JPS6367564B2 - - Google Patents

Info

Publication number
JPS6367564B2
JPS6367564B2 JP20871683A JP20871683A JPS6367564B2 JP S6367564 B2 JPS6367564 B2 JP S6367564B2 JP 20871683 A JP20871683 A JP 20871683A JP 20871683 A JP20871683 A JP 20871683A JP S6367564 B2 JPS6367564 B2 JP S6367564B2
Authority
JP
Japan
Prior art keywords
wood
solution
curing
phenol
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP20871683A
Other languages
Japanese (ja)
Other versions
JPS60104513A (en
Inventor
Naohiko Tsujimoto
Masaru Yamakoshi
Tsutomu Horikoshi
Nobuo Shiraishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Oji Paper Co Ltd
Original Assignee
Oji Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oji Paper Co Ltd filed Critical Oji Paper Co Ltd
Priority to JP20871683A priority Critical patent/JPS60104513A/en
Publication of JPS60104513A publication Critical patent/JPS60104513A/en
Publication of JPS6367564B2 publication Critical patent/JPS6367564B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、化学的に改質された木材をフエノー
ル類中で、溶解させ、該溶解液にヘキサメチレン
テトラミン類を添加して紡糸液とし、紡糸口金よ
り空気中に吐出して糸状体とし、該糸状体を加熱
により硬化させ、繊維を製造する方法に関する。 (イ) 産業上の利用分野 再生産可能資源である森林資源のより一層有効
な利用方法の開発が現在大いに望まれているとこ
ろである。また、パルプ工業や木材工業など木材
を原料とする工業では、木質系廃棄物の有効利用
法の確立が急がれている。 そこで本発明者らは簡単な化学反応によつて、
プラスチツク性を付与した木材がフエノール類に
溶解するという事実を見い出し、更に該溶解物の
高度利用を考察した結果、十分なる強度を備えた
糸状体とする技術を発明した。 (ロ) 従来技術 木材の高度利用を計る目的で、エステル化また
は、エーテル化のような簡単な化学反応によつて
木材にプラスチツク性を付与することによつて、
木材を含む木質系原料のより高度な利用を計ろう
とする試みが提案されている。 例えば、特開昭57−103804号および同56−
135552号には、水酸基の一部に有機基を導入した
木材(粉末)をエステル化またはエーテル化する
技術が開示され、このようにして得られたプラス
チツク化木材はそのまままたは各種合成高分子物
質と混合したうえ成形原料として用いることが記
載されている。また、特開昭57−2360号には水酸
基を導入して木材(木粉)をエステル化またはエ
ーテル化して得られるプラスチツク化木材を有機
溶剤に溶解してなる溶液を調製する技術が開示さ
れ、また、調製された溶液は、それ単独または各
種合成高分子共溶下にフイルムに成型可能である
と記載されている。 しかしながら、エステル化またはエーテル化し
て得られるプラスチツク化木材をフエノール類に
溶解させ繊維化する技術はこれまで開発されるに
至つていない。 また、特公昭51−25485号、同51−19492号およ
び同51−2526には熱可融性樹脂または尿素化合物
およびメラミン化合物等を0.2〜30重量%含有す
るフエノール系複合繊維製造法が記載されてい
る。しかし、これらの記載内容には化学改質され
たプラスチツク化木材との複合化は無く、また硬
化方法も本発明とは全く異るものである。すなわ
ち、上記特公昭51−25485号、同51−19492号およ
び同51−2526に記載の硬化方法は水溶液中でホル
ムアルデヒドを触媒により更に反応させて硬化を
進めるものであるが、本発明の方法は、加熱操作
のみで良い。 (ハ) 発明の目的 本発明の目的は、木材をプラスチツク化改質剤
で、処理して得られるプラスチツク化木材をフエ
ノール類に溶解し、さらに硬化剤を添加して紡糸
液とし、該紡糸液から紡糸した糸状体を加熱によ
り硬化させ、硬化木材フエノール繊維を得る方法
を提供することにある。 (ニ) 発明の構成 本発明に係る木材フエノール繊維の製造法は、
水酸基の一部もしくは全部に少なくとも一種の置
換基を導入することにより、プラスチツク化され
た木材をフエノール類中で、加熱条件下で溶解さ
せ、該溶解液中にヘキサメチレンテトラミン類を
添加し、紡糸液とするか、該溶解液中にホルマリ
ンを入れて、アンモニアを吹き込んで紡糸液とし
てもよい。該紡糸液を紡糸口金より空気中に吐出
し、加熱条件下で硬化し、木材フエノール繊維を
製造する。 (ホ) 好ましい態様 プラスチツク化木材製造のための原料は、木粉
爆砕パルプ、機械パルプ、もしくは一部又は完全
に脱リグニンされたパルプである。また、原料と
して用いる木材の種類には制限はなく、本発明方
法はどのような樹種にも適応できる。木材原料に
置換基を導入する本発明のプラスチツク化改質反
応は、木材原料中に存在するセルロース、ヘミセ
ルロースあるいはリグニンの各々の水酸基の少く
とも一部に置換基を導入する反応、例えば水酸基
の一部をエステル化またはエーテル化する反応で
ある。かかるプラスチツク化改質反応としてはエ
ステル化およびエーテル化反応が好ましい。 エステル化およびエーテル化のために用いる改
質剤としては、遊離酸、酸ハロゲン化物および酸
無水物などの酸およびその誘導体、ならびにハロ
ゲン化アルキル、エチレンクロルヒドリンなどの
ハロゲン化物などが挙げられる。プラスチツク化
改質反応によつて導入される置換基の好適例とし
では、アセチル基、プロピオニル基、ブチリル
基、バレロイル基などの脂肪族アシル基、ベンゾ
イル基その他の芳香族アシル基、メチル基、エチ
ル基、などの低級アルキル基が挙げられる。これ
らの置換基の2種以上を導入することも可能であ
る。 置換基の導入割合は置換基の種類に依存して相
異するが、一般に良好な有機溶剤溶解性を有する
改質木材を得るために、置換基モラリテイとして
表わした置換率が7.5以上であることが望ましい。
ここで「置換基モラリテイ」とは木材1000gにつ
いて置換により導入された置換基のモル数を指
す。 プラスチツク化改質処理は公知の技法に従つて
実施できる。通常、有機溶剤または膨潤剤の存在
下に室温〜加温条件の下で粉体状の木材を改質剤
で処理すればよい。改質処理せる木材は十分に洗
浄する。例えば、メタノール中に投入し、過
し、水またはメタノールで洗浄する。その後乾燥
する。 乾燥プラスチツク木材を次にフエノール類に溶
解する。このフエノール類へのプラスチツク化木
材溶解技術については、その一部が第32回木材学
会(1982)で報告されている。フエノール類は、
ベンゼン環に結合する水素原子を水酸基で置換し
た化合物を総称するもので、フエノール、o−ク
レゾール、m−クレゾール、p−クレゾール、
3,5−キシレノール、2,3−キシレソール、
2,4−キシレノール、2,5−キシレノール、
2,6−キシレノール、3,4−キシレノール等
が挙げられる。また上記フエノール類の混合物で
あつてもよい。 溶解装置は、クーラー付きの容器かあるいは加
圧容器である。溶解温度は100〜350℃で、溶解時
間は15分程度から数時間である。プラスチツク化
木材の溶解濃度は重量ベースで数%から80%まで
で、25%以上は、溶解前にニーダー等の装置によ
つて、プラスチツク化木材とフエノール類を均一
