JPS6367544A - Press notch dwtt testing method - Google Patents

Press notch dwtt testing method

Info

Publication number
JPS6367544A
JPS6367544A JP21178286A JP21178286A JPS6367544A JP S6367544 A JPS6367544 A JP S6367544A JP 21178286 A JP21178286 A JP 21178286A JP 21178286 A JP21178286 A JP 21178286A JP S6367544 A JPS6367544 A JP S6367544A
Authority
JP
Japan
Prior art keywords
test
press
dwtt
press notch
piece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21178286A
Other languages
Japanese (ja)
Inventor
Toshiya Akiyama
秋山 俊弥
Yoshihiro Hirase
平瀬 欣弘
Namio Urabe
浦辺 浪夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP21178286A priority Critical patent/JPS6367544A/en
Publication of JPS6367544A publication Critical patent/JPS6367544A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PURPOSE:To accurately test brittle fracture propagation stop characteristics by an easy method that tests a test-piece which is compressed and deformed to 25-40% in the plate thickness direction at the press notch part of the test- piece. CONSTITUTION:The test-piece which is compressed and deformed to 25-40% in the plate thickness direction its press notch part is prepared and used to take the test. For the purpose one edge of the intermediate of the test-piece 1 is compressed on both front and rear surfaces with press punches 2 and 2 to deform in the plate thickness directions, and a V press notch is formed with a tool 4 at the press notch parts where compressive deformation parts 3 are formed. Thus, the compressive deformation is caused at the press notch parts in the plate thickness direction to suppress fracture generating energy.

Description

【発明の詳細な説明】 「発明の目的」 産業上の利用分野 本発明は、ラインパイプ用鋼などの脆性亀裂伝播特性を
評価するためのプレスノツチDWTT試験片及び試験法
に関する。
DETAILED DESCRIPTION OF THE INVENTION OBJECTS OF THE INVENTION Field of Industrial Application The present invention relates to press-notched DWTT test specimens and test methods for evaluating brittle crack propagation properties of line pipe steels and the like.

従来の技術 パイプラインの不安定延性破壊事故の発生により実管パ
イプラインバースト試験が行われるようになったが、費
用、労力的に負担の大きいこの実管試験に代わり、バー
スト試験結果と良く対応するDWTT試験(Drop 
Weight Tear Te5t )が主流を占める
ようになっている。このDWTT試験は、85%延性破
面率を示す温度を規定する試験法であって、ASTM規
格E436−71Tとして規定され実用に供されていて
、切欠はプレスノツチである。ところが、ラインパイプ
用鋼の高靭性化により、斯かる従来のD W T T試
験法では対応できない問題が生じた。即ちプレスノツチ
底から延性破面が出現し、それから脆性破面に移行すす
る逆破面がそれである。この原因は、高靭性化により、
プレスノツチでは脆性破面の発生に必要な塑性拘束が不
十分なためであると考えられる。
Due to the occurrence of unstable ductile fracture accidents in conventional technology pipelines, real pipe pipeline burst tests have been conducted, but instead of this real pipe test, which is burdensome in terms of cost and labor, this test corresponds well to the burst test results. DWTT test (Drop
Weight Tear Te5t) has become the mainstream. This DWTT test is a test method that specifies the temperature at which a ductile fracture ratio of 85% is obtained, and is specified as ASTM standard E436-71T and is put into practical use, and the notch is a press notch. However, as steel for line pipes has become more tough, a problem has arisen that cannot be addressed by the conventional DWT test method. That is, it is a reverse fracture surface in which a ductile fracture surface appears from the bottom of the press notch and then transitions to a brittle fracture surface. This is due to the increased toughness,
This is thought to be due to the insufficient plastic restraint necessary for the formation of brittle fracture surfaces in press notches.

そこでこのようなことの対策として以下のようなことが
発表されている。
Therefore, the following measures have been announced as countermeasures against this problem.

