JPS6367647B2 - - Google Patents

Info

Publication number
JPS6367647B2
JPS6367647B2 JP56060159A JP6015981A JPS6367647B2 JP S6367647 B2 JPS6367647 B2 JP S6367647B2 JP 56060159 A JP56060159 A JP 56060159A JP 6015981 A JP6015981 A JP 6015981A JP S6367647 B2 JPS6367647 B2 JP S6367647B2
Authority
JP
Japan
Prior art keywords
light
frost
emitting element
receiving element
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56060159A
Other languages
Japanese (ja)
Other versions
JPS57173778A (en
Inventor
Yasukuni Yamane
Nobutoshi Gako
Chuji Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP6015981A priority Critical patent/JPS57173778A/en
Publication of JPS57173778A publication Critical patent/JPS57173778A/en
Publication of JPS6367647B2 publication Critical patent/JPS6367647B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/02Detecting the presence of frost or condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/11Sensor to detect if defrost is necessary
    • F25B2700/111Sensor to detect if defrost is necessary using an emitter and receiver, e.g. sensing by emitting light or other radiation and receiving reflection by a sensor

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】 本発明は、電気冷蔵庫や電気冷凍庫などの冷却
器の表面などに付着する霜を検出する霜センサに
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a frost sensor that detects frost adhering to the surface of a cooler such as an electric refrigerator or an electric freezer.

第1図は先行技術の断面図である。電気冷蔵庫
に内蔵されたいわゆるフインチユーブ形式の冷却
器1のフイン2には透孔3が形成されており、フ
イン2の両側には取付片4,5によつて発光素子
6,7が固定されている。フイン2の表面に霜が
成長していない状態では、発光素子6からの光は
透孔3を介して受光素子7によつて受光される。
霜がフイン2の表面に成長してゆくと、透孔3が
霜によつて塞がれ、これによつて発光素子6から
受光素子7への光が遮断される。こうして霜が形
成されたことが検出される。このような先行技術
では、形成された霜の密度が小さいときには、着
霜量が大きくてもその霜を介して発光素子6から
の光が受光素子7によつて受光されてしまう。
FIG. 1 is a cross-sectional view of the prior art. A fin 2 of a so-called fin-chiub type cooler 1 built into an electric refrigerator has a through hole 3 formed therein, and light emitting elements 6 and 7 are fixed to both sides of the fin 2 by mounting pieces 4 and 5. There is. When no frost has grown on the surface of the fins 2 , light from the light emitting element 6 is received by the light receiving element 7 through the through hole 3 .
As frost grows on the surface of the fins 2, the through holes 3 are blocked by the frost, thereby blocking light from the light emitting element 6 to the light receiving element 7. The formation of frost is thus detected. In such prior art, when the density of the formed frost is low, even if the amount of frost is large, the light from the light emitting element 6 is received by the light receiving element 7 through the frost.

このような問題を解決するために、受光素子7
からの出力を弁別する弁別レベルは、透孔3の比
較的大きい透過光量に対応した値に設定される。
これによつて密度の小さい霜が大量に付着するこ
とがさけられる。しかしてこのような先行技術で
は、霜厚の増加量に対する透過光量の減少量はわ
ずかであり、換言すると霜厚に対する透過光量の
変化がゆるやかである。したがつて先行技術で
は、発光素子6や受光素子7の表面が汚損して受
光素子7による検出光量が減少したときには、わ
ずかな霜厚形成時にもかかわらず、除霜すべき大
きい霜厚になつたものとして誤まつて検出される
結果となる。また除霜時に生じた水滴が透孔3内
にとどまつた状態で冷却運転に入ると、その水滴
が氷結して不透明となり、除霜すべき大きな霜厚
になつたものとして誤まつて検出される。
In order to solve such problems, the light receiving element 7
The discrimination level for discriminating the output from the through hole 3 is set to a value corresponding to a relatively large amount of light transmitted through the through hole 3.
This avoids the accumulation of large amounts of low-density frost. However, in such prior art, the amount of decrease in the amount of transmitted light with respect to the amount of increase in frost thickness is small, or in other words, the amount of transmitted light changes gradually with respect to frost thickness. Therefore, in the prior art, when the surface of the light-emitting element 6 or the light-receiving element 7 is contaminated and the amount of light detected by the light-receiving element 7 is reduced, a large frost thickness that needs to be defrosted occurs even though the frost thickness is small. This results in the data being erroneously detected as being false. In addition, if cooling operation is started with water droplets generated during defrosting remaining in the through holes 3, the water droplets will freeze and become opaque, and will be mistakenly detected as thick frost that should be defrosted. .

