JPS6368141A - Ultrasonic diagnostic apparatus - Google Patents

Ultrasonic diagnostic apparatus

Info

Publication number
JPS6368141A
JPS6368141A JP21266986A JP21266986A JPS6368141A JP S6368141 A JPS6368141 A JP S6368141A JP 21266986 A JP21266986 A JP 21266986A JP 21266986 A JP21266986 A JP 21266986A JP S6368141 A JPS6368141 A JP S6368141A
Authority
JP
Japan
Prior art keywords
transducer
sound
transmitting
ultrasonic
transducers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21266986A
Other languages
Japanese (ja)
Inventor
高見沢 欣也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP21266986A priority Critical patent/JPS6368141A/en
Publication of JPS6368141A publication Critical patent/JPS6368141A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) この発明は超音波を用いて生体内の情報を得る超音波診
断装置に係り、特に生体内での局所的な超音波音速を計
測する機能を有した望音波診断装“lVc関する。
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Application Field) This invention relates to an ultrasonic diagnostic device that uses ultrasound to obtain information inside a living body, and particularly relates to an ultrasound diagnostic device that uses ultrasound to obtain information inside a living body. It relates to a telescopic ultrasound diagnostic device "lVc" which has a function of measuring the speed of sound.

(従来の技術) 超音波を用いた診断法は被検者に負担をかけずに軟部組
織の診断ができ、しかも無侵襲であると論う利点を持っ
てお!7.近年の高速走査装置の進歩によって急速に普
及してきた。この超音波診断法はパルス反射法であるた
め、透過法と比較して操作法て優れ、適用され得る診断
部位があまり限定されないことも広く普及した理由に挙
げられる。
(Conventional technology) Diagnostic methods using ultrasound have the advantage of being able to diagnose soft tissue without placing any burden on the patient, and are non-invasive! 7. It has rapidly become popular due to recent advances in high-speed scanning devices. Since this ultrasonic diagnostic method is a pulse reflection method, it has a superior operating method compared to a transmission method, and the diagnostic sites to which it can be applied are not very limited, which is another reason for its widespread use.

このような超音波診断法に対して最近、画像の定l化の
要求が高まっている0画像の定量化は。
Recently, there has been an increasing demand for quantification of images in such ultrasonic diagnostic methods.

特に−器疾患の良性、悪性の鑑別診断において有効と考
えられている。しかしながら、従来のパルス反射法では
反射波強度は生体内組織間の音響インピーダンス(密度
と音速の積)の差のみならず反射面の形状1反射面に対
する超音波ビームの入射角、生体中での超音波吸収fl
kv?にも依存しており、fたこれらの情報を分離して
噴出することが困難でちることから1両港の定量化に極
めて賎しかった。
It is considered to be particularly effective in the differential diagnosis of benign and malignant organ diseases. However, in the conventional pulse reflection method, the reflected wave intensity is determined not only by the difference in acoustic impedance (product of density and sound speed) between tissues in the living body, but also by the shape of the reflecting surface, the incident angle of the ultrasound beam with respect to the reflecting surface, ultrasonic absorption fl
kv? However, it is difficult to separate and release this information, making it extremely difficult to quantify a single port.

一方、音波のみを計測する方法は従来、透過型岨t!e
Tにおいて行なわれてhる(文献;Greenleaf
 、J、F、et、al、Acoustical Ho
lography。
On the other hand, the conventional method of measuring only sound waves is the transmission type! e
It has been carried out in T (Reference; Greenleaf
, J, F, et, al, Acoustical Ho
Logography.

vol 、 81975)、 シかし、透過法岐超音波
伝搬経路に骨やガスのある部位には適用できないため。
Vol. 81975), but the transmission method cannot be applied to areas where there is bone or gas in the ultrasound propagation path.

乳喋噴査等ごく限られた領域でしか使用できないという
大きな欠点を有している。
It has a major drawback in that it can only be used in very limited areas such as milk spraying.

一方、パルス反射法で臓器内の音速を図る方法が近年考
案されている。第5図は赤松等によって報告された肝爾
内皆速創定法を示したものである。
On the other hand, a method has been devised in recent years to measure the speed of sound inside an organ using the pulse reflection method. Figure 5 shows the fast creation method reported by Akamatsu et al.