■ 脆化溶接ビート付DWTT試験法が、1)小林、平
、山口、岩崎二日本鋼管技報Th72.2)野蚕、開所
、住友他:住友金属Vo1.33、嵩I June19
8L3)中野、工藤、船越他:用崎製鉄技報、Vol、
8.11kL40ct  1976などに発表されてい
る。また、 ■ プレクラック(Pre −Crack ) DWT
T試験法が、G、M、 Wilkowski & R,
J、 Eiber : DRAFT。
■ DWTT test method with embrittlement welded bead is 1) Kobayashi, Taira, Yamaguchi, Iwasaki 2 Nippon Steel Tube Technical Report Th72. 2) Nosari, Kaisho, Sumitomo et al.: Sumitomo Metals Vol. 1.33, Takashi I June 19
8L3) Nakano, Kudo, Funakoshi et al.: Yozaki Steel Technical Report, Vol.
8.11kL40ct Published in 1976, etc. Also, ■ Pre-Crack DWT
The T test method was developed by G, M, Wilkowski & R,
J, Eiber: DRAFT.

Procedure for conducting 
 the 5taticPrecrack Drop 
Weight Tear Te5t on Line 
Pipe”。
Procedure for conducting
the 5tatic Precrack Drop
Weight Tear Te5t on Line
Pipe”.

1978に発表されている。即ち■はプレスノツチ付与
部に脆化溶接ビードを盛ることにより亀裂発生を容易に
する方法であり、■は静的負荷によってプレスノッチ先
端から繊維状破面を数mm成長させた後、衝撃曲げを施
す方法である。
It was announced in 1978. Namely, method (2) is a method in which cracking is facilitated by placing an embrittled weld bead in the press notch area, and (2) is a method in which a fibrous fracture surface is grown several mm from the tip of the press notch by static loading, and then impact bending is applied. This is a method of applying

発明が解決しようとする問題点 しかし、■の脆化溶接ビート付DWTT試験法は、脆化
ビードを溶接する工程が入り、欠陥がないビードを作る
のが難しく実用的でない。また■のプレクラックDWT
T試験法は、静的負荷時にリガメント部にも塑性変形を
与え、その予歪の影響はQT処理した鋼種に特に著しく
、以下に示すような状況を生じさせる。
Problems to be Solved by the Invention However, the DWTT test method with an embrittled welded bead (2) involves a step of welding an embrittled bead, and it is difficult to produce a defect-free bead and is not practical. Also ■ pre-crack DWT
In the T test method, plastic deformation is also applied to the ligament part during static loading, and the influence of the pre-strain is particularly significant on QT-treated steel types, resulting in the situation shown below.

(a)85%延性破面率を示す温度(85%5ATT)
は、プレスノツチに比べて上昇する。QT材では高エネ
ルギー材程その差は太き(、vEsが35kg−mのQ
T材では60℃も上昇することは第6図に示す通りであ
る。
(a) Temperature showing 85% ductile fracture ratio (85% 5ATT)
increases compared to presnotch. For QT materials, the higher the energy, the greater the difference (QT material with vEs of 35 kg-m
As shown in FIG. 6, the temperature of T material increases by as much as 60°C.

(b)  静的負荷時にリガメント部の変形に要するエ
ネルギーを取り去る。リガメント部の変形エネルギーは
伝播エネルギーの一部とみなすべきもので、その結果伝
播エネルギーを過小に評価することになる。
(b) Removes the energy required to deform the ligament under static loads. The deformation energy of the ligament should be considered as part of the propagated energy, which results in an underestimate of the propagated energy.

「発明の構成」 問題点を解決するための手段 試験片のプレスノツチ部における板厚方向に25%以上
40%以下の圧縮変形を与えた試験片を準備し、該試験
片を用いて試験することを特徴とするプレスノツチDW
TT試験方法。
"Structure of the Invention" Means for Solving the Problems: Prepare a test piece to which a compressive deformation of 25% or more and 40% or less is applied in the thickness direction at the press notch portion of the test piece, and conduct a test using the test piece. Press Notsuchi DW featuring
TT test method.