本発明の目的は、正確な霜厚を検出することが
できる霜センサを提供することである。
An object of the present invention is to provide a frost sensor capable of detecting accurate frost thickness.

本発明は、大きな熱伝導率を有する材料から成
り、固定位置に固着するための基台10と、 基台10の一方表面に固定され、基台10に沿
う光軸15を有する発光素子13と、 基台10の前記一方表面に、発光素子13から
間隔をあけて固定され、発光素子13からの光を
受光する受光素子14と、 発光素子13と受光素子14との前記間隔にお
いて、基台10の前記一方表面に、熱伝導率が良
好に行われるようにして固着され、前記光軸15
に沿つて相互に間隔をあけて配置され、熱伝導率
が大きくかつ遮光性の材料から成り、端縁16
a,17a,18a;21a,22a,23a
は、前記光軸15からずれており、かつそれらの
端縁16a,17a,18a;21a,22a,
23aの表面に形成された霜によつて、発光素子
13から受光素子14への光を遮断し、予め定め
る複数の霜形成体16,17,18;21,2
2,23とを含むことを特徴とする霜センサであ
る。
The present invention includes a base 10 made of a material with high thermal conductivity and fixed to a fixed position, and a light emitting element 13 fixed to one surface of the base 10 and having an optical axis 15 along the base 10. , a light receiving element 14 fixed to the one surface of the base 10 at a distance from the light emitting element 13 and receiving light from the light emitting element 13; and at the distance between the light emitting element 13 and the light receiving element 14, the base The optical axis 15 is fixed to the one surface of the optical axis 15 in such a manner as to have good thermal conductivity.
The edges 16 are arranged at intervals along the edges 16 and are made of a material having high thermal conductivity and light blocking properties.
a, 17a, 18a; 21a, 22a, 23a
are offset from the optical axis 15, and their edges 16a, 17a, 18a; 21a, 22a,
The frost formed on the surface of 23a blocks light from the light emitting element 13 to the light receiving element 14, and a plurality of predetermined frost forming bodies 16, 17, 18; 21, 2
2 and 23.

第2図は本発明の一実施例の斜視図であり、第
3図はその正面図、第4図はその第2図における
切断面線―から見た断面図である。本発明に
したがう霜センサ8は、電気冷蔵庫または電気冷
凍庫などに収納されているいわゆるフインチユー
ブ形式の冷却器のフイン9(第4図参照)に固着
されている。冷却器は液状冷媒が蒸発して庫内の
熱を吸収する働きをする。大きな熱伝導率を有す
る材料たとえばアルミニウムから成る基台10に
は、取付部材11,12が間隔をあけて固着され
ている。この取付部材11,12は、熱伝導率の
小さい材料たとえば合成樹脂などから成る。取付
部材11,12には、発光素子13と受光素子1
4とが光軸15を一致させてそれぞれ固定され
る。発光素子13はたとえば発光ダイオードであ
り、受光素子14はたとえばフオトトランジスタ
である。発光素子13と受光素子14との間に
は、複数の板状の霜形成体16,17,18が光
軸15に沿つて相互に間隔をあけて配置される。
この霜形成体16,17,18は、大きい熱伝導
率を有する材料たとえばアルミニウムなどから成
る。これらの霜形成体16,17,18は、基台
10に固着されており、したがつて冷却器との間
の熱伝導が良好に行なわれる。霜形成体16,1
7,18の相互の間隔は、たとえば4〜8mm程度
である。霜形成体16,17,18の上端縁16
a,17a,18aは、発光素子13から受光素
子14への光を遮断しないように、すなわち光軸
15からずれており、また上端縁16a,17
a,18aの表面に形成された霜によつて光を遮
断するように形成される。基台10には取付孔1
9が穿設されており、取付孔19に挿通するねじ
20によつて基台10が冷却器のフイン9に固定
される。
FIG. 2 is a perspective view of one embodiment of the present invention, FIG. 3 is a front view thereof, and FIG. 4 is a sectional view taken along the cutting plane line - in FIG. 2. A frost sensor 8 according to the present invention is fixed to a fin 9 (see FIG. 4) of a so-called fin-inch tube type cooler housed in an electric refrigerator, an electric freezer, or the like. The cooler works by evaporating liquid refrigerant and absorbing the heat inside the refrigerator. Mounting members 11 and 12 are fixed at intervals to a base 10 made of a material having high thermal conductivity, such as aluminum. The mounting members 11 and 12 are made of a material with low thermal conductivity, such as synthetic resin. A light emitting element 13 and a light receiving element 1 are mounted on the mounting members 11 and 12.
4 are fixed with their optical axes 15 aligned. The light emitting element 13 is, for example, a light emitting diode, and the light receiving element 14 is, for example, a phototransistor. Between the light emitting element 13 and the light receiving element 14, a plurality of plate-shaped frost forming bodies 16, 17, 18 are arranged at intervals along the optical axis 15.
The frost formers 16, 17, 18 are made of a material with high thermal conductivity, such as aluminum. These frost forming bodies 16, 17, and 18 are fixed to the base 10, so that good heat conduction between them and the cooler is achieved. frost forming body 16,1
The mutual spacing between 7 and 18 is, for example, about 4 to 8 mm. Upper edge 16 of frost forming bodies 16, 17, 18
a, 17a, 18a are offset from the optical axis 15 so as not to block the light from the light emitting element 13 to the light receiving element 14, and the upper edges 16a, 17
The frost formed on the surfaces of a and 18a blocks light. The base 10 has a mounting hole 1
9 are bored, and the base 10 is fixed to the fins 9 of the cooler by screws 20 inserted through the mounting holes 19.