に混合しておく必要がある。また混合時により均
一に混合させる為に有機溶媒を添加しても良い。
それらは、クロロホルム、アセトン、塩化メチレ
ン、メタノール、エタノール等である。 硬化剤としては、ヘキサメチレンテトラミン単
独、又はホルムアルデヒド、パラホルムアルデヒ
ド、フルフラール等のアルデヒド類と、アンモニ
ア等の触媒との組み合わせなどが挙げられる。 次に紡糸工程である。硬化剤がヘキサメチレン
テトラミンの場合はその1部(重量)に対して上
記溶解液を3−40部の割合で混合し、完全に溶解
させて紡糸液とする。混合温度は、70〜90℃とす
る。又は上記溶解液にアルデヒド類を入れ、アン
モニア等を吹き込んで、紡糸液とする。紡糸口金
を備えた押出し機中に該混合紡糸液を導入し、
100〜150℃に3〜10分間加熱後、紡糸口金より空
気中に吐出させ、巻取り機によつて該吐出糸を巻
取る。 巻取られた未硬化の吐出糸はつづいて硬化処理
される。硬化方法は、空気中での加熱で良く、硬
化温度は150〜300℃で、好適には、180〜250℃で
ある。室温からの昇温速度は、10〜60℃/minで
それ以下でも良い。 フエノール100%からなる未硬化繊維は、硬化
温度に達まるまでに溶融してしまい繊維形状が崩
れてしまう。一方木材フエノール繊維の場合は、
ほとんど溶融せずに硬化温度に達し、繊維形態を
保持したまま硬化させることができる。第1図は
縦軸に熱量、横軸に温度をとつた示差熱分析曲線
を、本発明の木材フエノール繊維(アセチル化木
材50%含有)Aとフエノール100%から成る未硬
化繊維Bについて示すものである。フエノール
100%からなる未硬化繊維の場合Bには50℃で溶
融の吸熱ピークがみられるが、木材フエノール繊
維Aでは吸熱ピークは認められない。また、硬化
開始温度もフエノール100%の場合は160℃である
が、木材フエノール繊維の場合には、110℃と50
℃低温から硬化反応がはじまり、硬化ピークも
155℃と50℃低温になつている。フエノール100%
の場合の硬化ピークは、205℃である。 またヘキサメチレンテトラミン類のみで、又は
アルデヒド類を入れてアンモニア類を吹き込ん
で、紡糸および硬化反応を行つている理由は、ホ
ルマリン系のノボラツク等で紡糸した未硬化繊維
とヘキサミンのみによる未硬化繊維とを同一縮合
度で比較すると、後者の融点の方が前者の融点よ
りはるかに高いことによる。例えば、鶴田四郎
「フエノールとヘキサメチレンテトラミンの反応」
(「熱硬化性樹脂」Vol3、No.4、44〜56(1982))
の報文に、ヘキサン系の二量体
The present invention involves dissolving chemically modified wood in phenols, adding hexamethylenetetramines to the solution to obtain a spinning solution, and discharging it into the air from a spinneret to form a filament, The present invention relates to a method for producing fibers by curing the filamentous body by heating. (b) Industrial Application Fields There is currently a great desire to develop more effective methods of using forest resources, which are renewable resources. In addition, in industries that use wood as raw materials, such as the pulp industry and the wood industry, there is an urgent need to establish methods for effectively utilizing wood waste. Therefore, the present inventors conducted a simple chemical reaction to
As a result of discovering the fact that wood that has been given plasticity dissolves in phenols and further considering the advanced use of this dissolved material, we invented a technique to make filaments with sufficient strength. (b) Prior art In order to make advanced use of wood, wood is made to have plastic properties through simple chemical reactions such as esterification or etherification.
Attempts have been made to make more advanced use of wood-based raw materials including wood. For example, JP-A-57-103804 and JP-A-56-103804
No. 135552 discloses a technology for esterifying or etherifying wood (powder) in which some of the hydroxyl groups have been introduced with organic groups, and the plasticized wood thus obtained can be used as is or with various synthetic polymer substances. It is described that the mixture is used as a molding raw material. Furthermore, JP-A-57-2360 discloses a technique for preparing a solution by dissolving plasticized wood obtained by esterifying or etherifying wood (wood flour) by introducing hydroxyl groups into an organic solvent. It is also described that the prepared solution can be molded into a film either alone or in co-dissolution with various synthetic polymers. However, no technology has been developed to date to dissolve plasticized wood obtained by esterification or etherification into fibers by dissolving it in phenols. In addition, Japanese Patent Publication No. 51-25485, No. 51-19492, and No. 51-2526 describe a method for manufacturing phenolic composite fiber containing 0.2 to 30% by weight of a thermofusible resin or a urea compound, a melamine compound, etc. ing. However, these descriptions do not include composites with chemically modified plastic wood, and the curing method is also completely