これは強い指向性を持った2つのffl音彼トクンスデ
エーサ51.52を各々送信用、受信用として用い、送
信用Mi音波トランスデエーサ51から送信された@音
波が各トランスデユーサ51.52の中心@PP1  
、QQlの交点0付近にて反射し。
This uses two ffl sound wave deacers 51.52 with strong directivity for transmission and reception, respectively, and the @sonic waves transmitted from the transmission Mi sound wave transducer 51 are transmitted to each transducer 51.52. Center of @PP1
, reflected near the intersection 0 of QQl.

受信用超音波トランスデユーサ52に到達して受信され
るまでの時間を測定し、この時間と各トランスデユーサ
51.52間の距離Xおよび角度θから算出される予想
伝搬距離とから、肝臓内の平均音速を求める方法である
The time it takes to reach the receiving ultrasonic transducer 52 and the reception is measured, and from this time and the expected propagation distance calculated from the distance X and angle θ between the transducers 51 and 52, the liver This is a method to find the average sound speed within.

この方法は肝臓内全体が一様な音響特性を持つ例えば肝
硬変などのび慢仕疾患の診断には有効と考えられるが、
?8られる音速は伝搬経路内での平均汗速であるため5
局部的な疾患には適用できない、また、肝臓内部とは音
速の異なる表皮あるいは脂肪層をも超音波が伝搬するた
め。音速の測定誤差が大きいという間赳がある。
This method is thought to be effective in diagnosing chronic diseases such as liver cirrhosis, in which the entire liver has uniform acoustic characteristics;
? 8 The speed of sound is the average speed of sweat within the propagation path, so 5
It cannot be applied to localized diseases because ultrasound waves also propagate through the epidermis or fat layer, where the sound speed is different from the inside of the liver. There is a possibility that the error in measuring the speed of sound is large.

このような問題に対して本発明者はパルス反射法による
局所音速ユ1」定法について先に提案をおこなった。
In response to such problems, the present inventor previously proposed a local sound velocity law using a pulse reflection method.

第2図にその原理図を示すもので、送11用トランスデ
ユーサ41144と受信用トランスデユーサ42.43
を図の如く体表面に配はし送受信超旨波ビームで囲まれ
た領域Al3CDにおける音速COの推尼をおこなう、
トランスデユーサ41から送信された音波がAおよびB
Kある散乱体で散乱しトランスデユーサ42および43
で受信されるまでの時間t1**iHはそれぞれ ”11”  tGA+’l:A tu−toA+tyc+(λ]1+1℃−)/C。
Fig. 2 shows the principle diagram of the transmission 11 transducer 41144 and the receiving transducer 42, 43.
is placed on the body surface as shown in the figure, and the sound velocity CO is estimated in the area Al3CD surrounded by the transmitted and received ultrasound beams.
The sound waves transmitted from the transducer 41 are A and B.
K is scattered by a certain scatterer and the transducers 42 and 43
The time t1**iH until reception is "11"tGA+'l: A tu-toA+tyc+(λ]1+1°C-)/C.

で示される。同様にしてトランスデユーサ44から送信
された音速がDおよびCで敗乱しトランスデユーサ42
および43で受信される場合の伝搬時間を鐙1彎tel
は t @@ −! HC+ t E A + (A D+
CD ) / C01、、−1,C+1.に こで送信ビームの入射角をθoEF−do  とすれば
伝搬時間△tは すなわち関心領域における音速Coは伝搬時間差△tを
求めることにより次式から求めることができる。
It is indicated by. Similarly, the sound velocity transmitted from the transducer 44 is disrupted at D and C, and the transducer 42
and the propagation time when received at 43
ist @@-! HC+ t E A + (A D+
CD) / C01, -1, C+1. Letting the incident angle of the transmission beam be θoEF-do, the propagation time Δt, that is, the speed of sound Co in the region of interest, can be determined from the following equation by determining the propagation time difference Δt.

(発明が解決しようとする問題点) 送信および受信@音波ビームを体内で交叉させその交点
からの反射波の受信時刻を測定する場合、前記超音波ビ
ームは有限幅を有しているため、各交差点の近傍にある
多くの反射体からの反射波が合成されて受信波形となっ
ている。すなわち受1波形は送信波形とは異なり互いに
干渉をおこしているため複雑なパターンを呈し1時間測
定における精度劣化の大きな原因となる。
(Problems to be Solved by the Invention) When transmitting and receiving @sonic beams intersect within the body and measure the reception time of the reflected wave from the intersection, each ultrasonic beam has a finite width. The reflected waves from many reflectors near the intersection are combined to form the received waveform. That is, the received waveform differs from the transmitted waveform and interferes with each other, so it presents a complicated pattern and becomes a major cause of deterioration in accuracy in one-hour measurement.

