JPS6367815B2 - - Google Patents

Info

Publication number
JPS6367815B2
JPS6367815B2 JP6679184A JP6679184A JPS6367815B2 JP S6367815 B2 JPS6367815 B2 JP S6367815B2 JP 6679184 A JP6679184 A JP 6679184A JP 6679184 A JP6679184 A JP 6679184A JP S6367815 B2 JPS6367815 B2 JP S6367815B2
Authority
JP
Japan
Prior art keywords
rubber
weight
thermoplastic resin
ethylene
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6679184A
Other languages
Japanese (ja)
Other versions
JPS60210649A (en
Inventor
Shigehiro Kamata
Masakatsu Isozumi
Yasuyuki Yaeda
Hironori Matsumoto
Tadanobu Iwasa
Masataka Sasayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Synthetic Chemical Industry Co Ltd
Toyoda Gosei Co Ltd
Original Assignee
Nippon Synthetic Chemical Industry Co Ltd
Toyoda Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Synthetic Chemical Industry Co Ltd, Toyoda Gosei Co Ltd filed Critical Nippon Synthetic Chemical Industry Co Ltd
Priority to JP6679184A priority Critical patent/JPS60210649A/en
Publication of JPS60210649A publication Critical patent/JPS60210649A/en
Publication of JPS6367815B2 publication Critical patent/JPS6367815B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は極めお優れた混緎り加工性及びロヌル
加工性を有する比重の䜎枛された耐酞性に優れた
高硬床ゎム組成物に関する。 車茌分野をはじめずする倚くの工業分野におい
お、軜量化による省゚ネルギヌ、生産性の向䞊、
性胜の向䞊、䜎コスト化、耐久性及び耐腐蝕性等
の目的で、金属から゚チレン―プロピレン系ゎム
を䞻成分ずする高硬床ゎム組成物ぞの切り換えが
進められおいる。たた該高硬床ゎム組成物の優れ
た性胜に着目し、新しい工業的利甚の怜蚎も進め
られおいる。 埓来、高硬床ゎム組成物を埗るために、カヌボ
ンブラツク、シリカなどの充おん剀を高充おんす
る方法および䌞展油を䜎枛する等の方法が行なわ
れ、十分ではないにしろ、目的の高硬床組成物は
埗られおいた。しかし、その反面、加工性、生産
性が悪く、たた比重も倧きくなり、さらに、ゎム
特性の䜎䞋などの問題を有しおおり、高硬床ゎム
組成物の工業的利甚に倧きな支障をきたしおい
た。たた、埓来゜ヌラヌホヌス、氎道ホヌス、防
氎シヌトなどに優れた耐候性、耐氎性を有する゚
チレン―プロピレン系ゎムが甚いられおいるが、
昚今、さらに厳しい䜿甚条件にも耐えうるこずを
目的に゚チレン―プロピレン系ゎムぞの優れた耐
酞性の付䞎が芁求されおいる。 本発明の目的は良奜な混緎り加工性及びロヌル
加工性を有し、比重が軜くおか぀耐酞性にすぐれ
た高硬床ゎム組成物を提䟛するこずにある。 本発明の高硬床ゎム組成物ぱチレン―α―オ
レフむン―非共圹ゞ゚ン共重合䜓ゎム(A)100重量
郚に察し、゚チレン―α―オレフむン共重合䜓ゎ
ムおよびたたぱチレン―α―オレフむン―非
共圹ゞ゚ン共重合䜓ゎムの存圚䞋に、芳銙族ビニ
ル化合物を必須成分ずする単量䜓を共重合しお埗
られる極限粘床が0.2〜1.5dlである熱可
塑性暹脂(B)〜80重量郚及び゚チレン―α―オレ
フむン共重合䜓ゎムおよびたたぱチレン―α
―オレフむン―非共圹ゞ゚ン共重合䜓ゎムの存圚
䞋に、塩化ビニル単量䜓を共重合しお埗られる熱
可塑性暹脂(C)10〜80重量郚を含むこずを特城ずす
る。 本発明においお、䞊蚘゚チレン―α―オレフむ
ン―非共圹ゞ゚ン共重合䜓ゎム(A)は、特に制限さ
れるものではないが、α―オレフむン類ずしお
は、―ブテン、―ブテン、プロピレンなどが
挙げられ、特にプロピレンが奜たしい。 非共圹ゞ゚ンずしおは、゚チリデンノルボルネ
ン、―テトラヒドロむンデン、ゞ
シクロペンタゞ゚ン、―ヘキサゞ゚ン、プ
ロペニルノルボルネン、メチリデンノルボルネン
等が挙げられる。 たた、熱可塑性暹脂(B)の基䜓ゎムは、゚チレン
―α―オレフむン共重合䜓ゎム以䞋、EPMず
蚘すおよびたたぱチレン―α―オレフむン
―非共圹ゞ゚ン共重合䜓ゎム以䞋、EPDMず
蚘すであり、α―オレフむン類および非共圹ゞ
゚ンは先の(A)で説明したものである。共重合䜓ゎ
ムはEPDMが奜たしい。 グラフト重合に䜿甚される芳銙族ビニル単量䜓
ずしおは、特に制限するものではないが、その䞀
䟋ずしおスチレン、α―メチルスチレン、―メ
チルスチレン、ビニルトル゚ン、該ハロゲン眮換
スチレン等があり、これらを皮たたは皮以䞊
で䜿甚する。奜たしくはスチレン、α―メチルス
チレンを甚いる。 熱可塑性暹脂(B)䞭の暹脂成分䞭の芳銙族ビニル
単量䜓成分は、奜たしくは30重量以䞊、特に奜
たしくは50重量以䞊である。 芳銙族ビニル単量䜓ず共に共重合䜓に䜿甚でき
る単量䜓を以䞋に瀺す。 シアン化ビニル単量䜓ずしおは、アクリロニト
リル、メタクリロニトリルがある。これらは皮
たたは皮以䞊を䜿甚する。 メタアクリル酞゚ステル単量䜓ずしおは、
アルキルアクリレヌト、アルキルメタクリレヌト
及び゚チレン系䞍飜和カルボン酞ずヒドロキシア
ルキルの゚ステルなどがあり、アクリルアクリレ
ヌトずしおは、䟋えば、メチルアクリレヌト、゚
チルアクリレヌト、ブチルアクリレヌト等、アル
キルメタクリレヌトずしおは、䟋えば、メチルメ
タクリレヌト、゚チルメタクリレヌト等が挙げら
れる。 ゚チレン系䞍飜和カルボン酞のヒドロキシアル
キル゚ステルずしおは、䟋えばβ―ヒドロキシ゚
チルアクリレヌト、β―ヒドロキシ゚チルメタク
リレヌト等が挙げられる。これらは皮たたは
皮以䞊で䜿甚できるが、奜たしくはメチルメタク
リレヌトが良い。 共重合可胜な他の単量䜓ずしおは、無氎マレむ
ン酞、無氎むタコン酞、アクリル酞、メタクリル
酞、アクリルアミド、ゞビニルベンれン、トリメ
チロヌルプロパン、トリアクリレヌト等がある。
これらは皮又は皮以䞊で䜿甚するこずができ
る。 熱可塑性暹脂(B)䞭の単量䜓成分ずしお、芳銙族
ビニル単量䜓以倖に䞊蚘した単量䜓を䜿甚するこ
ずができる。これらの単量䜓は皮又は皮以䞊
で䜿甚するこずができる。奜たしい単量䜓の組合
せずしおは、芳銙族ビニル単量䜓―シアン化ビニ
ル単量䜓、芳銙族ビニル単量䜓―メタアクリ
ル酞゚ステル単量䜓、芳銙族ビニル単量䜓―シア
ン化ビニル単量䜓―メタアクリル酞゚ステル
単量䜓である。 本発明の目的達成のために、熱可塑性暹脂(B)äž­
のEPMEPDMが倧きな圹割をはたす。すなわ
ち、EPM、EPDMを䜿甚するこずで、ロヌル加
工性および抌出し加工性が優れ、か぀性胜の優れ
た高硬床ゎム組成物が埗られるが、EPM
EPDMにかえおゞ゚ン系ゎムを甚いた堎合、た
たはゎム状重合䜓を䜿甚しない熱可塑性暹脂を甚
いた堎合には、本発明の目的ずする高硬床ゎム組
成物は埗られない。 ゚チレン―α―オレフむン―非共圹ゞ゚ン共重