different from that of the present invention. That is, the curing methods described in the above-mentioned Japanese Patent Publications No. 51-25485, No. 51-19492, and No. 51-2526 advance curing by further reacting formaldehyde in an aqueous solution with a catalyst, but the method of the present invention , only heating operation is required. (c) Object of the invention The object of the present invention is to dissolve plasticized wood obtained by treating wood with a plasticizing modifier in phenols, further add a curing agent to form a spinning solution, The object of the present invention is to provide a method for obtaining cured wood phenol fibers by curing filaments spun from the above by heating. (d) Structure of the invention The method for producing wood phenol fiber according to the present invention includes:
By introducing at least one type of substituent into some or all of the hydroxyl groups, the plasticized wood is dissolved in phenols under heating conditions, hexamethylenetetramines are added to the solution, and spinning is performed. It may be made into a liquid, or a spinning solution may be prepared by adding formalin to the solution and blowing ammonia into it. The spinning solution is discharged into the air from a spinneret and cured under heating conditions to produce wood phenol fibers. (e) Preferred embodiments The raw material for producing plasticized wood is wood powder blasted pulp, mechanical pulp, or partially or completely delignified pulp. Further, there is no restriction on the type of wood used as a raw material, and the method of the present invention can be applied to any type of wood. The plasticization modification reaction of the present invention that introduces substituents into wood raw materials is a reaction that introduces substituents into at least some of the hydroxyl groups of cellulose, hemicellulose, or lignin present in the wood raw materials, for example, by introducing substituents into at least some of the hydroxyl groups of cellulose, hemicellulose, or lignin present in the wood raw materials. This is a reaction to esterify or etherify the moiety. Esterification and etherification reactions are preferred as such plasticization modification reactions. Modifiers used for esterification and etherification include free acids, acids and their derivatives such as acid halides and acid anhydrides, and halides such as alkyl halides and ethylene chlorohydrin. Preferred examples of substituents introduced by the plasticization modification reaction include aliphatic acyl groups such as acetyl, propionyl, butyryl, and valeroyl groups, benzoyl and other aromatic acyl groups, methyl groups, and ethyl groups. Examples include lower alkyl groups such as. It is also possible to introduce two or more of these substituents. The introduction ratio of substituents varies depending on the type of substituent, but in general, in order to obtain modified wood with good organic solvent solubility, the substitution ratio expressed as substituent morality should be 7.5 or more. is desirable.
Here, "substituent morality" refers to the number of moles of substituents introduced by substitution per 1000 g of wood. Plastic modification treatment can be carried out according to known techniques. Generally, powdered wood may be treated with a modifier in the presence of an organic solvent or a swelling agent at room temperature to elevated temperatures. Thoroughly wash the wood to be modified. For example, it is poured into methanol, filtered, and washed with water or methanol. Then dry. The dried plastic wood is then dissolved in phenols. A part of this technology for dissolving plasticized wood into phenols was reported at the 32nd Wood Science Society Meeting (1982). Phenols are
