10局所音速
測定を可能とする超音波論断装置の構成を示すもOであ
る。送信用トランスデユーサ2.3と受信用トランスデ
ユーサ4.5は図O如く体表上に配置される。送信用ト
ランスデユーサ2および3ばパルサ6−1.6−2から
供給される駆動パルスによって駆動された生体内1に超
砕波パルスを放射する。こD 、[を波パルスは生木組
織内で散乱されるが、1″4I心領域DA点および9点
で散乱された超音波は受信用トランスデユーサ4でま九
B点、C点で散乱された超音波は受信用トランスデユー
サ5で受信される。
FIG. 1 is a part 191 of the present invention and shows the configuration of an ultrasonic disassembly device that is capable of measuring local sound velocities within the body. The transmitting transducer 2.3 and the receiving transducer 4.5 are placed on the body surface as shown in Figure O. The transmitting transducers 2 and 3 radiate ultrafracture pulses into the living body 1 driven by drive pulses supplied from the pulsers 6-1, 6-2. The wave pulses are scattered within the living tree tissue, but the ultrasound waves scattered at points DA and 9 in the 1''4I heart region are transmitted by the receiving transducer 4 to points B and C. The scattered ultrasonic waves are received by the reception transducer 5.

受信用トランスデユーサ4.5によって受信された信号
は増幅器7−1.7−2により増幅され。
The signal received by the receiving transducer 4.5 is amplified by the amplifier 7-1.7-2.

、+*波回路8−1.8−2で包絡線負波された後加算
器9で加算合成される0合成された信号はA/D′R換
δでディジタル量に変換されてから演算器にお^て伝搬
時間の算出がおこなわれる。
, +* Wave circuit 8-1, 8-2 generates an envelope negative wave, and adder 9 adds and synthesizes the 0-synthesized signal. The signal is converted into a digital quantity by A/D'R conversion δ and then calculated. The propagation time is calculated in the device.

ただしこVa合A、a、(、:点からO散乱彼の合成し
たものと[3,aD点から7)W!L乱波■合成したも
Dとから各々伝搬時間■算出をおこない、(9)式およ
び(4)を用いて体内局所音速を求める。
However, this Va combination A, a, (,: from point O scattering and his synthesis and [3, aD from point 7) W! The propagation time is calculated from each of the L random waves and the synthesized wave D, and the local sound speed in the body is determined using equations (9) and (4).

一方送信用受(!用トランスデユーサ2=3−4e5は
壜械的に移動させたり、あるいは送信ビーム角度を可変
にすることによって関心領域を任意り場所に移動させる
ことができ、したがって2次元O音速分布を算出しフレ
ームメモリ13を介してC几T14上に表示することも
可能となる。
On the other hand, the region of interest can be moved to any desired location by mechanically moving the transmitting receiver (! transducer 2 = 3-4e5) or by varying the transmitting beam angle. It is also possible to calculate the sound velocity distribution and display it on the C-T 14 via the frame memory 13.

@2図は本発明O池O夾施列を示す構成図である。こ■
場合送受信トランスデユーサ2*3*4t5はスイッチ
回′JI&1B−1$ 18−2によって各容体だけが
選択されて使用される。したがって前記波形P+(t)
〜Pa (1)は4回の送受信によって得られこれらD
波形はA/D変換変換上メモリ15旦スドアされた後加
算器9で合成される。こO方法は第1図O方法と比較し
、開示に時間がかかるが電子回路が1125単になる利
点をもりている。
Figure @2 is a configuration diagram showing the O-pond O-containment arrangement of the present invention. This ■
In this case, the transmitting/receiving transducer 2*3*4t5 is used only for each container selected by the switch circuit 'JI&1B-1$18-2. Therefore, the waveform P+(t)
~Pa (1) is obtained by four transmissions and receptions, and these D
The waveforms are stored in a memory 15 for A/D conversion and then synthesized in an adder 9. Compared to the method O shown in FIG. 1, this method takes more time to disclose, but has the advantage that the electronic circuit is only 1125.

第6図は本発明O他の実施例を示すもつで電子走査によ
り生体内O断jwi 11を得る場合に使用されるプレ
イ型の@音波トランスデユーサの一部を本発明に基づ<
if波皆速計測に利用した列である。
FIG. 6 shows another embodiment of the present invention, and shows a part of a play-type sonic transducer based on the present invention, which is used to obtain in-vivo osmosis 11 by electronic scanning.
This is the column used for IF wave total velocity measurement.

すなわち、プレイ型超腎反トランスデユーサ30を構成
する多数配列されたトランスデユーサ素子のうち送信時
には8+砂で示す31.347)領域が使用され、受信
時には同じく斜線部で示す32と330領戟が使用され
る。
That is, among the many arrayed transducer elements constituting the play-type superrenal anti-transducer 30, the 31.347) area shown by 8+sand is used for transmission, and the 32 and 330 areas shown by diagonal lines are used for reception. A sword is used.