作用 プレスノツチ部における板厚方向に圧縮変形を与えるこ
とにより亀裂発生エネルギーを抑制する。
Crack generation energy is suppressed by applying compressive deformation in the plate thickness direction at the action press notch.

前記圧縮変形が25%以上とされることにより伝播エネ
ルギーが略to ta lエネルギーと等しくなる。
By setting the compressive deformation to 25% or more, the propagation energy becomes approximately equal to the total energy.

前記圧縮変形を40%以下とすることにより押しポンチ
などにより容易に加工し得る。
By setting the compressive deformation to 40% or less, it can be easily processed using a push punch or the like.

前記圧縮変形部に適宜■プレスノツチを形成し衝撃曲げ
試験する。
A press notch is appropriately formed in the compressively deformed portion and an impact bending test is performed.

実施例 上記したような本発明について更に具体的に説明するな
らば、本発明者等は、前記したような従来技術の問題点
に鑑み種々研究を重ね鋭意検討した結果、ラインパイプ
用鋼の脆性亀裂伝播特性を適切に評価するためには、リ
ガメント部に塑性変形を与えず、亀裂発生エネルギーを
抑え、尚かつ実用上簡便な試験法を開発する必要がある
ことから、これらの条件を満たす試験法として、試験片
のプレスノツチ部の板厚方向に試験の前に圧縮変形を与
えた試験片を用いる試験法、即ちラテラルコンプレッシ
ョン(Lateral Compression ) 
DWTT法とも称すべき試験方法を開発した。
EXAMPLE To explain the present invention as described above in more detail, the present inventors have conducted various studies in view of the problems of the prior art as described above, and as a result of intensive consideration, the brittleness of steel for line pipes has been determined. In order to appropriately evaluate crack propagation characteristics, it is necessary to develop a test method that does not apply plastic deformation to the ligament, suppresses crack initiation energy, and is simple in practical terms. As a test method, a test method that uses a test piece that has been subjected to compressive deformation in the thickness direction of the press notch portion of the test piece before the test, that is, lateral compression
We have developed a test method that can also be called the DWTT method.

即ち、本発明による試験に用いる試験片の作製手順を示
すと以下の如くである。
That is, the procedure for preparing a test piece used in the test according to the present invention is as follows.

(11プレスノツチDWTTと同じ矩型寸法に試験片を
加工する。
(11 Process the test piece into the same rectangular size as the press notch DWTT.

(2)ノツチ部の板厚両側から板厚方向に圧縮変形を与
える。
(2) Apply compressive deformation in the thickness direction from both sides of the thickness of the notch.

(3)■プレスノツチをつくる。(3) ■Make a press notch.

試験片形状、試験法は従来のDWTT試験と同じである
。そして上記(2)の板厚方向に圧縮変形を与えること
により、亀裂発生エネルギーを抑制することが本発明の
試験法の特徴である。
The test piece shape and test method were the same as the conventional DWTT test. A feature of the test method of the present invention is to suppress crack generation energy by applying compressive deformation in the plate thickness direction as described in (2) above.

更に、このような本発明による試験片及び試験方法につ
いて図面を用いて説明すると以下の如くである。即ち、
第1図は上記したようなラテラルコンプレッションDW
TT試験片の作成手順を示すものであり、同図(a)に
示すような矩形状試験片1を準備し、該試験片1の中間
部−側縁に対し同図(b)に示すように表裏両面から押
しポンチ2.2によって板厚方向に圧縮変形を与え、こ
のようにして圧縮変形部3の形成されたプレスノツチ部
に対し、第1図(C)に示すように工具4によって■プ
レスノッチを形成するものである。
Further, the test piece and test method according to the present invention will be described below with reference to the drawings. That is,
Figure 1 shows the lateral compression DW as described above.
This shows the procedure for creating a TT test piece, in which a rectangular test piece 1 as shown in Figure (a) is prepared, and the middle part to the side edge of the test piece 1 is inserted as shown in Figure (b). A press punch 2.2 is used to apply compressive deformation to the plate from both the front and back surfaces, and the press notch portion in which the compressively deformed portion 3 is formed is then punched with a tool 4 as shown in FIG. 1(C). This is to form a press notch.