合䜓ゎム(A)100重量郚に察しお、熱可塑性暹脂(B)
は〜80重量郚䜿甚し、奜たしくは10〜80重量郹
甚いる。䞊蚘熱可塑性暹脂(B)が、本発明の範囲を
越えるず本発明の目的ずする効果が埗られない。
すなわち、熱可塑性暹脂(B)の配合量が重量郚未
満であるず、加工性の優れた高硬床ゎム組成物が
埗られず、䞀方、80重量郚を越えるず、優れた加
工性が埗られない。 たた本発明の高硬床ゎム組成物を埗るための䞊
蚘熱可塑性暹脂のゎム状重合䜓の奜たしい含有
率、グラフト率※、 ※グラフト率ゎム状重合䜓にグラフトした暹脂成
分重量ゎム状重合䜓重量×100 メチル゚チルケトン可溶分の極限粘床〔η〕30
℃ MEKを以䞋に瀺す。 ゎム状重合䜓の含有率は〜70重量であるこ
ずが奜たしく、特に奜たしくは〜60重量、さ
らに奜たしくは10〜50重量である。 グラフト率は〜200、奜たしくは21〜120
、さらに奜たしくは25〜100である。 極限粘床は0.2〜1.5dlであり、特に奜
たしくは0.25〜1.1dlである。極限粘床は
0.2dl未満であるず高硬床ゎム組成物が埗
られず、䞀方1.5dlを越えるず優れた加工
性が埗られない。䞊蚘熱可塑性暹脂の補造方法
は、特に制限するものではなく、乳化重合方法、
けん濁重合方法、溶液重合方法、バルク重合方法
およびこれらの重合方法を組合せた方法により補
造するこずができる。 次に熱可塑性暹脂(C)の暹脂圢成成分ずしお塩化
ビニル単量䜓あるいはこの倖に本発明の目的を損
わない範囲で他の共重合可胜なビニル単量䜓を䜿
甚するこずができる。熱可塑性暹脂(C)の補造法は
䟋えば特開昭50―33286、同50―153089号公報に
開瀺されおいる。 熱可塑性暹脂(C)䞭の基䜓ゎム含有率は10〜50重
量であるこずが奜たしく、特に奜たしくは20〜
50重量である。゚チレン―α―オレフむン―非
共圹ゞ゚ン共重合䜓ゎム(A)100重量郚に察し、熱
可塑性暹脂(C)は10〜80重量郚、奜たしくは20〜80
重量郚甚いる。 䞊蚘熱可塑性暹脂(C)の䜿甚量が䞊蚘の範囲を越
えるず、本発明の効果が埗られない。すなわち熱
可塑性暹脂組成物(C)の配合量が10重量郚未満であ
るず加工性、耐酞性の優れた高硬床ゎム組成物が
埗られず、䞀方80重量郚を越えるず優れた加工性
が埗られない。 本発明の高硬床ゎム組成物を埗る方法ずしお
は、䟋えば、通垞のゎム混緎り機、すなわちバン
バリヌミキサヌ、オヌプンロヌルを甚い、
EPDMず熱可塑性暹脂、その他配合剀などを混
緎りしお、通垞䞀般に甚いられる加硫剀を添加し
お加硫を行なわせしめるこずにより埗られる。 本発明の高硬床ゎム組成物には、芁求される性
胜に応じお、各皮の添加剀、加硫剀、ゎム状重合
䜓、暹脂、老化防止剀、滑剀、可塑剀、玫倖線吞
収剀、発泡剀などを添加しおも良い。 添加できる他の既知のゎム状重合䜓および暹脂
ずしおは、䟋えば、ポリブタゞ゚ン、ブタゞ゚ン
―スチレン共重合䜓、アクリルゎム、スチレン―
ブタゞ゚ンブロツク重合䜓、スチレン―ブタゞ゚
ン―スチレンラゞアルテレブロツク重合䜓、ポリ
プロピレン、ブタゞ゚ン―アクリロニトリル共重
合䜓、ポリ塩化ビニル、ポリカヌボネヌト、
PETPBT、ポリアセタヌル、ポリアミド、゚
ポキシ暹脂、ポリフツ化ビニリデン、ポリスルホ
ン、゚チレン―酢酞ビニル共重合䜓、ポリむ゜プ
レン、倩然ゎム、塩玠化ブチルゎム、塩玠化ポリ
゚チレン、PPS暹脂、ポリ゚ヌテル゚ヌテルケト
ン等が挙げられる。 本発明の高硬床ゎム組成物は、暹脂の特城であ
る高硬床性ず優れた加工性、及びゎムの特城であ
るゎム匟性をあわせも぀た優れた性胜を持ち、か
぀軜く、さらに耐久性、耐腐蝕性を有しおいるの
で、各皮の工業分野、䟋えば車茌分野、船舶分
野、建築分野、土朚分野、電気分野、スポヌツ甚
品、家具、医療噚具などに䜿甚されおいる金属、
たたはその他の材料の代替ずしお䜿甚するこずが
でき、さらに新しい工業甚途にも䜿甚できる。䟋
えば自動車のバンパヌ、フロントグリル、窓枠、
ボデむヌの倖装材ずしお䜿甚するこずができる。
たた発泡䜓にするこずで、各皮のシヌル材ずしお
耐久性、倖芳、匷床、遮ぞい性、遮音性に優れた
組成物を埗るこずができる。 さらに、二硫化モリブデン、高玚脂肪酞アミ
ド、シリコヌン油などの滑剀を添加するこずによ
り、自動車甚ワむパヌ、グラスランずしお動マサ
ツ係数の著しく小さいスナツピヌ性に優れた組成
物を埗るこずができる。 以䞋、本発明を実斜䟋、比范䟋によ぀お具䜓的
に説明する。 実斜䟋  本発明のゎム組成物に甚いる熱可塑性暹脂(B)の
補造法の䞀䟋を瀺す。゚チレン―プロピレン―
非共圹ゞ゚ン共重合䜓スチレンアクリロニト
リル共重合䜓の補造法 パドル型撹拌翌を備えたステンレス補反応噚内
を窒玠で眮換したのち、ペり玠䟡15、ムヌニヌ粘
床65、プロピレン含有率43重量、ゞ゚ン成分ず
しお゚チリデンノルボルネンを含むEPDM日本
合成ゎム株匏䌚瀟補JSR EP2424郚、スチレン
56郚、アクリロニトリル20郚、トル゚ン100郚を
仕蟌み、50℃におゎムが完党に溶解するたで撹拌
し、―ドデシルメルカプタン0.1郚、ゞベンゟ
むルパヌオキサむド0.2郚、―ブチルパヌオキ
シ――プロピルカヌボネヌト0.2郚、ゞクミル
パヌオキサむド0.1郚を加えたのち昇枩し、80℃
で時間、次に100℃に昇枩しお時間、さらに
125℃に昇枩しお時間、合蚈時間重合反応を
行な぀た。 氎蒞気蒞溜によ぀お未反応単量䜓ず溶媒を留去
したのち、粉砕、也燥しお重合䜓を埗た。 かくしお埗られた熱可塑性暹脂(B)のグラフト率
はであり、〔η〕30℃ MEKは0.50であ぀た。 䞊蚘グラフト率は次のようにしお求めた。䞊蚘
(B)を玄採取しこれを粟秀し、この詊料䞭のゎ
ム状重合䜓量をW1ずする。ゎム状重合䜓量は重
合時の仕蟌ゎム状重合䜓量ずモノマヌ転化率より
求める。次にメチル゚チルケトンMEK20c.c.
を加え、宀枩で時間振ずうを行ない、そののち
遠心分離機を甚いお20000r.p.m.、60分の条件で
MEK可溶分ず䞍溶分に分離し、䞍溶分を也燥し
おこれを粟秀しW2ずする。 次に、次匏によ぀お、グラフト率を求める。 グラフト率W2−W1W1×100 䞊蚘〔η〕30℃ MEKは次のようにしお求めた。 䞊蚘MEK可溶分にメタノヌルを添加しおポリ
マヌ分を回収し、このポリマヌをりベロヌド粘床
蚈を甚いMEKを溶媒ずしお30℃の枩床で枬定し
た。 実斜䟋  衚―に実斜䟋、実斜䟋、実斜䟋の配合
凊分および詊隓結果を瀺す。なお、衚―に瀺た
熱可塑性暹脂(B)は実斜䟋で補造された組成物で
あり、熱可塑性暹脂(C)ぱチレン―プロピレン―
゚チリデンノルボルネン共重合䜓ゎム成分35重量
ず塩化ビニル暹脂成分65重量よりなるもので
ある。配合凊方はすべお重量郚である。加硫はス
チヌムプレス加硫で160℃×25分で実斜された。 匕぀匵り詊隓はJIS  6301に拠぀た。 混緎り加工性は混緎り終了埌のゎムのたずたり
ぐあい、ゎム衚面肌を目芖法により決定した。 ロヌル加工性はロヌル巻き付き性及びゎム衚面
肌を目芖法により決定した。 耐酞性は加硫ゎム詊料片を有効塩玠濃床
1000ppmの次亜塩玠酞ナトリりム氎溶液に60℃×
720時間浞挬埌のゎムの倖芳で良吊を決定した。
The present invention relates to a high hardness rubber composition having extremely excellent kneading processability and roll processability, reduced specific gravity, and excellent acid resistance. In many industrial fields including the vehicle field, energy savings and productivity improvements are achieved through weight reduction.