A general term for compounds in which the hydrogen atom bonded to the benzene ring is replaced with a hydroxyl group, including phenol, o-cresol, m-cresol, p-cresol,
3,5-xylenol, 2,3-xyresol,
2,4-xylenol, 2,5-xylenol,
Examples include 2,6-xylenol and 3,4-xylenol. It may also be a mixture of the above phenols. The melting device is a container with a cooler or a pressurized container. The melting temperature is 100 to 350°C, and the melting time is about 15 minutes to several hours. The dissolved concentration of plasticized wood ranges from a few percent to 80% on a weight basis, and for 25% or more, it is necessary to uniformly mix the plasticized wood and phenols using a device such as a kneader before melting. . Furthermore, an organic solvent may be added during mixing to achieve more uniform mixing.
They are chloroform, acetone, methylene chloride, methanol, ethanol, etc. Examples of the curing agent include hexamethylenetetramine alone, or a combination of aldehydes such as formaldehyde, paraformaldehyde, and furfural with a catalyst such as ammonia. Next is the spinning process. When the curing agent is hexamethylenetetramine, 3 to 40 parts of the above-mentioned solution is mixed with 1 part (by weight) of hexamethylenetetramine to completely dissolve it and prepare a spinning solution. The mixing temperature is 70-90°C. Alternatively, aldehydes are added to the above solution, and ammonia or the like is blown into the solution to obtain a spinning solution. introducing the mixed spinning solution into an extruder equipped with a spinneret;
After heating to 100 to 150°C for 3 to 10 minutes, the yarn is discharged into the air from a spinneret, and the discharged yarn is wound up by a winder. The wound uncured discharge yarn is subsequently subjected to a curing treatment. The curing method may be heating in air, and the curing temperature is 150 to 300°C, preferably 180 to 250°C. The temperature increase rate from room temperature may be 10 to 60°C/min, or lower. Uncured fibers made of 100% phenol melt and lose their shape before reaching the curing temperature. On the other hand, in the case of wood phenolic fiber,
It reaches the curing temperature with almost no melting, and can be cured while maintaining the fiber form. Figure 1 shows differential thermal analysis curves with heat on the vertical axis and temperature on the horizontal axis for the wood phenol fiber (containing 50% acetylated wood) A of the present invention and the uncured fiber B consisting of 100% phenol. It is. phenol
In the case of 100% uncured fiber B, an endothermic peak of melting is observed at 50°C, but in the case of wood phenol fiber A, no endothermic peak is observed. In addition, the curing start temperature is 160℃ for 100% phenol, but it is 110℃ and 50℃ for wood phenol fiber.
The curing reaction begins at a low temperature of ℃, and the curing peak is also
The temperature has dropped to 155℃ and 50℃. 100% phenol
The curing peak for this case is 205°C. Also, the reason why the spinning and curing reactions are carried out using only hexamethylenetetramines or by adding aldehydes and blowing ammonia into them is that uncured fibers spun with formalin-based novolac etc. and uncured fibers made only with hexamine are different from each other. When compared at the same degree of condensation, the melting point of the latter is much higher than that of the former. For example, Shiro Tsuruta "Reaction of phenol and hexamethylenetetramine"
(“Thermosetting Resin” Vol. 3, No. 4, 44-56 (1982))
In the paper, hexane-based dimer