第2図には上記した第1図のfb)における圧縮変形を
与えるために2枚の試験片1.1に対し同時に加工する
手法が示されている。即ち試験片1.1を、2枚の治具
部材5.5に形成された受入れ部6.6間にそれぞれ収
容せしめ、緊締手段7によって緊締保持せしめ、上記し
たような治具部材5.5の中央部に前記したような2枚
の試験片1.1における対向側縁部分に股って形成され
た長孔状の挿入孔8に対して押しポンチ2a、2aを上
下から挿入し、両試験片1.1に対して同時に圧縮変形
を与えるものである。
FIG. 2 shows a method for simultaneously processing two specimens 1.1 in order to give the compressive deformation in fb) of FIG. 1 described above. That is, the test piece 1.1 is accommodated between the receiving portions 6.6 formed in the two jig members 5.5, and held tightly by the tightening means 7, and the jig members 5.5 as described above are held tightly. The push punches 2a, 2a are inserted from above and below into the elongated insertion hole 8 formed in the center of the two test specimens 1.1 on opposite side edges as described above. The test piece 1.1 is subjected to compressive deformation at the same time.

上記したようにして得られる圧縮変形の寸法については
第3図に示した如くであって、試験片1の板厚如何に拘
わらず、幅が76n+mの試験片1の幅方向において1
5mmの深さを採り、また長さ方100 (%))は1
例として30%とした。■プレスノツチはこの第3図の
右側のように圧縮変形を与えたのち、同じ試験機で■ノ
ツチ9を付与することができ、また衝撃曲げ試験は3t
on −m衝撃試験機を用いて行うことができる。
The dimensions of the compressive deformation obtained as described above are as shown in FIG.
The depth is 5mm, and the length (100%) is 1
As an example, it was set to 30%. ■For the press notch, after applying compression deformation as shown on the right side of Fig. 3, ■Notch 9 can be applied using the same testing machine, and the impact bending test is performed at 3t.
It can be performed using an on-m impact tester.

第4図においては、X70のものの破断遷移温度及び吸
収エネルギー遷移曲線を示されており、吸収エネルギー
(Absorbed Energy )はX印を以て示
されたプレスノツチDWTT、ロ印で示された30%ラ
テラルコンプレッションD W T T 、・印で示さ
れたプレクラックDWTTの順に小さくなっている。即
ち30%ラテラルコンプレッションD W ’T” T
は、前述したように圧縮変形により発生エネルギーを抑
制しているので、プレスノツチDWTTのエネルギーよ
り小さく、またリガメント部に変形を与えないのでプレ
クラックDWTTより吸収エネルギーが大きい。
In Fig. 4, the fracture transition temperature and absorbed energy transition curve of X70 are shown, and the absorbed energy is shown by the press notch DWTT indicated by the X mark, and the 30% lateral compression D shown by the square mark. The pre-crack DWTT becomes smaller in the order of W T T and pre-crack DWTT indicated by *. i.e. 30% lateral compression D W 'T'T
Since the generated energy is suppressed by compressive deformation as described above, the energy is smaller than that of the press-notched DWTT, and the absorbed energy is larger than that of the pre-cracked DWTT because the ligament is not deformed.

また、X65〜X80の強度レベル範囲の5網種におけ
るプレスノツチDWTT試験のEt (totalエネ
ルギー)とEp (伝播エネルギー)の関係は、次式で
表わされることが試験結果よりわかっている。
Further, it has been found from the test results that the relationship between Et (total energy) and Ep (propagation energy) in the press notch DWTT test for five mesh types in the intensity level range of X65 to X80 is expressed by the following equation.