For the purpose of improving performance, reducing costs, durability, and corrosion resistance, a switch from metals to high-hardness rubber compositions containing ethylene-propylene rubber as a main component is underway. Also, focusing on the excellent performance of the high hardness rubber composition, new industrial applications are being investigated. Conventionally, in order to obtain a high hardness rubber composition, methods such as highly filling fillers such as carbon black and silica and methods such as reducing extender oil have been carried out, but although they are not sufficient, it is difficult to obtain the desired high hardness composition. was obtained. However, on the other hand, it has problems such as poor processability and productivity, high specific gravity, and deterioration of rubber properties, which greatly hinders the industrial use of high-hardness rubber compositions. . In addition, ethylene-propylene rubber, which has excellent weather and water resistance, has been used in solar hoses, water hoses, waterproof sheets, etc.
In recent years, there has been a demand for ethylene-propylene rubber to have excellent acid resistance in order to withstand even more severe usage conditions. An object of the present invention is to provide a high hardness rubber composition that has good kneading processability and roll processability, has a light specific gravity, and has excellent acid resistance. The high hardness rubber composition of the present invention contains ethylene-α-olefin copolymer rubber and/or ethylene-α-olefin non-conjugated diene copolymer rubber and/or ethylene-α-olefin non-conjugated diene copolymer rubber (A). Thermoplastic resin (B) 5 having an intrinsic viscosity of 0.2 to 1.5 (dl/g) obtained by copolymerizing a monomer containing an aromatic vinyl compound as an essential component in the presence of a conjugated diene copolymer rubber ~80 parts by weight and ethylene-α-olefin copolymer rubber and/or ethylene-α
-Olefin-nonconjugated diene copolymer It is characterized by containing 10 to 80 parts by weight of a thermoplastic resin (C) obtained by copolymerizing a vinyl chloride monomer in the presence of a rubber. In the present invention, the ethylene-α-olefin-nonconjugated diene copolymer rubber (A) is not particularly limited, but examples of α-olefins include 1-butene, 2-butene, propylene, etc. Propylene is particularly preferred. Examples of the non-conjugated diene include ethylidenenorbornene, 4,7,8,9-tetrahydroindene, dicyclopentadiene, 1,4-hexadiene, propenylnorbornene, methylidenenorbornene, and the like. The base rubber of the thermoplastic resin (B) is ethylene-α-olefin copolymer rubber (hereinafter referred to as EPM) and/or ethylene-α-olefin-nonconjugated diene copolymer rubber (hereinafter referred to as EPDM). ), and the α-olefins and nonconjugated dienes are those explained in (A) above. The copolymer rubber is preferably EPDM. The aromatic vinyl monomer used in graft polymerization is not particularly limited, but examples thereof include styrene, α-methylstyrene, p-methylstyrene, vinyltoluene, and the halogen-substituted styrene. are used singly or in combination of two or more. Preferably, styrene or α-methylstyrene is used. The aromatic vinyl monomer component in the resin component of the thermoplastic resin (B) is preferably 30% by weight or more, particularly preferably 50% by weight or more. Monomers that can be used in the copolymer along with the aromatic vinyl monomer are shown below. Examples of vinyl cyanide monomers include acrylonitrile and methacrylonitrile. These may be used alone or in combination of two or more. As a (meth)acrylic acid ester monomer,
