JPS6367590A - Two-dimensional radiation detector - Google Patents

Two-dimensional radiation detector

Info

Publication number
JPS6367590A
JPS6367590A JP61211690A JP21169086A JPS6367590A JP S6367590 A JPS6367590 A JP S6367590A JP 61211690 A JP61211690 A JP 61211690A JP 21169086 A JP21169086 A JP 21169086A JP S6367590 A JPS6367590 A JP S6367590A
Authority
JP
Japan
Prior art keywords
turned
elements
switches
film
radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61211690A
Other languages
Japanese (ja)
Inventor
Yujiro Naruse
雄二郎 成瀬
Tatsuro Beppu
達郎 別府
Tamotsu Hatayama
畑山 保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61211690A priority Critical patent/JPS6367590A/en
Publication of JPS6367590A publication Critical patent/JPS6367590A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Measurement Of Radiation (AREA)

Abstract

PURPOSE:To realize a two-dimensional radiation detector high in sensitivity by using unit detecting elements structured by laminating a metallic film and a semiconductor film alternately and plurally. CONSTITUTION:Detecting elements 1311-13mn corresponding to unit picture elements have periodic multilayered structure of a Ta metallic film 1, an amorphous film 2, and a Mo metallic film 3. An electronic switch 8 is turned off and switches 9, 11, and 12 are turned on before irradiation and before. The elements 1311-13mn are biased reversely by a bias power source 10 and charging is completed. The switches 8, 9, 11, and 12 are turned off to project radiation. At this time, high-energy electrons strike silicon films 2 of the elements 1311-13mn. While the switch 8 and 121 are turned on, switches 111-11m are turned on successively. Then, a switch 122 is turned on and the switches 111-11m are turned on in order. Similar operation is repeated to read charges out of the elements 1311-13mn in order and they are inputted to a data processing and storage device 14 after charge amplification 14. An image display part 16 displays a radiation two-dimensional intensity distribution.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、金属と半導体膜との多層構造を利用した二次
元放射線検出器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a two-dimensional radiation detector using a multilayer structure of metal and semiconductor films.

(従来の技術) 従来より、二次元放射線検出器として種々の構造のもの
が知られている。第2図はその一例である。(特開昭5
8−21580 r二次元放射線検出器」)この検出器
は、放射線をシンチレータ膜17で光に変換し、その光
を光ファイバ18で二次元光検出器19へ導く方式を用
いている。同図中、20と21はそれぞれ光ファイバの
コアとクラッド部分、22は光結合用マッヂング樹脂で
ある。二次元光検出器19はCODなどの固体i画素子
で、出力信号はデータ処理器23を経て画像表示装置2
4へ送られる。シンチレータ膜17の面積としては、X
線診断装置用には40X407程度が必要である。溝2
5.26は画素間の光クロストークを抑制する目的で付
けられている。
(Prior Art) Conventionally, two-dimensional radiation detectors with various structures have been known. Figure 2 is an example. (Unexamined Japanese Patent Publication No. 5
8-21580 r Two-dimensional radiation detector") This detector uses a method in which radiation is converted into light by a scintillator film 17, and the light is guided to a two-dimensional photodetector 19 by an optical fiber 18. In the figure, 20 and 21 are the core and cladding parts of the optical fiber, respectively, and 22 is a matting resin for optical coupling. The two-dimensional photodetector 19 is a solid-state i-pixel element such as COD, and the output signal is passed through the data processor 23 to the image display device 2.
Sent to 4. The area of the scintillator film 17 is X
Approximately 40×407 is required for use in radiation diagnostic equipment. Groove 2
5.26 is added for the purpose of suppressing optical crosstalk between pixels.

(発明が解決しようとする問題点) 第2図に示した従来の二次元放射線検出器は、次のよう
な問題がある。
(Problems to be Solved by the Invention) The conventional two-dimensional radiation detector shown in FIG. 2 has the following problems.

■ 光ファイバをシンチレータ膜の各画素と、二次元光
検出器の各画素に対応させる必要がおり、製作に要する
時間とコストは莫大である。
- It is necessary to connect optical fibers to each pixel of the scintillator film and each pixel of the two-dimensional photodetector, and the time and cost required for production are enormous.