【式】の融点が168℃で あるのに対して、ホルマリン系の
While the melting point of [Formula] is 168℃, formalin-based

【式】が122℃と述べら れており、ヘキサミン系の方が同一縮合度で比較
してはるかに高い融点を示すことがわかる。この
ことも繊維形状を保持しつつ、硬化反応を行う重
要な点である。 実施例 1 ラジアタ松リフアイナーグラウンドパルプ
(RGP)を乾燥後3g秤取し、反応器に入れる。
予め50℃で30分間熟成しておいた無水トリフルオ
ル酢酸114ミリモルと酢酸120ミリモルの混合液を
上記反応器に入れ、温度を50℃に設定して2時間
反応させる。反応終了後、反応液を1.5のメタ
ノール中に分散させ、過剰のアシル化試薬を分解
した後、乾燥する。得られた改質木材の置換基モ
ラリテイは12.6であつた。 このようにして得た改質木材50部(重量)とフ
エノール50部(重量)をニーダーに入れ、温度60
℃で約1時間混ねりする。混ねりを終了した試料
を還流装置付きの反応器に入れ、200〜220℃で6
時間還流し、完全溶解した混合液を得る。該溶解
液8部(重量)に対してヘキサメチレンテトラミ
ン1部(重量)を添加し、90℃で攪拌し、ヘキサ
メチレンテトラミンを溶解させる。該溶解液を紡
糸液とする。該紡糸液を150℃に加熱した紡糸器
に入れ、5分間放置後、円形紡糸口金(孔径
0.5min)より空気中に押し出す。押し出された
糸状体は、つづいて直径が40μになるように延伸
し巻取つた。 巻取られた未硬化木材フエノール繊維は炉中へ
移され室温より20℃/minの速度で250℃まで昇
温し、30分間保持して、硬化を完了する。なお炉
内雰囲気は空気である。得られた木材フエノール
繊維の強度値は以下のとおりである。引張強度は
17Kg/mm2、伸度12%、である。 実施例 2 乾燥したラジアタ松RGP3g及び酢酸4.0mlを反
応容器に入れ、室温にて時々かきまぜながら2時
間放置する。この前処理が終了後、酢酸18ml、無
水酢酸8.4ml、硫酸0.15mlを混合し、氷冷した酢
化混酸液に上記混合物を加え、50℃、2時間恒温
槽中で振とうしながら反応せしめる。反応終了
後、8.0mlの水を加え、70℃で3時間ケン化反応
を行う。ケン化反応終了後、反応停止のために1
%酢酸マグネシウム水溶液300ml中に生成物を投
入し、攪拌し、ガラスフイルターに集し、0.1
%酢酸マグネシウム水溶液2で洗浄し、水洗
し、乾燥する。得られた改質木材の置換基モラリ
テイーは8.0であつた。このように調製した改質
木材60部(重量)とフエノール40部(重量)をニ
ーダーに投入して50℃、30分間ニーデイングを行
い、その後加圧容器に入れて230℃、4時間加熱
し、完全溶解混合液を得る。該混合液8部(重
量)にヘキサメチレンテトラミン1部(重量)を
添加し90℃でかくはんにより完全に溶解させた溶
液を紡糸液とし、該紡糸液を145℃に加熱した紡
糸器に入れ、4分間放置後、円形紡糸口金(孔径
0.5mm)より空気中に押し出し、つづいて延伸し
巻取つた。巻取つた糸状体の直径は30μであつ
た。 このようにして得られた未硬化木材フエノール
繊維は、空気雰囲気の炉内に導入し、250℃で30
分間放置し硬化処理を完了する。この木材フエノ
ール繊維は、引張強度16.5Kg/mm2、伸度13%であ
つた。 実施例 3 乾燥したブナ材RGP30gを反応器に入れる。
予め50℃で30分間熟成しておいた無水トリフルオ
ル酢酸1.14モルと酢酸1.2モルの混合液を上記反
応器に入れ、温度を50℃に設定して2時間反応さ
せる。反応終了後、反応液を15のメタノール中
に分散させ、過剰のアシル化試薬を分解した後、
乾燥する。得られた改質木材の置換基モラリテイ
は、11.5であつた。このようにして得た改質木材
を50部(重量)とフエノール50部(重量)をニー
ダーに入れ、50℃で30分ニーデイングを行つた
後、還流器付き容器に移し、200℃で4時間加熱
し、完全に溶解させる。該溶解混合液10部(重
量)にヘキサメチレンテトラミン1部(重量)を
添加し90−100℃で溶解されたものを紡糸液とし、
該紡糸液を150℃に加熱した紡糸器に入れ、5分
間放置後、円形紡糸口金(孔径0.5mm)より空気
中に押し出し、つづいて延伸し巻取つた。巻取つ
た糸状体の直径は25μであつた。 このようにして得られた未硬化木材フエノール
繊維は、空気雰囲気の炉内に導入し、250℃30分
間保持して硬化処理を終了する。この木材フエノ
ール繊維は、引張強度18Kg/mm2、伸度12%であつ
た。
[Formula] is stated to be 122°C, and it can be seen that the hexamine type shows a much higher melting point compared to the same degree of condensation. This is also an important point to carry out the curing reaction while maintaining the fiber shape. Example 1 After drying, 3 g of radiata pine refined ground pulp (RGP) was weighed and placed in a reactor.
A mixed solution of 114 mmol of trifluoroacetic anhydride and 120 mmol of acetic acid, which had been aged in advance at 50°C for 30 minutes, was placed in the reactor, the temperature was set at 50°C, and the mixture was allowed to react for 2 hours. After the reaction is completed, the reaction solution is dispersed in 1.5 methanol to decompose excess acylating reagent, and then dried. The substituent morality of the obtained modified wood was 12.6. 50 parts (by weight) of the modified wood thus obtained and 50 parts (by weight) of phenol were placed in a kneader, and the temperature was 60