本発明は上記問題点すなわち波の干渉による時間測定精
度の劣化の改善を目的としてなされたものであり、生体
内の超f波伝搬速度を正確に計測することを可能とした
@音波診断装置を提供することにある。
The present invention was made with the aim of improving the above-mentioned problem, that is, the deterioration of time measurement accuracy due to wave interference, and provides an @sonic diagnostic device that can accurately measure the ultra-f wave propagation velocity in the living body. It is about providing.

〔発明■構収〕[Invention■Composition]

(問題点を解決するための手段) 本発明は送信ビームと受信ビームを体内で交差させて局
所的な音速計測を実施する際に送信ビーム角度を可変に
しながら同一部位の局所音速を複数回計測し、このとき
得られた値の平均値からその推定値を求めようとするも
のである。
(Means for Solving the Problems) The present invention measures the local sound speed at the same site multiple times while varying the transmitting beam angle when performing local sound speed measurements by intersecting the transmit beam and the receive beam inside the body. However, the estimated value is calculated from the average value of the values obtained at this time.

(作用) 生体内の超音波反射体は点反射がランダムに配置された
モデルで近似される場合が多い、このように密に配置さ
れた反射体からの反射波は前記の如く干渉をおこして−
るが、ビームの位置やビーム方向をわずかに変化させる
と干渉の仕方が大きく変化する。したがって送信ビーム
の方向(角度)を変えながら同じ場所からの反射波を得
、これらに統計的な処理(例えば加算平均)を施せば干
渉の影響を大幅に低減させることができ、正確な伝搬時
間計測が可能となる。
(Function) Ultrasonic reflectors in living bodies are often approximated by a model in which point reflections are randomly arranged.Reflected waves from such densely arranged reflectors cause interference as described above. −
However, if the beam position or beam direction is slightly changed, the way of interference changes significantly. Therefore, by obtaining reflected waves from the same location while changing the direction (angle) of the transmitted beam, and applying statistical processing (for example, averaging) to these waves, it is possible to significantly reduce the effects of interference, and to accurately determine the propagation time. Measurement becomes possible.

<5点施例) 第1図は本発明の一実施例に係フ1体内1の局所音速測
定を可能とした超音波診断装置の構成を示すものである
0図に示すように3つのトランスデユーサ2−1.2−
2.2−3からなる痔1の送信用トランスデユーサ群2
と同じく3つのトランスデユーサ3−1.3−213−
3から唸る第2の送信用トランスデユーサ群3と窮1第
2の受信用トランスデユーサ4,5を体表とに配置する
<5 Examples) Fig. 1 shows the configuration of an ultrasonic diagnostic apparatus according to an embodiment of the present invention, which is capable of measuring the local speed of sound inside a human body. Ducer 2-1.2-
2. Hemorrhoid 1 transmission transducer group 2 consisting of 2-3
Same as three transducers 3-1.3-213-
A second transmitting transducer group 3 and a first receiving transducer group 4 and 5 are placed on the body surface.

各送信用トランスデユーサ群では3ケのうち1ケのトラ
ンスデユーサがスイッチ回路6.7で選択使用される0
例几ばトランスデユーサ2−2.3−2はスイッチ回路
6,7を介してパルサ8−1゜8−2から供給される駆
動パルスにより駆動され生体内1に超音波パルスを送信
する。この・超音波パルスは生体内組織で散乱されるが
図のA点およびD点で散乱された超taは受信用トラン
スデユーサ4で、またB、a、0点で散乱されたJIJ
f彼が受信用トランスデユーサ5で受信される。このi
易合送信用トランスデユーサ2−2t3−2は同時に駆
動しても良いが関心領域ABCDがビーム幅に対して十
分大きくない場合には順次駆動が望ましい。
In each transmitting transducer group, one of the three transducers is selectively used by the switch circuit 6.7.
For example, the transducers 2-2, 3-2 are driven by drive pulses supplied from the pulsers 8-1 and 8-2 via the switch circuits 6 and 7, and transmit ultrasonic pulses into the living body 1. This ultrasonic pulse is scattered by the tissues in the living body, but the ultrasonic pulses scattered at points A and D in the figure are received by the receiving transducer 4, and the JIJ pulses scattered at points B, a, and 0 are
f is received by the receiving transducer 5. This i
The easy transmission transducers 2-2t3-2 may be driven simultaneously, but if the region of interest ABCD is not sufficiently large relative to the beam width, it is desirable to drive them sequentially.