霜は霜形成体16,17,18の平面部よりも
その周縁部たとえば上端縁16a,17a,18
aに形成されやすい傾向がある。上端縁16a,
17a,18aにはほぼ同一の霜厚で着霜する。
したがつて霜厚の増加に対する透過光量の低下の
割合が第5図1に示されるように大きい。そのた
め、霜形成体16,17,18に形成された霜の
霜厚がt1になつたときにおける発光素子13か
ら受光素子14に到達する透過光量がl1となつ
たとき除霜動作が行なわれるように構成された場
合において、発光素子13または受光素子14の
表面が汚損などして受光素子14における透過光
量をl3とする。このような先行技術では、発光
素子13または受光素子14の表面が汚損などし
て受光素子14による受光検出光量が半減される
状態では、透孔3に形成される霜厚による透過光
量が前述の透過光量l3の2倍の値l4に達した
ときに除霜すべき霜厚がt1に達したものとして
検出されることになる。この透過光量l4におけ
る霜厚t3と、除霜すべき霜厚t1との間のばら
つきΔt3は比較的大きい。したがつて第5図1
および第5図2を比較すると、本発明によれば発
光素子13および受光素子14の表面の汚損によ
る霜厚の受光素子14による受光検出光量がその
汚損によつて半減した状態になつたときを想定す
る。このようなときには、透過光量がl1の2倍
であるl2まで減少したとき除霜すべき霜厚t1
に達したものとして検出される。このときの霜厚
はt2で示される。この検出される霜厚のばらつ
きΔt1は比較的小さい。
Frost forms on the peripheral edges of the frost-forming bodies 16, 17, 18, for example, on the upper edges 16a, 17a, 18, rather than on their flat surfaces.
It tends to be formed in a. Upper edge 16a,
17a and 18a are frosted with approximately the same frost thickness.
Therefore, the rate of decrease in the amount of transmitted light with respect to the increase in frost thickness is large, as shown in FIG. 51. Therefore, the defrosting operation is performed when the amount of transmitted light reaching the light receiving element 14 from the light emitting element 13 reaches l1 when the frost thickness of the frost formed on the frost forming bodies 16, 17, and 18 reaches t1. In this case, the surface of the light-emitting element 13 or the light-receiving element 14 is contaminated and the amount of light transmitted through the light-receiving element 14 is 13. In such prior art, when the surface of the light-emitting element 13 or the light-receiving element 14 is contaminated and the amount of light detected by the light-receiving element 14 is halved, the amount of transmitted light due to the thickness of frost formed in the through-hole 3 is When the amount of transmitted light reaches a value l4 that is twice the amount of transmitted light l3, it is detected that the frost thickness to be defrosted has reached t1. The variation Δt3 between the frost thickness t3 in the amount of transmitted light l4 and the frost thickness t1 to be defrosted is relatively large. Therefore, Fig. 5 1
Comparing FIG. 5 and FIG. 2, it can be seen that according to the present invention, when the amount of light detected by the light receiving element 14 is halved due to the frost thickness due to the dirt on the surfaces of the light emitting element 13 and the light receiving element 14. Suppose. In such a case, the frost thickness t1 to be defrosted when the amount of transmitted light decreases to l2, which is twice l1.
is detected as having reached the The frost thickness at this time is indicated by t2. The detected frost thickness variation Δt1 is relatively small.