■ 光ファイバは一定の曲率以上的げることが困難であ
るから、シンチレータ膜と二次元光検出器との距離は一
定以上とる必要があり、薄型の二次元放射線検出器を構
成することはむずかしい。
■ Since it is difficult to aim an optical fiber beyond a certain curvature, the distance between the scintillator film and the two-dimensional photodetector must be at least a certain distance, making it difficult to construct a thin two-dimensional radiation detector. .

■ シンチレータ膜と光ファイバとの結合効率、および
シンチレータ膜の発光効率や光散乱現象などを全体とし
て考慮すると、超高感度な放射線検出器動作は期待でき
ない。
■ Considering the coupling efficiency between the scintillator film and the optical fiber, the luminous efficiency of the scintillator film, the light scattering phenomenon, etc. as a whole, ultra-high sensitivity radiation detector operation cannot be expected.

本発明は上記の如き問題を解決し、超高感度で薄型、し
かも作製の容易な二次元放射線検出器を提供することを
目的とする。
It is an object of the present invention to solve the above problems and provide a two-dimensional radiation detector that is ultrasensitive, thin, and easy to manufacture.

(発明の構成) (問題点を解決するための手段) 本発明にかかる二次元放射線検出器は、金属膜と半導体
膜の多層構造放射線検出素子を絶縁性基板上に分離形成
した基本構造を有する。さらに、XおよびY信号電極群
のうち、一方の信号N極群は絶縁性基板上に、他方の信
号電極群は絶縁性基板内部に配設されている。
(Structure of the Invention) (Means for Solving the Problems) The two-dimensional radiation detector according to the present invention has a basic structure in which a multilayer radiation detection element of a metal film and a semiconductor film is separately formed on an insulating substrate. . Furthermore, among the X and Y signal electrode groups, one signal N pole group is disposed on the insulating substrate, and the other signal electrode group is disposed inside the insulating substrate.

(作 用) 本発明による二次元放射線検出器では、各単位素子が金
属と半導体膜の長居構造になっていて、前者が放射線吸
収および光電子発生部として、後者が光電子による電子
・正孔対発生部としての主たる機能を有す。さらに金属
は信号電荷(電子・正孔対)収集の作用があるので、各
素子からの信号をX−Y信号電極群で外部出力すること
ができる。このX−Y電極群は、絶縁性基板上の表面と
内部にお互いに分離して形成されていて、製作時間およ
びコストの面で有利である。
(Function) In the two-dimensional radiation detector according to the present invention, each unit element has a long structure of metal and semiconductor films. It has the main function as a department. Furthermore, since metal has the function of collecting signal charges (electron/hole pairs), signals from each element can be output to the outside through the XY signal electrode group. This XY electrode group is formed separately on the surface and inside of the insulating substrate, which is advantageous in terms of manufacturing time and cost.

(実施例) 以下、本発明の詳細な説明する。(Example) The present invention will be explained in detail below.

第1図は一実施例の二次元放射線検出器の上面図、単位
検出素子と基板の断面図、および駆動方法を示すための
ものである。単位画素に対応する検出素子は、a−a’
 およびb−b’断面図に表わされている如く、Ta金
属膜1、a−3i(アモルファスシリコン)膜2および
MO金属膜3の周期的多層構造を有している。a−3+
1は高抵抗のn型あるいはn型になっていて、金属膜電
極との接合によりショットキー型ダイオードが形成され
ている。Ta金属膜1は絶縁性プラスチイック基板4の
内部に埋め込まれているY信号電恒5と、開口部6を介
して接続されている。一方、MO金属膜3は基板4の表
面上に配設されているX信号電極7に接続されている。
FIG. 1 is a top view of a two-dimensional radiation detector according to an embodiment, a sectional view of a unit detection element and a substrate, and a driving method. The detection element corresponding to the unit pixel is a-a'
As shown in the bb' cross-sectional view, it has a periodic multilayer structure of a Ta metal film 1, an a-3i (amorphous silicon) film 2, and an MO metal film 3. a-3+
1 is of high resistance n-type or n-type, and a Schottky diode is formed by joining with a metal film electrode. The Ta metal film 1 is connected via an opening 6 to a Y signal terminal 5 embedded inside an insulating plastic substrate 4. On the other hand, the MO metal film 3 is connected to an X signal electrode 7 disposed on the surface of the substrate 4.