BpPN  =0.7Et” 伝播エネルギーEpは、プレスノツチDWTTとラテラ
ルコンプレッションDWTTでほぼ等しいと考えられる
。よってラテラルコンプレッションDWTTにおけるE
tとEpの割合は次式で表わされる。
BpPN = 0.7Et" The propagation energy Ep is considered to be approximately equal in the press notch DWTT and the lateral compression DWTT. Therefore, the propagation energy Ep in the lateral compression DWTT is
The ratio between t and Ep is expressed by the following formula.

E tLcE L” 第5図はEpLc/EtLc  と圧縮率の関係を要約
して示すものであって、この図より若干のばらつきは見
られるが、圧縮率が25%を超えると伝播エネルギーが
ほぼtotalエネルギーに等しくなることがわかり、
また圧縮率が40%を超えると押しポンチによる圧縮変
形が困難となるので、圧縮率は25〜40%とすること
が望ましい。
E tLcE L" Figure 5 summarizes the relationship between EpLc/EtLc and the compression ratio. From this figure, some variation can be seen, but when the compression ratio exceeds 25%, the propagation energy is almost the total. It turns out that the energy is equal to
Furthermore, if the compression rate exceeds 40%, it becomes difficult to compress and deform using a push punch, so it is desirable that the compression rate is 25 to 40%.

鋼の高靭性化に伴い、プレスノツチDWTT試験では亀
裂発生エネルギーが無視できなくなっているが、ラテラ
ルコンプレッションDWTT試験法は、リガメント部に
予変形を与えず伝播エネルギーを評価する簡便な試験法
である。
As the toughness of steel increases, the crack initiation energy in the press notch DWTT test cannot be ignored, but the lateral compression DWTT test method is a simple test method that evaluates the propagation energy without pre-deforming the ligament part.

「発明の効果」 以上説明したように本発明によるときは、ラインパイプ
用鋼や低温用鋼などの高靭性化した条件下においてもそ
の脆性亀裂伝播停止特性を簡易な手法によって正確に試
検し評価することができるものであって、工業的にその
効果の大きい発明である。
"Effects of the Invention" As explained above, according to the present invention, the brittle crack propagation arresting properties of steel for line pipes and steel for low-temperature use can be accurately tested using a simple method even under highly toughened conditions. This invention can be evaluated and has great industrial effects.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の技術的内容を示すものであって、第1図
は本発明による試験片作成方法を段階的に示した説明図
、第2図はその圧縮変形をなすための治具についての斜
面図、第3図はその試験片要部についての説明図、第4
図はX70のものの破断遷移温度と吸収エネルギー遷移
曲線を各種の試験片について要約して示した図表、第5
図は圧縮率とEpLc/EtLcの関係をを要約して示
した図表、第6図はプレクラック試験法における85%
延性破面率を示す温度(85%5ATT)とvEsの関
係をフェライト+パーライト組織、フェライト+ベイナ
イト組織およびQT材について示した図表である。 然して第1〜3図において、■は試験片、2.2aは押
しポンチ、3は圧縮変形部を示すものである。 温L(’e) 節 5 図
The drawings show the technical content of the present invention, and Fig. 1 is an explanatory diagram showing step-by-step the test piece preparation method according to the present invention, and Fig. 2 is an explanatory diagram showing the jig for performing the compression deformation. Slope view, Figure 3 is an explanatory diagram of the main part of the test piece, Figure 4
The figure is a chart summarizing the fracture transition temperature and absorption energy transition curve of various test pieces for X70.
The figure is a diagram summarizing the relationship between compression ratio and EpLc/EtLc, and Figure 6 is 85% in the pre-crack test method.
It is a chart showing the relationship between the temperature (85% 5ATT) showing the ductile fracture ratio and vEs for a ferrite + pearlite structure, a ferrite + bainite structure, and a QT material. In FIGS. 1 to 3, the symbol (■) represents the test piece, 2.2a represents the press punch, and 3 represents the compressive deformation portion. Warm L('e) Node 5 Fig.