これに対して第1図に関連して前述した先行技
術では、第5図2に示されるように霜厚の増加に
対する透過光量の減少量が比較的小さい。霜厚が
第5図1と同様にt1に達したときにおける受光
素子検出のばらつきが低減されることがわかる。
また、発光素子13および受光素子14の電気的
特性のばらつきに対しても、本発明によれば検出
すべき霜厚のばらつきが小さくなる。
In contrast, in the prior art described above with reference to FIG. 1, as shown in FIG. 5, the amount of decrease in the amount of transmitted light with respect to the increase in frost thickness is relatively small. It can be seen that the variation in detection by the light receiving elements is reduced when the frost thickness reaches t1 as in FIG. 51.
Further, according to the present invention, the variation in the frost thickness to be detected is reduced even with respect to variations in the electrical characteristics of the light emitting element 13 and the light receiving element 14.

第6図は本発明の他の実施例の斜視図であり、
第7図は第6図の切断面線―から見た断面図
である。この実施例は、前述の実施例に類似し、
対応する部分には同一の参照符を付す。基台10
に光軸15の方向に間隔をあけて固着された複数
(たとえば3つ)の霜形成体21,22,23は、
前述の実施例における霜形成体16,17,18
にそれぞれ対応している。光軸15の光を遮断す
る霜が形成される霜形成体21,22,23の側
端縁21a,22a,23aは、光軸15の左右
に交互に配置されている。その他の構造は、前述
の実施例と同様である。
FIG. 6 is a perspective view of another embodiment of the present invention,
FIG. 7 is a sectional view taken along the section line - in FIG. 6. This embodiment is similar to the previous embodiment;
Corresponding parts are given the same reference numerals. Base 10
A plurality of (for example, three) frost forming bodies 21, 22, 23 are fixed at intervals in the direction of the optical axis 15.
Frost forming bodies 16, 17, 18 in the above embodiments
corresponds to each. The side edges 21 a, 22 a, 23 a of the frost forming bodies 21 , 22 , 23 on which frost is formed to block the light from the optical axis 15 are arranged alternately on the left and right sides of the optical axis 15 . The rest of the structure is similar to the previous embodiment.

上述の各実施例では、基台10に発光素子1
3、受光素子14および霜形成体16,17,1
8;21,22,23が固定されているので、冷
却器などへの取付け作業が容易であり、しかもこ
の作業時に発光素子13および受光素子14の光
軸がずれることはなく、この点で第1図示の先行
技術に比べて上述の各実施例は優れている。また
霜形成体16,17,18;21,22,23に
付着した除霜時の水滴は下方に落下するので、そ
の後の庫内の冷却時に霜厚の検出値に誤差を生じ
ることはない。さらにまた、霜形成体16,1
7,18;21,22,23は相互に間隔を有し
ているので、特に庫内に冷風循環用フアンが備え
られている場合において冷風の流れを妨げること
はない。
In each of the above embodiments, the light emitting element 1 is mounted on the base 10.
3. Light receiving element 14 and frost forming bodies 16, 17, 1
8; Since 21, 22, and 23 are fixed, it is easy to attach it to a cooler, etc., and the optical axes of the light emitting element 13 and the light receiving element 14 do not shift during this work. Each of the embodiments described above is superior to the prior art illustrated in FIG. Further, since water droplets adhering to the frost forming bodies 16, 17, 18; 21, 22, 23 during defrosting fall downward, errors will not occur in the detected value of frost thickness during subsequent cooling of the refrigerator. Furthermore, the frost forming body 16,1
7, 18; 21, 22, and 23 are spaced from each other, so that they do not obstruct the flow of cold air, especially when a cold air circulation fan is provided in the refrigerator.