次に駆動方法を説明する。まず放射線の照射前に電子ス
イッチ8をOFF、そして9,11および12をONに
する。これにより、すべての単位検出素子1311〜1
3mnがバイアス電源10により逆バイアスされて、充
電が完了する。その後、電子スイッチ8.9.11.1
2をOFFの状態で放射線を一定時間照射する。このと
き、各単位検出素子において、放射線フォトンと金属膜
電極(Ta、MO>が相互作用し、金属膜から高エネル
ギー電子がa−8i膜2へ入射する。これにより、多数
の電子・正孔対がa−3i中に発生し、その数に比例し
て、あらかじめ各単位検出素子に充電されていた電荷が
放電する。したがって、放射線二次元強度分布に対応し
た電荷が各単位素子に蓄積された状態になる。
Next, the driving method will be explained. First, before irradiation with radiation, the electronic switch 8 is turned off, and the electronic switches 9, 11, and 12 are turned on. As a result, all unit detection elements 1311 to 1
3mn is reverse biased by the bias power supply 10, and charging is completed. Then electronic switch 8.9.11.1
2 is turned off and radiation is irradiated for a certain period of time. At this time, in each unit detection element, the radiation photon interacts with the metal film electrode (Ta, MO>), and high-energy electrons enter the a-8i film 2 from the metal film. A pair is generated in a-3i, and the charge that was previously charged in each unit detection element is discharged in proportion to the number.Therefore, the charge corresponding to the two-dimensional radiation intensity distribution is accumulated in each unit element. state.

次に、各単位検出素子の電荷を順次読み出すモードにな
る。まず電子スイッチ8と121をONにした状態で電
子スイッチ111〜nを順次ONにしていく。次に、1
22をONにして電子スイッチ111〜hを順次ONに
していく。同様な操作を繰り返すことにより、各単位素
子の電荷が1311→1312→1313→・・・→1
3m1→13m2→・・・→13m nの順で読み出さ
れ、電荷増幅器14を経てデータ処理・蓄積装置15に
入力される。最終的には画像表示部16で、放射線二次
元強度分布が表示される。
Next, a mode is entered in which the charges of each unit detection element are sequentially read out. First, with the electronic switches 8 and 121 turned on, the electronic switches 111 to 111n are turned on one after another. Next, 1
22 is turned on, and the electronic switches 111 to 111h are sequentially turned on. By repeating the same operation, the charge of each unit element becomes 1311→1312→1313→...→1
The data are read out in the order of 3m1→13m2→...→13mn, and are input to the data processing/storage device 15 via the charge amplifier 14. Finally, the image display unit 16 displays the two-dimensional radiation intensity distribution.

本発明は上記した実施例に限られるものではなく、以下
に列記するように種々変形して実施することができる。
The present invention is not limited to the embodiments described above, and can be implemented with various modifications as listed below.

(Q 単位検出素子のデバイス構造としては、ショット
キーダイオード以外、PN接合あるいはPIN接合素子
を利用することができる。
(As the device structure of the Q unit detection element, other than a Schottky diode, a PN junction or PIN junction element can be used.

υ 高抵抗のノンドープミー3i膜を用いると、両電極
間で電気容伍が形成され、前述と同様な動作方法が可能
である。
υ If a non-doped Me3i film with high resistance is used, an electric capacitance is formed between both electrodes, and the same operation method as described above is possible.

(C)  単位画素と信号N極線との関係は、第3図(
f)〜(iiDに示ず如く種々の変形が可能で市る。
(C) The relationship between the unit pixel and the signal N pole line is shown in Figure 3 (
Various modifications are possible as shown in f) to (iiD).

図中、29は単位画素、30は基板上のX電極、31は
基板内部に埋め込まれているY電極である。
In the figure, 29 is a unit pixel, 30 is an X electrode on the substrate, and 31 is a Y electrode embedded inside the substrate.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、金属膜と半導体膜を
交互に複数層積層した構造の単位検出要素により、高感
度の二次元放射線検出器が実現する。しかも、構造が単
純であるので、薄型化が容易で製造時間と価格の点で大
幅な改善が達成できる。
As described above, according to the present invention, a highly sensitive two-dimensional radiation detector is realized by a unit detection element having a structure in which a plurality of metal films and semiconductor films are alternately laminated. Moreover, since the structure is simple, it is easy to reduce the thickness, and a significant improvement can be achieved in terms of manufacturing time and cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を説明するための図、第2図
は従来の二次元放射線検出器の構成例を示す図、第3図
は単位画素と信号線との配置の変形例を示す図である。 27・・・光反射膜    28・・・放射線代理人 
弁理士 則 近 憲 佑 同    竹 花 前久男 第2図 第8図
FIG. 1 is a diagram for explaining an embodiment of the present invention, FIG. 2 is a diagram showing a configuration example of a conventional two-dimensional radiation detector, and FIG. 3 is a modification of the arrangement of unit pixels and signal lines. FIG. 27...Light reflecting film 28...Radiation agent
Patent Attorney Nori Ken Yudo Takehana Mae Hisao Figure 2 Figure 8