There are alkyl acrylates, alkyl methacrylates, and esters of ethylenically unsaturated carboxylic acids and hydroxyalkyl. Acrylic acrylates include, for example, methyl acrylate, ethyl acrylate, butyl acrylate, and alkyl methacrylates include, for example, methyl methacrylate, ethyl methacrylate. etc. Examples of the hydroxyalkyl ester of ethylenically unsaturated carboxylic acid include β-hydroxyethyl acrylate and β-hydroxyethyl methacrylate. These are one or two types
More than one species can be used, but methyl methacrylate is preferred. Other copolymerizable monomers include maleic anhydride, itaconic anhydride, acrylic acid, methacrylic acid, acrylamide, divinylbenzene, trimethylolpropane, and triacrylate.
These can be used alone or in combination of two or more. As the monomer component in the thermoplastic resin (B), the above-mentioned monomers can be used in addition to the aromatic vinyl monomer. These monomers can be used alone or in combination of two or more. Preferred monomer combinations include aromatic vinyl monomer-vinyl cyanide monomer, aromatic vinyl monomer-(meth)acrylic acid ester monomer, and aromatic vinyl monomer-vinyl cyanide. Monomer - (meth)acrylic acid ester monomer. In order to achieve the purpose of the present invention, EPM and EPDM in the thermoplastic resin (B) play a major role. That is, by using EPM and EPDM, a high hardness rubber composition with excellent roll processability and extrusion processability and excellent performance can be obtained.
If a diene rubber is used instead of EPDM, or if a thermoplastic resin without a rubbery polymer is used, the high hardness rubber composition targeted by the present invention cannot be obtained. Thermoplastic resin (B) for 100 parts by weight of ethylene-α-olefin-nonconjugated diene copolymer rubber (A)
is used in an amount of 5 to 80 parts by weight, preferably 10 to 80 parts by weight. If the thermoplastic resin (B) exceeds the range of the present invention, the desired effects of the present invention cannot be obtained.
That is, if the blending amount of the thermoplastic resin (B) is less than 5 parts by weight, a high hardness rubber composition with excellent processability cannot be obtained, whereas if it exceeds 80 parts by weight, excellent processability cannot be obtained. I can't. In addition, preferred content of the rubbery polymer of the thermoplastic resin to obtain the high hardness rubber composition of the present invention, grafting rate *, *(grafting rate = weight of resin component grafted to rubbery polymer / rubbery polymer Combined weight x 100%) Intrinsic viscosity of methyl ethyl ketone soluble portion ([η] 30
°C MEK) is shown below. The content of the rubbery polymer is preferably 5 to 70% by weight, particularly preferably 5 to 60% by weight, and even more preferably 10 to 50% by weight. Grafting rate is 5-200%, preferably 21-120
%, more preferably 25 to 100%. The intrinsic viscosity is 0.2 to 1.5 (dl/g), particularly preferably 0.25 to 1.1 (dl/g). The intrinsic viscosity is
If it is less than 0.2 (dl/g), a high hardness rubber composition cannot be obtained, while if it exceeds 1.5 (dl/g), excellent processability cannot be obtained. The method for producing the thermoplastic resin described above is not particularly limited, and includes emulsion polymerization method,