受信用トランスデユーサ4.5によって受信された信号
は増憤器10により増幅された後、横波回路11で包絡
線検波される。さらにこの信号はA/D変換器12によ
りディジタル量に変換されてから演算器13内のメモリ
に一旦スドアされた後。
The signal received by the reception transducer 4.5 is amplified by an intensifier 10 and then subjected to envelope detection by a transverse wave circuit 11. Furthermore, this signal is converted into a digital quantity by the A/D converter 12 and is once stored in the memory in the arithmetic unit 13.

伝搬時間がg出される1例えば送信用トランスデユーサ
2−2から放射された程音波パルスがA点近傍の複数個
の赦乱し、受信用トランスデユーサ4で受信された信号
の包絡線波形は術3図のようになる。このような波形の
フロットエッジやピーク位[1を噴出する方法では伝搬
時間を正確に求めることはできないためここでは重心算
出法を採用する。すなわち受1波形をP(りとすれば重
心tyはから算出することができる。同、渫にして2−
2゜3−2 s 4 * 5の送信受信トランスデユー
サを使った他の組み合わせから谷の伝搬時間を算出し、
関心領域ACBDo旨速Co、をもとめ、その値eひと
まず演算器13内メモリにストアする。つぎに送信用ト
ランスデユーサ2−1と3−1さらには2−3と3−3
をスイッチ回路6.7によって選択してI仔波の送信を
行ない同一の関心領域(l&密には関心領域の形状は送
信ビーム角度に依存するが角度変化の範囲が小さhなら
ばほぼ同一の関心領域とすることができる。)の音速C
Oc *CO1を算出する。つぎに算出された3つの音
速推定f[Co HI Co HI CO,の加算平均
から関心領域(ACBD)の音速C,を決定する。
The propagation time g is calculated 1. For example, the more a sound wave pulse is emitted from the transmitting transducer 2-2, the more the sound wave pulse is scattered near point A, and the envelope waveform of the signal received by the receiving transducer 4. The result will be as shown in Figure 3. Since the propagation time cannot be accurately determined by the method of ejecting the flot edge or peak position [1] of such a waveform, the centroid calculation method is adopted here. In other words, if the receiving 1 waveform is P(ri), the center of gravity ty can be calculated from 2-
Calculate the propagation time of the valley from other combinations using 2゜3-2s4*5 transmitting and receiving transducers,
The region of interest ACBDo, speed Co, is determined, and its value e is temporarily stored in the memory within the computing unit 13. Next, transmitting transducers 2-1 and 3-1, and further 2-3 and 3-3
is selected by the switch circuit 6.7 to transmit the I wave, and the shape of the region of interest (l & dense) depends on the transmitting beam angle, but if the range of angle change is small h, the shape of the region of interest is almost the same. The sound velocity C can be the region of interest.
Calculate Oc *CO1. Next, the sound speed C in the area of interest (ACBD) is determined from the average of the three calculated sound speed estimates f[Co HI Co HI CO,.

本実施例において送信用トランスデユーサ群を3ケのト
ランスデユーサで構成したがこれに限定されるものでは
ない。
In this embodiment, the transmitting transducer group is composed of three transducers, but it is not limited to this.

第4図は本発明の他の実施例を示すもので電子走査によ
り生体内1の断層像を得る場合に使用されるアレイ型の
超音波トランスデユーサの一部を本発明に基づく超迂反
音速計測に利用した例である。すなわち、プレイfWJ
f波トランスデユーサ30を9成する多数配列されたト
ランスデユーサ素子のうち送信時には斜線で示す31−
1.31−2,31−3,34−1,34−2,34−
3の領域が使用され、受信時には同じく斜線部で示す3
2と33の領域が使用される。
FIG. 4 shows another embodiment of the present invention, in which a part of an array-type ultrasonic transducer used to obtain a tomographic image of a living body 1 by electronic scanning is shown. This is an example of use for measuring the speed of sound. That is, play fWJ
Of the nine transducer elements arranged in the f-wave transducer 30, during transmission, 31-
1.31-2, 31-3, 34-1, 34-2, 34-
Area 3 is used, and during reception, area 3 shown in the shaded area is also used.
Areas 2 and 33 are used.