以上のように本発明によれば、複数の霜形成体
が発光素子と受光素子との間に光軸に沿つて相互
に間隔をあけて配置されているので、光を遮断す
る霜厚に対する光の透過光量の変化量が大きくな
り、したがつて発光素子や受光素子の表面の汚損
や電気的特性のばらつきにかかわらず正確な霜厚
を検出することが可能になる。しかも本発明によ
れば、基台10の発光素子13と受光素子14と
霜形成体とが固定される一方表面とは反対側の他
方表面を、固定位置、たとえば冷却器のフインに
固着することによつて、基台10および複数の霜
形成体16,17,18;21,22,23が良
好な熱伝導によつて冷却される。したがつて取付
けが簡便であるという優れた効果が達成される。
As described above, according to the present invention, a plurality of frost forming bodies are arranged between the light emitting element and the light receiving element at intervals from each other along the optical axis, so that the frost forming body is arranged at intervals between the light emitting element and the light receiving element. This increases the amount of change in the amount of transmitted light, making it possible to accurately detect the frost thickness regardless of dirt on the surface of the light emitting element or light receiving element or variations in electrical characteristics. Moreover, according to the present invention, the other surface of the base 10, which is opposite to the one surface on which the light emitting element 13, the light receiving element 14, and the frost forming body are fixed, is fixed to a fixed position, for example, to a fin of a cooler. As a result, the base 10 and the plurality of frost forming bodies 16, 17, 18; 21, 22, 23 are cooled by good heat conduction. Therefore, the excellent effect of easy installation is achieved.

もしも仮に、霜形成体16,17,18;2
1,22,23をむやみに多くすると、発光素子
13と受光素子14との間の距離を長くせざるを
えないことになり、そのようにすると、発光素子
13の光出力をむやみに大きくしなければならな
いという問題が生じ、また、多数の各霜形成体へ
のわずかな着霜によつて、受光素子14の受光量
が激減してしまい、受光素子14の出力のレベル
弁別を正確に行うことが困難になるおそれが生じ
る。本発明では、霜形成体16,17,18;2
1,22,23は、予め定める複数のみが、基台
10に固着されるので、発光素子13と受光素子
14との間隔を適正な値に設定し、着霜の状況を
的確に検出することができるという優れた効果が
達成される。
If frost forming bodies 16, 17, 18; 2
If 1, 22, and 23 are increased unnecessarily, the distance between the light emitting element 13 and the light receiving element 14 will have to be increased, and in this case, the optical output of the light emitting element 13 will be increased unnecessarily. In addition, the amount of light received by the light-receiving element 14 is drastically reduced due to a small amount of frost forming on each of the many frost-forming bodies, and it is difficult to accurately discriminate the level of the output of the light-receiving element 14. This may become difficult. In the present invention, frost forming bodies 16, 17, 18; 2
Since only a predetermined plurality of 1, 22, and 23 are fixed to the base 10, the distance between the light emitting element 13 and the light receiving element 14 should be set to an appropriate value to accurately detect the frosting situation. The excellent effect of being able to do this is achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は先行技術の断面図、第2図は本発明の
一実施例の斜視図、第3図は第2図に示された実
施例の正面図、第4図は第2図の切断面線―
からみた断面図、第5図は第2図ないし第4図に
示された実施例の特性を説明するためのグラフ、
第6図は本発明の他の実施例の斜視図、第7図は
第6図の切断面線―からみた断面図である。 10…基台、13…発光素子、14…受光素
子、15…光軸、16,17,18,21,2
2,23…霜形成体。
FIG. 1 is a sectional view of the prior art, FIG. 2 is a perspective view of an embodiment of the present invention, FIG. 3 is a front view of the embodiment shown in FIG. 2, and FIG. 4 is a cross-section of FIG. 2. Surface line-
5 is a graph for explaining the characteristics of the embodiment shown in FIGS. 2 to 4,
FIG. 6 is a perspective view of another embodiment of the present invention, and FIG. 7 is a sectional view taken along the section line - in FIG. 10... Base, 13... Light emitting element, 14... Light receiving element, 15... Optical axis, 16, 17, 18, 21, 2
2,23...frost forming body.