It can be produced by a suspension polymerization method, a solution polymerization method, a bulk polymerization method, or a combination of these polymerization methods. Next, as a resin-forming component of the thermoplastic resin (C), vinyl chloride monomer or other copolymerizable vinyl monomers can be used as long as the object of the present invention is not impaired. A method for producing the thermoplastic resin (C) is disclosed, for example, in Japanese Patent Application Laid-open Nos. 50-33286 and 50-153089. The base rubber content in the thermoplastic resin (C) is preferably 10 to 50% by weight, particularly preferably 20 to 50% by weight.
50% by weight. For 100 parts by weight of ethylene-α-olefin-nonconjugated diene copolymer rubber (A), the thermoplastic resin (C) is 10 to 80 parts by weight, preferably 20 to 80 parts by weight.
Use parts by weight. If the amount of the thermoplastic resin (C) used exceeds the above range, the effects of the present invention cannot be obtained. That is, if the amount of the thermoplastic resin composition (C) is less than 10 parts by weight, a high hardness rubber composition with excellent processability and acid resistance cannot be obtained, while if it exceeds 80 parts by weight, excellent processability will not be obtained. I can't get it. As a method for obtaining the high hardness rubber composition of the present invention, for example, using a normal rubber kneading machine, that is, a Banbury mixer, an open roll,
It is obtained by kneading EPDM, a thermoplastic resin, and other compounding agents, and then adding a commonly used vulcanizing agent to perform vulcanization. The high hardness rubber composition of the present invention contains various additives, vulcanizing agents, rubbery polymers, resins, anti-aging agents, lubricants, plasticizers, ultraviolet absorbers, and blowing agents, depending on the required performance. etc. may be added. Other known rubbery polymers and resins that can be added include, for example, polybutadiene, butadiene-styrene copolymers, acrylic rubber, styrene-copolymers,
Butadiene block polymer, styrene-butadiene-styrene radial teleblock polymer, polypropylene, butadiene-acrylonitrile copolymer, polyvinyl chloride, polycarbonate,
Examples include PET, PBT, polyacetal, polyamide, epoxy resin, polyvinylidene fluoride, polysulfone, ethylene-vinyl acetate copolymer, polyisoprene, natural rubber, chlorinated butyl rubber, chlorinated polyethylene, PPS resin, polyether ether ketone, etc. . The high-hardness rubber composition of the present invention has excellent performance by combining high hardness and excellent processability, which are characteristics of resins, and rubber elasticity, which is characteristics of rubber, and is light, durable, and durable. Because of its corrosive properties, metals used in various industrial fields, such as vehicles, ships, architecture, civil engineering, electrical fields, sporting goods, furniture, medical equipment, etc.
It can also be used as a substitute for other materials, and can also be used in new industrial applications. For example, car bumpers, front grills, window frames,
It can be used as an exterior material for the body.