アレイ型超音政トランスデユーサ30の領域31から超
音波を送信する場合、領域31における隣接した複数個
の振動子の駆動タイミングを遅延手段により所定時間ず
らせることによって、その超音波ビームを偏向させるこ
とができる。34についても同様である。このような電
子的な偏向を行なうための具体的な駆動方法としては例
えば特公昭56−10058号公報に記載された方法を
用いることができる。
When transmitting ultrasonic waves from the area 31 of the array-type ultrasonic transducer 30, the ultrasonic beam is deflected by shifting the drive timing of a plurality of adjacent transducers in the area 31 by a predetermined time using a delay means. can be done. The same applies to 34. As a specific driving method for performing such electronic deflection, for example, the method described in Japanese Patent Publication No. 56-10058 can be used.

この実施例は単一の7レイ型超發波トランスデユーサを
用いて局所的な超音波音速の計測が可能であるため、走
査性に優れており、しかもBモード像D 1アルタイム
表示を併せて行なりことができるため、超コ波音速を計
測しよりとする関心領域の正確な設定を容易に行なえる
という利点がある。
This embodiment has excellent scanning performance because it is possible to measure the local ultrasonic sound velocity using a single 7-ray ultrasonic transducer, and can also display the B-mode image D1 in real time. Since this can be done at the same time, there is an advantage that it is easy to accurately set the region of interest in which the supercosonic sound velocity is to be measured.

また、送受口超汗波トランスデユーサの位置(領域31
〜34の位置)および送信超音波ビームの偏向角を電子
的手段により容易、かつ高速に変えることで%超音波の
送4バ領域と受信領域との交叉領収を変えることができ
るので、生体内全領域での局所的な超音波行速の計測が
でき、さらには2次元音速分布の表示も可能となる。す
なわち、従来では不可能でありたパルス反射法による生
体内植砕波「速分布を求めることができる。
In addition, the position of the super sweat wave transducer (area 31
34) and the deflection angle of the transmitted ultrasound beam by electronic means, the cross-reception between the transmitter region and the receiver region can be changed. It is possible to measure the local ultrasonic travel velocity in the entire region, and it is also possible to display a two-dimensional sound velocity distribution. In other words, it is possible to determine the "velocity distribution of implanted waves in living organisms" using the pulse reflection method, which was previously impossible.

〔発明の効果〕〔Effect of the invention〕

本発明によれば体内からの散乱波のもつ干渉の影響を低
減できるため伝搬時間計測精度が大幅に向上し、正確な
体内の局所音速計測さらには2次元音速分布が可能とな
る。
According to the present invention, since the influence of interference of scattered waves from within the body can be reduced, the accuracy of measurement of propagation time is greatly improved, and it is possible to accurately measure the local speed of sound inside the body, and also to obtain a two-dimensional sound speed distribution.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例にぶる超音彼診断装扛の溝成
図、第2図は局所音速測定法の原理図。 第3図は本発明における受信波形を示す図、第4図は本
発明の他の実施例を示す図、第5図は従来の平均音速測
定法の原理図を示す図である。 1・・・生体、2.3・・・送信用トランスデユーサ。 4.5・・・受信用トランスデユーサ・ 6g7゛°8
イツチ回路、8・・・パルサ、9・・・発損器、lO・
・・増幅器、11・・・検波回路、12・・・A/D変
換器、13・・・演算器、14・・・CRT、15・・
・スイッチングコントローラ、41*44・・・送信用
トランスデユー+、42143・・・受信用トランスデ
ユーサ、51・・・送信用トランスデユーサ、52・・
・受信用トランスデユーサ。 代理人 弁理士   則 近 憲 方 間      竹 花 喜久男 第2図 一一一ト1 第8図 第4図 第5図
FIG. 1 is a diagram of an ultrasonic diagnostic device according to an embodiment of the present invention, and FIG. 2 is a diagram of the principle of local sound velocity measurement. FIG. 3 is a diagram showing a received waveform according to the present invention, FIG. 4 is a diagram showing another embodiment of the present invention, and FIG. 5 is a diagram showing the principle of a conventional average sound velocity measurement method. 1... Living body, 2.3... Transmission transducer. 4.5...Receiving transducer・6g7゛°8
Itchi circuit, 8...pulsar, 9... oscillator, lO・
...Amplifier, 11...Detection circuit, 12...A/D converter, 13...Arithmetic unit, 14...CRT, 15...
・Switching controller, 41*44...transmission transducer+, 42143...reception transducer, 51...transmission transducer, 52...
- Receiving transducer. Agent Patent Attorney Nori Chika Kikuo Takehana Figure 2 111 To 1 Figure 8 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims] 媒質内に超音波を送信する1個又は複数個の送信用トラ
ンスデューサと、受信領域が媒質内において前記送信用
トランスデューサの送信領域と交わるように配置され、
前記媒質内からの超音波の反射波を受信する1個又は複
数個の受信用トランスデューサと、前記送信用トランス
デューサから放射された超音波パルスが送受信交叉領域
で散乱した後、前記受信用トランスデューサによって受
信されるまでの時間を計測する手段と、この伝搬時間と
前記送受信トランスデューサの位置関係から媒質内の局
所音速を算出する手段を具備した超音波診断装置におい
て、同一部位を送信又は受信ビームの角度を変えながら
複数回計測しこのとき得られた測定値の平均値から局所
的な音速値を求めることを特徴とした超音波診断装置。
one or more transmitting transducers that transmit ultrasonic waves into a medium, and arranged such that a receiving area intersects a transmitting area of the transmitting transducer in the medium,
one or more reception transducers that receive reflected waves of ultrasound from within the medium, and ultrasonic pulses emitted from the transmission transducer are received by the reception transducer after being scattered in the transmission/reception intersection region. In an ultrasonic diagnostic apparatus equipped with a means for measuring the time until the propagation time and a means for calculating the local sound velocity in the medium from this propagation time and the positional relationship of the transmitting and receiving transducers, An ultrasonic diagnostic device characterized by measuring a plurality of times while changing the speed of sound, and determining a local sound speed value from the average value of the measured values obtained at the time.
JP21266986A 1986-09-11 1986-09-11 Ultrasonic diagnostic apparatus Pending JPS6368141A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21266986A JPS6368141A (en) 1986-09-11 1986-09-11 Ultrasonic diagnostic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21266986A JPS6368141A (en) 1986-09-11 1986-09-11 Ultrasonic diagnostic apparatus