Mix at ℃ for about 1 hour. After mixing, the sample was placed in a reactor equipped with a reflux device and heated at 200 to 220℃ for 6 hours.
Reflux for an hour to obtain a completely dissolved mixture. 1 part (by weight) of hexamethylenetetramine is added to 8 parts (by weight) of the solution and stirred at 90°C to dissolve hexamethylenetetramine. The solution is used as a spinning solution. The spinning solution was put into a spinning machine heated to 150°C, and after being left for 5 minutes, a circular spinneret (hole diameter
0.5min) into the air. The extruded filament was then stretched and wound to a diameter of 40 μm. The rolled up uncured wood phenol fibers are transferred to a furnace where the temperature is raised from room temperature to 250°C at a rate of 20°C/min and held for 30 minutes to complete curing. Note that the atmosphere inside the furnace was air. The strength values of the obtained wood phenol fibers are as follows. The tensile strength is
The weight was 17Kg/mm 2 and the elongation was 12%. Example 2 3 g of dried Pine Radiata RGP and 4.0 ml of acetic acid are placed in a reaction vessel and left at room temperature for 2 hours with occasional stirring. After this pretreatment is completed, mix 18 ml of acetic acid, 8.4 ml of acetic anhydride, and 0.15 ml of sulfuric acid, add the above mixture to the ice-cooled acetic acid mixture, and react with shaking in a constant temperature bath at 50°C for 2 hours. . After the reaction is completed, 8.0 ml of water is added and the saponification reaction is carried out at 70°C for 3 hours. After the saponification reaction is completed, 1 is added to stop the reaction.
The product was poured into 300 ml of % magnesium acetate aqueous solution, stirred, collected in a glass filter, and diluted with 0.1% magnesium acetate aqueous solution.
Wash with 2% aqueous magnesium acetate solution, water, and dry. The substituent morality of the obtained modified wood was 8.0. 60 parts (by weight) of the modified wood thus prepared and 40 parts (by weight) of phenol were put into a kneader and kneaded at 50°C for 30 minutes, then placed in a pressurized container and heated at 230°C for 4 hours. Obtain a completely dissolved mixture. 1 part (by weight) of hexamethylenetetramine was added to 8 parts (by weight) of the mixed solution, and the solution was completely dissolved by stirring at 90°C, and the spinning solution was put into a spinning machine heated to 145°C. After standing for 4 minutes, the circular spinneret (pore size
0.5 mm) into the air, then stretched and wound. The diameter of the wound filament was 30μ. The uncured wood phenolic fiber thus obtained was introduced into a furnace with an air atmosphere and heated at 250℃ for 30 minutes.