Furthermore, by forming the composition into a foam, it is possible to obtain a composition that is excellent in durability, appearance, strength, shielding performance, and sound insulation performance as various sealing materials. Furthermore, by adding a lubricant such as molybdenum disulfide, higher fatty acid amide, silicone oil, etc., it is possible to obtain a composition with a significantly small dynamic mass coefficient and excellent snappy properties for use in automobile wipers and glass runs. Hereinafter, the present invention will be specifically explained using Examples and Comparative Examples. Example 1 An example of a method for producing the thermoplastic resin (B) used in the rubber composition of the present invention is shown. (ethylene-propylene-
Manufacturing method of non-conjugated diene copolymer/styrene/acrylonitrile copolymer) After purging the interior of a stainless steel reactor equipped with a paddle-type stirring blade with nitrogen, the iodine value was 15, the Mooney viscosity was 65, and the propylene content was 43% by weight. , 24 parts of EPDM (JSR EP24 manufactured by Japan Synthetic Rubber Co., Ltd.) containing ethylidenenorbornene as a diene component, styrene
Add 56 parts of acrylonitrile, 20 parts of acrylonitrile, and 100 parts of toluene, and stir at 50°C until the rubber is completely dissolved. After adding 0.2 part of carbonate and 0.1 part of dicumyl peroxide, the temperature was raised to 80℃.
for 3 hours, then raise the temperature to 100℃ for 3 hours, and then
The temperature was raised to 125°C and the polymerization reaction was carried out for 3 hours, for a total of 9 hours. After removing unreacted monomers and solvent by steam distillation, the mixture was crushed and dried to obtain a polymer. The graft ratio of the thermoplastic resin (B) thus obtained was 5%, and the [η] MEK at 30°C was 0.50. The above graft ratio was determined as follows. the above
Approximately 1 g of (B) is collected and accurately weighed, and the amount of rubbery polymer in this sample is defined as W1 . The amount of rubbery polymer is determined from the amount of rubbery polymer charged during polymerization and the monomer conversion rate. Next, methyl ethyl ketone (MEK) 20c.c.
was added, shaken at room temperature for 5 hours, and then centrifuged at 20,000 rpm for 60 minutes.
Separate MEK into soluble and insoluble components, dry the insoluble components, and weigh accurately to obtain W2 . Next, the grafting rate is determined using the following formula. Grafting rate=W 2 −W 1 /W 1 ×100 The above [η] 30°C MEK was determined as follows. Methanol was added to the above MEK soluble content to recover the polymer content, and this polymer was measured at a temperature of 30°C using MEK as a solvent using an Ubbelod viscometer. Examples 2, 3, 4 Table 1 shows the formulation and test results of Examples 2, 3, and 4. The thermoplastic resin (B) shown in Table 1 is the composition produced in Example 1, and the thermoplastic resin (C) is the ethylene-propylene composition.
It consists of 35% by weight of ethylidene norbornene copolymer rubber component and 65% by weight of vinyl chloride resin component. All formulations are in parts by weight. Vulcanization was carried out using steam press vulcanization at 160°C for 25 minutes. The tensile test was based on JIS K 6301. The kneading processability was determined by visually observing the cohesion of the rubber and the surface texture of the rubber after kneading. Roll processability was determined by visual observation of roll wrapping properties and rubber surface texture. Acid resistance is determined by measuring the effective chlorine concentration of a vulcanized rubber sample piece.
60℃ x 1000ppm sodium hypochlorite aqueous solution
Quality was determined by the appearance of the rubber after 720 hours of immersion.