Publications (1)

Publication Number Publication Date
JPS6368141A true JPS6368141A (en) 1988-03-28

Family

ID=16626437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21266986A Pending JPS6368141A (en) 1986-09-11 1986-09-11 Ultrasonic diagnostic apparatus

Country Status (1)

Country Link
JP (1) JPS6368141A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014503065A (en) * 2010-12-22 2014-02-06 コーニンクレッカ フィリップス エヌ ヴェ Estimation of shear wave velocity using center of mass

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014503065A (en) * 2010-12-22 2014-02-06 コーニンクレッカ フィリップス エヌ ヴェ Estimation of shear wave velocity using center of mass

Similar Documents

Publication Publication Date Title
US11944500B2 (en) Determining material stiffness using multiple aperture ultrasound
JP5991917B2 (en) Spatial fine transverse wave ultrasonic vibration measurement sampling
KR101820422B1 (en) High frame rate quantitative doppler flow imaging using unfocused transmit beams
EP0256686A1 (en) Method and apparatus for measuring ultrasonic velocity in a medium by crossed beams
JP3539924B2 (en) A system that measures and displays strain velocity in real time in ultrasonic imaging
Martin Introduction to B-mode imaging
JPH02500464A (en) Method and apparatus for ultrasound beam compensation
JP4074100B2 (en) Ultrasound diagnostic imaging equipment
Kondo et al. An evaluation of an in vivo local sound speed estimation technique by the crossed beam method
JP3866368B2 (en) Ultrasonic diagnostic equipment
JPS6253182B2 (en)
JPS6368141A (en) Ultrasonic diagnostic apparatus
JP2002540910A (en) System and method for three-dimensional real-time ultrasonography
Soozande et al. Imaging scheme for 3-D high-frame-rate intracardiac echography: a simulation study
Popp et al. Ultrasonic diagnostic instruments
Azhari et al. Ultrasound Imaging
US20230380805A1 (en) Systems and methods for tissue characterization using multiple aperture ultrasound
JPS6329630A (en) Ultrasonic sonic velocity measuring apparatus
Wang et al. High-Frequency Endoscopic Ultrasound Imaging With Phase-Corrected-and-Sum and Coherence Factor Weighting
JPS62217946A (en) Ultrasonic measuring apparatus for measuring temperature distribution in body
JPS61290938A (en) Ultrasonic diagnostic apparatus
Zhao et al. Robust shear wave speed measurement using comb-push ultrasound radiation force
WO2023278445A9 (en) System and method for non-invasive determination of pressure in a biological compartment
He et al. Doppler beam steering for blood flow velocity vector imaging
JPS61149130A (en) Ultrasonic diagnostic apparatus