プレイ型超斤波トランスデニーサ30の領域31から超
音波を送信する場合、領iJ、31における隣接した複
数個V振り子O駆動タイミングを遅延手段により所定時
間ずらせることによって、七〇a丘疫ビームを例えば第
3図中に示したように偏向させることができる。34に
ついでも同様である。
When transmitting ultrasonic waves from the area 31 of the play-type ultrasonic wave transducer 30, by shifting the drive timing of the adjacent plurality of V pendulums in the area 31 by a predetermined time using a delay means, The beam can be deflected, for example, as shown in FIG. The same applies to 34.

こ■ような電子的な偏向を行な5丸めの具体的な駆動方
法としては、ガえば特公昭56−IC158号公報に記
載された方法を用いることができる。
As a specific driving method for performing such electronic deflection and rounding to 5, for example, the method described in Japanese Patent Publication No. 56-IC158 can be used.

こD実施例は牟−〇アレイ型超督波トランスデユーサを
用いて局所的な催音波音速の計測が可能であるため、走
食性に優れており、しかもBモード謙のリアルタイム表
示を併せて行なうことができるため、頂發波音速を計測
しようとする関心領域の正確な設定を容易に行なえると
いう利点がある。また、送受信超音波トランスデユーサ
O立置(領域31〜347)位It)および送信超音波
ビームD偏向角を電子的手段により容易、かつ高速に変
えることで、超音波O送信領域と受信領域とD交叉領域
を変えることができるので、生体内金′項吠でD局所的
なMi音波音速Dit側ができ、さらには2次元音速分
布O表示も可能となる。すなわち従来では不可能であっ
たパルス反射法による生体内超斤波音速分布を求めるこ
とができる。
This D embodiment has excellent phagocytosis because it is possible to measure the local sonic velocity using a square array type ultra-wave transducer, and it also has real-time display of B-mode radiation. This has the advantage that it is easy to accurately set the region of interest in which the crestal sound velocity is to be measured. In addition, by electronically changing the transmitting/receiving ultrasonic transducer O vertical position (regions 31 to 347) and the transmitting ultrasonic beam D deflection angle easily and quickly, the ultrasonic O transmitting area and receiving area Since it is possible to change the intersection area between D and D, it is possible to obtain the D local sound velocity Dit of the D local Mi wave in the living body, and furthermore, it is possible to display the two-dimensional sound velocity distribution O. That is, it is possible to obtain the in-vivo superconcussion sound velocity distribution using the pulse reflection method, which was previously impossible.

なお本発明において送受信トランスデユーサつ配!1法
は構3図に限定されなhしまたトランスデユーサυ数に
ついても各々2個以上あればその数は限定されるもので
はない。
In addition, in the present invention, the transmitting and receiving transducer is arranged! The first method is not limited to three configurations, and the number of transducers υ is not limited as long as they are each two or more.

〔見明り効果〕[Brightness effect]