【衚】【table】

【衚】 比范䟋  衚―に比范䟋―、比范䟋―、比范䟋―
、比范䟋―、比范䟋―及び比范䟋―の配
合凊方および詊隓結果を瀺す。 衚―に蚘したEP21EP51および加硫剀、配
合剀は実斜䟋で甚いたものず同䞀であり、ABS
暹脂は日本合成ゎム株匏䌚瀟補JSR ABS 10で
あり、ポリスチレン暹脂は䞉井東圧化孊株匏䌚瀟
補トヌポレツクス550である。配合凊方は党お重
量郚である。 加硫方法、匕぀匵り詊隓、混緎り加工性、ロヌ
ル加工性及び耐酞性の枬定は実斜䟋ず同䞀方法に
拠぀た。 なお比范䟋―は、本発明ゎム組成物を構成す
る熱可塑性暹脂(B)を陀きカヌボンブラツクの充お
ん量を増やした䟋であり、比范䟋―は熱可塑性
暹脂(C)を、本発明の効果を䞎える䞊限を越えお配
合した䟋であり、比范䟋―、比范䟋―は熱可
塑性暹脂(B)に代えお、ABS暹脂、ポリスチレン
暹脂を配合した䟋である。たた比范䟋―は本発
明ゎム組成物を構成する熱可塑性暹脂(C)を陀きカ
ヌボンブラツクの充おん量を増やした䟋である。
さらに比范䟋―は、本発明の範囲を倖れたゎム
状重合䜓を配合した䟋である。このゎム状重合䜓
の補造法の䞀䟋を瀺す。 ゚チレン―プロピレン非共圹ゞ゚ン共重合
䜓スチレンアクリロニトリル共重合䜓の補造
方法 ペり玠䟡15、ムヌニヌ粘床65、プロピレン含有
率43重量ゞ゚ン成分ずしお゚チリデンノルボル
ネンを含むEPDA日本合成ゎム株匏䌚瀟補JSR
EP 24の―ヘキサン10溶液1000重量郚に、
䞍均化ロゞン酞カリりムの15氎溶液140重量郹
を加え、ホモミキサヌで撹拌し、乳化させる。次
いで氎蒞気蒞留を行な぀お溶剀を完党に陀去し、
粒埄1000〜10000Åのラテツクスを埗た。このラ
テツクスのゎム固圢分濃床を10ずしお、ペヌス
ポリマヌずする。 組成  EP24ラテツクスゎム固圢分濃床10
900重量郹 䞍均化ロゞン酞カリりム15氎溶液  氎酞化ナトリりム 0.04重量郹 スチレン 10 アクリロニトリル 5.2 硫酞第鉄 0.008 ピロリン酞ナトリりム 0.4 デキストロヌズ 0.5 クメンハむドロパヌオキサむド 0.06 æ°Ž 20 組成  スチレン  アクリロニトリル  䞍均化ロゞン酞カリりム15氎溶液 11 氎酞化ナトリりム 0.14 クメンハむドロパヌオキサむド 0.14 æ°Ž 20 䞊蚘重合凊方に埓い、たず組成物をフラスコ
に仕蟌み、重合枩床70℃で時間窒玠気流䞋で重
合を行なう。次いで組成を重合枩床70℃で時
間にわた぀お連続添加し、実質的に党量のビニル
単量䜓を重合させる。このようにしお埗られた重
合䜓ラテツクスに硫酞を加え、加熱しお凝固さ
せ、氎掗、脱氎、也燥しお重合䜓を埗る。 かくしお埗られた重合䜓はグラフト率であ
り、〔η〕30℃ MEKは0.18のゎム状グラフト重合䜓で
あ぀た。なお、䞊蚘グラフト率、〔η〕30℃ MEKは実
斜䟋ず同様の方法により求めた。比范䟋では
高硬床組成物がえられない。
[Table] Comparative Examples 1, 2, 3, 4, 5, 6 Table-2 shows Comparative Example-1, Comparative Example-2, Comparative Example-
3. The formulations and test results of Comparative Example-4, Comparative Example-5, and Comparative Example-6 are shown. EP21, EP51, vulcanizing agents, and compounding agents listed in Table 2 are the same as those used in the examples, and ABS
The resin was JSR ABS 10 manufactured by Japan Synthetic Rubber Co., Ltd., and the polystyrene resin was Toporex 550 manufactured by Mitsui Toatsu Chemical Co., Ltd. All formulations are in parts by weight. The vulcanization method, tensile test, kneading processability, roll processability and acid resistance measurements were carried out in the same manner as in the examples. Comparative Example 1 is an example in which the thermoplastic resin (B) constituting the rubber composition of the present invention is excluded and the amount of carbon black filled is increased, and Comparative Example 2 is an example in which the thermoplastic resin (C) constituting the rubber composition of the present invention is increased. This is an example in which the upper limit was exceeded to achieve the effect of 1. Comparative Example-3 and Comparative Example-4 are examples in which ABS resin and polystyrene resin were blended in place of the thermoplastic resin (B). Comparative Example 5 is an example in which the thermoplastic resin (C) constituting the rubber composition of the present invention was removed and the amount of carbon black filled was increased.
Furthermore, Comparative Example 6 is an example in which a rubbery polymer outside the scope of the present invention was blended. An example of a method for producing this rubbery polymer will be shown. (Production method of ethylene-propylene non-conjugated diene copolymer/styrene/acrylonitrile copolymer) EPDA containing ethylidene norbornene as the diene component (manufactured by Japan Synthetic Rubber Co., Ltd.) with an iodine value of 15, a Mooney viscosity of 65, and a propylene content of 43% by weight. J.S.R.
EP 24) in 1000 parts by weight of a 10% n-hexane solution,
Add 140 parts by weight of a 15% aqueous solution of disproportionated potassium rosinate, stir with a homomixer, and emulsify. The solvent is then completely removed by steam distillation.
A latex with a particle size of 1000-10000 Å was obtained. This latex has a rubber solid content concentration of 10% and is used as a pace polymer. Composition A; EP24 latex (rubber solids concentration 10%)
900 parts by weight Disproportionated potassium rosinate 15% aqueous solution 5 Sodium hydroxide 0.04 parts by weight Styrene 10 Acrylonitrile 5.2 Ferrous sulfate 0.008 Sodium pyrophosphate 0.4 Dextrose 0.5 Cumene hydroperoxide 0.06 Water 20 Composition B: Styrene 7 Acrylonitrile 3 Balanced potassium rosinate 15% aqueous solution 11 Sodium hydroxide 0.14 Cumene hydroperoxide 0.14 Water 20 According to the above polymerization recipe, composition A was first charged into a flask and polymerized at a polymerization temperature of 70°C for 1 hour under a nitrogen stream. Composition B was then continuously added at a polymerization temperature of 70° C. over a period of 2 hours to polymerize substantially all of the vinyl monomer. Sulfuric acid is added to the polymer latex thus obtained, the mixture is coagulated by heating, washed with water, dehydrated, and dried to obtain a polymer. The thus obtained polymer had a graft ratio of 8%, and was a rubbery graft polymer with [η] MEK at 30°C of 0.18. Note that the above-mentioned graft ratio and [η] 30°C MEK were determined by the same method as in Example 1. In Comparative Example 5, a high hardness composition cannot be obtained.