Claims (1)

【特許請求の範囲】[Claims] 金属と半導体膜を交互に順次積層させた金属と半導体膜
の多層構造放射線検出素子を、絶縁性基板上に二次元的
に分離形成し、かつ前記放射線検出素子からの信号を外
部へ取り出すためのXおよびY信号電極群が、一方の信
号電極群は前記絶縁性基板表面上に、他方の信号電極群
は前記絶縁性基板の内部に一部分を除いて埋め込まれて
いることを特徴とする二次元放射線検出器。
A radiation detection element having a multilayer structure of metal and semiconductor films, which are formed by laminating metal and semiconductor films in sequence, is two-dimensionally separated and formed on an insulating substrate, and a signal from the radiation detection element is extracted to the outside. A two-dimensional X and Y signal electrode group, wherein one signal electrode group is embedded on the surface of the insulating substrate, and the other signal electrode group is embedded inside the insulating substrate except for a part. Radiation detector.
JP61211690A 1986-09-10 1986-09-10 Two-dimensional radiation detector Pending JPS6367590A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61211690A JPS6367590A (en) 1986-09-10 1986-09-10 Two-dimensional radiation detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61211690A JPS6367590A (en) 1986-09-10 1986-09-10 Two-dimensional radiation detector

Publications (1)

Publication Number Publication Date
JPS6367590A true JPS6367590A (en) 1988-03-26

Family

ID=16609972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61211690A Pending JPS6367590A (en) 1986-09-10 1986-09-10 Two-dimensional radiation detector

Country Status (1)

Country Link
JP (1) JPS6367590A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009513973A (en) * 2005-10-26 2009-04-02 テトラ ラバル ホールデイングス エ フイナンス ソシエテ アノニム Multilayer detector and method for sensing an electron beam

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009513973A (en) * 2005-10-26 2009-04-02 テトラ ラバル ホールデイングス エ フイナンス ソシエテ アノニム Multilayer detector and method for sensing an electron beam

Similar Documents

Publication Publication Date Title
US8274033B2 (en) Photoelectric converter
US6075256A (en) Photoelectric converter, its driving method, and system including the photoelectric converter
JP4780765B2 (en) Coupled detector pixel, photon / pulse count radiation imaging element
US4518863A (en) Static induction transistor image sensor with noise reduction
Talmi TV-Type Multichan
TWI698905B (en) Photomultiplier tubes, photomultiplier tube arrays,night vision device, and methods for making a photomultiplier tubes
GB2446185A (en) Optical assembly and method of assembly
TWI493215B (en) X-ray plane detector manufacturing method and X-ray plane detector with TFT array substrate
JPH0784055A (en) Radiation two-dimensional detector
EP0509820A1 (en) Image pickup apparatus
JP2000101920A (en) Photoelectric transducer and x-ray image pickup device using the transducer
CN110477942B (en) PET detector and medical imaging equipment
JPS6367590A (en) Two-dimensional radiation detector
US20090242774A1 (en) Radiation detector
Comby et al. Test of a new 64-channel PMT for imaging
DE69719234T2 (en) Image conversion device for infrared into visible light
JP2609590B2 (en) 2D radiation detector
JP2022026845A (en) Imaging apparatus
JPS6127675A (en) Semiconductor photodetector
JPH0945952A (en) X-ray detector and two-dimensional sensor matrix array
JPH1039036A (en) Two-dimensional radiation detector
JPS5850874A (en) Solid-state image pickup device and its driving method
JPS63259486A (en) Radiation image detector
JPH06302795A (en) External photoelectric effect type solid-state image sensing device
JP3242449B2 (en) Soft X-ray imaging device