本発明によれば体内の一部に音波伝搬を阻止する媒質が
存在する場合にも体内の局所音速を求めることが可能層
な9.とくに2次元音速分布表示においては有効な手段
となり得る。
According to the present invention, it is possible to determine the local speed of sound inside the body even when there is a medium that blocks the propagation of sound waves in a part of the body.9. This can be an effective means especially for displaying two-dimensional sound velocity distribution.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および喀2図はそれぞれ本発明の一実施例に係る
超f波診断装置の構成図、@3図は局所音速測定法の原
理を示す図である。 1・・・生木、2.3・・・送信用トランスデユーサ。 4.5・・・受信用トランスデユーサ、6・・・パルサ
。 7・・・増幅器、8・・・検波回路、9・・・加算器、
10・・・A/D変換器、11・・・発振器、12・・
・演算器、[3・・・フレームメモリ、14・・・CR
T、15・・・メモリ。 41.44・・・送信用トランスデユーサ、 4 L 
43・・・受信用トランスデユーサ、45・・・音波伝
搬阻止媒質、51・・・送信用トランスデユーサ、52
・・・受信用トランスデユーサ、30・・・アレイ型ト
2ンスデエーサ、31s34・・・送信用トランスデユ
ーサ群、32@33・・・受信用トランスデエーサ群。 26・・・体表面。 代理人 弁理士   則 近 憲 重 量      竹 花 喜久男 m   寸 第3図 第4図
FIG. 1 and FIG. 2 are respectively block diagrams of an ultra-f wave diagnostic apparatus according to an embodiment of the present invention, and FIG. 3 is a diagram showing the principle of the local sound velocity measurement method. 1... Living tree, 2.3... Transmission transducer. 4.5...Receiving transducer, 6...Pulser. 7...Amplifier, 8...Detection circuit, 9...Adder,
10... A/D converter, 11... Oscillator, 12...
・Arithmetic unit, [3...Frame memory, 14...CR
T, 15...Memory. 41.44... Transmission transducer, 4 L
43... Receiving transducer, 45... Sound wave propagation blocking medium, 51... Transmitting transducer, 52
...Reception transducer, 30...Array type transducer, 31s34...Transmission transducer group, 32@33...Reception transducer group. 26...Body surface. Agent Patent attorney Nori Chika Weight Kikuo Takehana Dimensions Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 媒質内に超音波を送信する複数個の送信用トランスデュ
ーサと、受信領域が媒質内において前記送信用トランス
デューサの送信領域と交差するように配置され、前記媒
質内からの超音波の反射波を受信する複数個の受信用ト
ランスデューサと、前記送信用トランスデューサから放
射された超音波パルスが送受信交差領域で散乱した後、
前記受信用トランスデューサによって受信されるまでの
時間を計測する手段と、この伝搬時間と前記送受信トラ
ンスデューサの位置関係から媒質内の音速を算出する手
段を具備した超音波診断装置において、送受信トランス
デューサの複数の組み合わせによって得られる各々の信
号を加算した後に伝搬時間計測のための演算を施すこと
を特徴とした超音波診断装置。
A plurality of transmitting transducers that transmit ultrasonic waves into a medium, and receiving areas arranged so as to intersect the transmitting areas of the transmitting transducers in the medium, and receiving reflected waves of the ultrasonic waves from within the medium. After the ultrasonic pulses emitted from the plurality of reception transducers and the transmission transducer are scattered in the transmission and reception intersection area,
An ultrasonic diagnostic apparatus comprising means for measuring the time until reception by the receiving transducer, and means for calculating the speed of sound in a medium from the propagation time and the positional relationship between the transmitting and receiving transducers. An ultrasonic diagnostic device characterized by performing calculations for measuring propagation time after adding up each signal obtained by the combination.
JP61212670A 1986-07-22 1986-09-11 Ultrasonic diagnostic apparatus Pending JPS6368142A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP61212670A JPS6368142A (en) 1986-09-11 1986-09-11 Ultrasonic diagnostic apparatus
US07/075,603 US4821574A (en) 1986-07-22 1987-07-20 Method and apparatus for measuring ultrasonic velocity by crossed beam
EP87306498A EP0256686A1 (en) 1986-07-22 1987-07-22 Method and apparatus for measuring ultrasonic velocity in a medium by crossed beams

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61212670A JPS6368142A (en) 1986-09-11 1986-09-11 Ultrasonic diagnostic apparatus

Publications (1)

Publication Number Publication Date
JPS6368142A true JPS6368142A (en) 1988-03-28

Family

ID=16626453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61212670A Pending JPS6368142A (en) 1986-07-22 1986-09-11 Ultrasonic diagnostic apparatus

Country Status (1)

Country Link
JP (1) JPS6368142A (en)

Similar Documents

Publication Publication Date Title
CA1093674A (en) Ultrasonic beam scanning
Quistgaard Signal acquisition and processing in medical diagnostic ultrasound
JP2777197B2 (en) Ultrasound diagnostic equipment
US3936791A (en) Linear array ultrasonic transducer
US5165413A (en) Steered linear color doppler imaging
JP4582827B2 (en) Ultrasonic diagnostic equipment
EP0359130A2 (en) Steered linear color doppler imaging
JP2001503853A (en) Apparatus and method for determining motion and velocity of a moving object
US3939707A (en) Measurement of liquid flow
US4821574A (en) Method and apparatus for measuring ultrasonic velocity by crossed beam
CN111820946A (en) Flexible speed measuring device for Doppler ultrasonic detection and application thereof
Jespersen et al. In vitro spatial compound scanning for improved visualization of atherosclerosis
JP2007513672A (en) Stereoscopic ultrasound imaging system using a two-dimensional array transducer
JPH02291847A (en) Ultrasonic blood flow measuring apparatus
Hasegawa et al. On the investigation of autocorrelation-based vector Doppler method with plane wave imaging
JPH0790026B2 (en) Ultrasonic diagnostic equipment
JP2003230560A (en) Ultrasonograph
JP3180958B2 (en) Ultrasound diagnostic equipment
CN113679423A (en) Ultrasonic Doppler blood flow velocity vector imaging method and system
JPS6368142A (en) Ultrasonic diagnostic apparatus
Popp et al. Ultrasonic diagnostic instruments
JP2831719B2 (en) Ultrasound diagnostic equipment
JP2914871B2 (en) Ultrasound diagnostic equipment
JPH0140619B2 (en)
Carr Everbach Medical diagnostic ultrasound