Claims (1)

【特許請求の範囲】 1 大きな熱伝導率を有する材料から成り、固定
位置に固着するための基台10と、 基台10の一方表面に固定され、基台10に沿
う光軸15を有する発光素子13と、 基台10の前記一方表面に、発光素子13から
間隔をあけて固定され、発光素子13からの光を
受光する受光素子14と、 発光素子13と受光素子14との前記間隔にお
いて、基台10の前記一方表面に、熱伝導率が良
好に行われるようにして固着され、前記光軸15
に沿つて相互に間隔をあけて配置され、熱伝導率
が大きくかつ遮光性の材料から成り、端縁16
a,17a,18a;21a,22a,23a
は、前記光軸15からずれており、かつそれらの
端縁16a,17a,18a;21a,22a,
23aの表面に形成された霜によつて、発光素子
13から受光素子14への光を遮断し、予め定め
る複数の霜形成体16,17,18;21,2
2,23とを含むことを特徴とする霜センサ。
[Claims] 1. A base 10 made of a material with high thermal conductivity and fixed to a fixed position, and a light emitting device fixed to one surface of the base 10 and having an optical axis 15 along the base 10. element 13; a light-receiving element 14 fixed to the one surface of the base 10 at a distance from the light-emitting element 13 and receiving light from the light-emitting element 13; and the distance between the light-emitting element 13 and the light-receiving element 14 , is fixed to the one surface of the base 10 so as to have good thermal conductivity, and the optical axis 15
The edges 16 are arranged at intervals along the edges 16 and are made of a material having high thermal conductivity and light blocking properties.
a, 17a, 18a; 21a, 22a, 23a
are offset from the optical axis 15, and their edges 16a, 17a, 18a; 21a, 22a,
The frost formed on the surface of 23a blocks light from the light emitting element 13 to the light receiving element 14, and a plurality of predetermined frost forming bodies 16, 17, 18; 21, 2
A frost sensor comprising: 2, 23.
JP6015981A 1981-04-20 1981-04-20 Frost sensor Granted JPS57173778A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6015981A JPS57173778A (en) 1981-04-20 1981-04-20 Frost sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6015981A JPS57173778A (en) 1981-04-20 1981-04-20 Frost sensor

Publications (2)

Publication Number Publication Date
JPS57173778A JPS57173778A (en) 1982-10-26
JPS6367647B2 true JPS6367647B2 (en) 1988-12-27

Family

ID=13134087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6015981A Granted JPS57173778A (en) 1981-04-20 1981-04-20 Frost sensor

Country Status (1)

Country Link
JP (1) JPS57173778A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10392632T5 (en) 2002-05-14 2005-06-09 Airex Co., Ltd., Nagoya A condensation sensor and method for controlling a condensation film in a closed space with a condensation sensor
CN109520927B (en) * 2018-10-22 2023-10-10 江苏大学 Tea garden frost detection sensor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49134386A (en) * 1972-10-23 1974-12-24

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54109600U (en) * 1978-01-19 1979-08-01
JPS5668886U (en) * 1979-10-31 1981-06-08

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49134386A (en) * 1972-10-23 1974-12-24

Also Published As

Publication number Publication date
JPS57173778A (en) 1982-10-26

Similar Documents

Publication Publication Date Title
KR102521994B1 (en) Refrigerator
KR102627972B1 (en) Refrigerator
EP2767786B1 (en) Refrigerator
CN203404869U (en) Temperature measurement assembly used for air conditioner outdoor unit and air conditioner outdoor unit provided with temperature measurement assembly
US4578959A (en) Method and apparatus for detecting and controlling the formation of ice or frost
KR101253239B1 (en) Air conditioner
CN102778321A (en) Bidirectional wind pressure detecting apparatus
CN1116572C (en) Frost formation detector
US5522232A (en) Frost detecting device
US3290942A (en) Temperature sensing, indicating and recording means
JPS6367647B2 (en)
CN214307731U (en) Ice maker and refrigerator
KR102063147B1 (en) Sensor device for defrost evaporator
JPS6367648B2 (en)
JPS61134651A (en) Sensor device for detecting precipitation of frost
TWI589823B (en) Refrigerator
JP4107058B2 (en) Temperature sensor for heat exchanger
JPS6117881A (en) Detector for frosting of evaporator
JPS5930378Y2 (en) frost detection device
JP2008020111A (en) Showcase
JPH0142793Y2 (en)
CN115325760A (en) Frost formation detection device and method, evaporation device and refrigeration equipment
JPS5994041A (en) Apparatus for detecting frost
JPH0343582Y2 (en)
KR20240046692A (en) Evaporator frost detection device