【衚】【table】

Claims (1)

【特蚱請求の範囲】[Claims]  ゚チレン―α―オレフむン―非共圹ゞ゚ン共
重合䜓ゎム(A)100重量郚、゚チレン―α―オレフ
むンおよびたたぱチレン―α―オレフむン―
非共圹ゞ゚ン共重合䜓ゎムの存圚䞋芳銙族ビニル
化合物を必須成分ずする単量䜓を共重合させお埗
られる、極限粘床が0.2〜1.5dlの熱可塑性暹
脂(B)〜80重量郚及び゚チレン―α―オレフむン
およびたたぱチレン―α―オレフむン―非共
圹ゞ゚ン共重合䜓ゎムの存圚䞋塩化ビニルを共重
合しお埗られる熱可塑性暹脂(C)10〜80重量郚を含
有するこずを特城ずする高硬床ゎム組成物。
1 100 parts by weight of ethylene-α-olefin-nonconjugated diene copolymer rubber (A), ethylene-α-olefin and/or ethylene-α-olefin
5 to 80 weight thermoplastic resin (B) with an intrinsic viscosity of 0.2 to 1.5 dl/g obtained by copolymerizing a monomer containing an aromatic vinyl compound as an essential component in the presence of a nonconjugated diene copolymer rubber and 10 to 80 parts by weight of a thermoplastic resin (C) obtained by copolymerizing vinyl chloride in the presence of ethylene-α-olefin and/or ethylene-α-olefin-nonconjugated diene copolymer rubber. A high hardness rubber composition characterized by:
JP6679184A 1984-04-05 1984-04-05 High-hardness rubber composition Granted JPS60210649A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6679184A JPS60210649A (en) 1984-04-05 1984-04-05 High-hardness rubber composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6679184A JPS60210649A (en) 1984-04-05 1984-04-05 High-hardness rubber composition

Publications (2)

Publication Number Publication Date
JPS60210649A JPS60210649A (en) 1985-10-23
JPS6367815B2 true JPS6367815B2 (en) 1988-12-27

Family

ID=13326033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6679184A Granted JPS60210649A (en) 1984-04-05 1984-04-05 High-hardness rubber composition

Country Status (1)

Country Link
JP (1) JPS60210649A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992003501A1 (en) * 1990-08-22 1992-03-05 Sumitomo Chemical Company, Limited Thermoplastic elastomer composition

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2664726B2 (en) * 1988-05-23 1997-10-22 䞉井東圧化孊株匏䌚瀟 Rubber-modified styrene resin composition with excellent sliding properties

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992003501A1 (en) * 1990-08-22 1992-03-05 Sumitomo Chemical Company, Limited Thermoplastic elastomer composition

Also Published As

Publication number Publication date
JPS60210649A (en) 1985-10-23

Similar Documents

Publication Publication Date Title
EP1198513B1 (en) Mixtures of thermoplastic elastomers and polar polymers
JP3981845B2 (en) Acrylic rubber composition and vulcanizate
JP4628506B2 (en) Thermoplastic resin composition
US5927029A (en) Composition having low compression set
JPS6367815B2 (en)
JPS62288645A (en) Thermoplastic resin composition
JPH11130825A (en) Rubber-modified thermoplastic resin
JPH0649813B2 (en) Thermoplastic elastomer composition
JPS6036214B2 (en) Vulcanizable elastomer composition
JP3801696B2 (en) Polymer composition having small compression set and method for producing the same
JP3491077B2 (en) Polymer composition
JP3348471B2 (en) Rubber composition
JP4055979B2 (en) Thermoplastic resin composition
JPS6247208B2 (en)
KR860001431B1 (en) A blended thermoplastic resin composition
CA2064426A1 (en) Vulcanizable rubber composition and vulcanized rubber product
JPS6063242A (en) Highly rigid rubber composition
US3591657A (en) Blending resin and high transparency high impact strength vinyl chloride polymer blends containing same
JPH0356589B2 (en)
JP2679092B2 (en) Matte thermoplastic resin composition
JPH11130826A (en) Rubber-modified thermoplastic resin and its composition
JPH11302338A (en) Rubber-modified thermoplastic resin
JPH06207050A (en) Production of vulcanizable rubber composition
CA1220589A (en) Blends of grafted acrylate polymers and mass-made abs- type resins
JPS60177071A (en) Matte thermoplastic resin composition