Leave for a minute to complete the curing process. This wood phenol fiber had a tensile strength of 16.5 Kg/mm 2 and an elongation of 13%. Example 3 30 g of dried beech wood RGP is placed in a reactor.
A mixed solution of 1.14 mol of trifluoroacetic anhydride and 1.2 mol of acetic acid, which had been aged in advance at 50°C for 30 minutes, is placed in the above reactor, the temperature is set at 50°C, and the mixture is allowed to react for 2 hours. After the reaction was completed, the reaction solution was dispersed in 15 methanol to decompose the excess acylation reagent, and then
dry. The substituent morality of the obtained modified wood was 11.5. 50 parts (by weight) of the modified wood thus obtained and 50 parts (by weight) of phenol were placed in a kneader and kneaded at 50℃ for 30 minutes, then transferred to a container with a reflux device and heated at 200℃ for 4 hours. Heat until completely dissolved. 1 part (by weight) of hexamethylenetetramine was added to 10 parts (by weight) of the dissolution mixture and dissolved at 90-100°C, which was used as a spinning solution.
The spinning solution was placed in a spinning machine heated to 150° C., and after being left for 5 minutes, it was extruded into the air through a circular spinneret (pore diameter: 0.5 mm), and then stretched and wound. The diameter of the wound filament was 25μ. The uncured wood phenol fiber thus obtained is introduced into a furnace in an air atmosphere and held at 250°C for 30 minutes to complete the curing process. This wood phenol fiber had a tensile strength of 18 Kg/mm 2 and an elongation of 12%.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明で製造される木材フエノール繊
維の示差熱分析結果を示すグラフである。
FIG. 1 is a graph showing the results of differential thermal analysis of wood phenol fibers produced according to the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 水酸基の一部もしくは全部に少くとも一種の
置換基を導入することによりプラスチツク化され
た木材をフエノール類中で溶解させ、さらにヘキ
サメチレンテトラミン類を添加し、又はアルデヒ
ド類を入れてアンモニア類を吹き込んで溶解さ
せ、この溶液を紡糸液として紡糸した後、加熱に
より硬化させることを特徴とする木材フエノール
繊維の製造法。
1 Wood made into plastic by introducing at least one substituent into some or all of the hydroxyl groups is dissolved in phenols, and further hexamethylenetetramines are added or aldehydes are added and ammonia is dissolved. A method for producing wood phenol fibers, which comprises blowing and dissolving the solution, spinning this solution as a spinning solution, and then curing it by heating.
JP20871683A 1983-11-07 1983-11-07 Production of wood phenolic fiber Granted JPS60104513A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20871683A JPS60104513A (en) 1983-11-07 1983-11-07 Production of wood phenolic fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20871683A JPS60104513A (en) 1983-11-07 1983-11-07 Production of wood phenolic fiber

Publications (2)

Publication Number Publication Date
JPS60104513A JPS60104513A (en) 1985-06-08
JPS6367564B2 true JPS6367564B2 (en) 1988-12-26

Family

ID=16560897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20871683A Granted JPS60104513A (en) 1983-11-07 1983-11-07 Production of wood phenolic fiber

Country Status (1)

Country Link
JP (1) JPS60104513A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03192047A (en) * 1989-12-21 1991-08-21 Ace Denken:Kk Communication trough for transporting paper piece etc.
EP0472474A1 (en) 1990-08-24 1992-02-26 Rengo Co., Ltd. Method for preparing a liquefied solution of ligno-cellulose substance with polyhydric alcohols

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61138722A (en) * 1984-12-05 1986-06-26 Oji Paper Co Ltd Production of wood-phenolic carbon fiber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03192047A (en) * 1989-12-21 1991-08-21 Ace Denken:Kk Communication trough for transporting paper piece etc.
EP0472474A1 (en) 1990-08-24 1992-02-26 Rengo Co., Ltd. Method for preparing a liquefied solution of ligno-cellulose substance with polyhydric alcohols

Also Published As

Publication number Publication date
JPS60104513A (en) 1985-06-08

Similar Documents

Publication Publication Date Title
US4144080A (en) Process for making amine oxide solution of cellulose
US5747125A (en) Fibrous composite cellulosic film and method
CN100497457C (en) Degradable high polymer material of poplar wood pulp cellulose and its preparation method
US4267285A (en) Composites of polymeric material and thermosetting resinous fibers and particles and method
CN109504052B (en) Biomass toughening agent for modified polylactic acid and preparation method thereof, modified polylactic acid and preparation method thereof
DE2214281B2 (en) Phenolic resin fiber with improved resistance and process for their production
JPH04106128A (en) Production of solution of lignocellulose substance
CN115093634B (en) Polyethylene for parking grille and preparation method thereof
US5584919A (en) Pelletized pre-dope granules of cellulose and tertiary amine oxide, spinning solution, of cellulose and process for making them
CN109320933A (en) A kind of activeness and quietness bamboo fibre/lactic acid composite material and preparation method thereof
US4851522A (en) Process for the preparation of solutions of a ligno-cellulosic material and solutions obtained
JPS6367564B2 (en)
JP2545171B2 (en) Resin coated carbon fiber chopped strand
EP1080114A1 (en) Method for derivatizing cellulose
JP4509239B2 (en) Cellulose triacetate and method for producing the same
JPH026851B2 (en)
CN109608844A (en) The preparation method of the full Preen nono composite material of acetic acid esterified nano-cellulose-polylactic acid
JPS61160423A (en) Production of activated carbon fiber from wood phenol
JPS59179814A (en) Preparation of fibrous material of plasticized wood
DE4440246C2 (en) Process for the production of a biodegradable cellulosic fiber composite
JPH01104620A (en) Production of lignocellulose material solution
JPH0541676B2 (en)
JPH111315A (en) Spherical active carbonaceous material composite and its production
US1950663A (en) Manufacture of cellulose esters
US2512628A (en) Process of treating polytriazoles