Claims (1)

【特許請求の範囲】[Claims] 試験片のプレスノッチ部における板厚方向に25%以上
40%以下の圧縮変形を与えた試験片を準備し、該試験
片を用いて試験することを特徴とするプレスノッチDW
TT試験方法。
A press notch DW characterized in that a test piece is prepared which has been subjected to compressive deformation of 25% or more and 40% or less in the plate thickness direction at the press notch portion of the test piece, and the test is performed using the test piece.
TT test method.
JP21178286A 1986-09-10 1986-09-10 Press notch dwtt testing method Pending JPS6367544A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21178286A JPS6367544A (en) 1986-09-10 1986-09-10 Press notch dwtt testing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21178286A JPS6367544A (en) 1986-09-10 1986-09-10 Press notch dwtt testing method

Publications (1)

Publication Number Publication Date
JPS6367544A true JPS6367544A (en) 1988-03-26

Family

ID=16611509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21178286A Pending JPS6367544A (en) 1986-09-10 1986-09-10 Press notch dwtt testing method

Country Status (1)

Country Link
JP (1) JPS6367544A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009125822A (en) * 2007-11-20 2009-06-11 Hitachi Ltd Screw supply system
JP2011033457A (en) * 2009-07-31 2011-02-17 Jfe Steel Corp Evaluation method of brittle fracture propagation stopping performance of thick steel plate
WO2013056504A1 (en) * 2011-10-17 2013-04-25 中国石油天然气集团公司 Process for cooling gas medium for drop weight tear test of pipeline steel specimen
CN103512814A (en) * 2012-06-14 2014-01-15 中国石油天然气集团公司 Drop weight tear test system and method thereof
KR20160009589A (en) 2013-06-26 2016-01-26 제이에프이 스틸 가부시키가이샤 Method for evaluating brittle fracture propagation arrestability of thick steel plate
JP2017003377A (en) * 2015-06-09 2017-01-05 Jfeスチール株式会社 Method for evaluating brittle fracture propagation stopping performance of thick steel plate

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009125822A (en) * 2007-11-20 2009-06-11 Hitachi Ltd Screw supply system
JP2011033457A (en) * 2009-07-31 2011-02-17 Jfe Steel Corp Evaluation method of brittle fracture propagation stopping performance of thick steel plate
WO2013056504A1 (en) * 2011-10-17 2013-04-25 中国石油天然气集团公司 Process for cooling gas medium for drop weight tear test of pipeline steel specimen
CN103512814A (en) * 2012-06-14 2014-01-15 中国石油天然气集团公司 Drop weight tear test system and method thereof
CN103512814B (en) * 2012-06-14 2015-07-08 中国石油天然气集团公司 Drop weight tear test system and method thereof
KR20160009589A (en) 2013-06-26 2016-01-26 제이에프이 스틸 가부시키가이샤 Method for evaluating brittle fracture propagation arrestability of thick steel plate
JP2017003377A (en) * 2015-06-09 2017-01-05 Jfeスチール株式会社 Method for evaluating brittle fracture propagation stopping performance of thick steel plate

Similar Documents

Publication Publication Date Title
Lee et al. Ultimate strength of resistance spot welds subjected to combined tension and shear
CN101128273B (en) High-strength welded steel pipe excellent in hydrogen embrittlement cracking resistance of weld metal and process for producing the same
Mannucci et al. Fracture properties of API X 100 gas pipeline steels
JPS6367544A (en) Press notch dwtt testing method
Dhalla et al. Suggested steel ductility requirements
Asahi et al. Pipe production technology and properties of X120 linepipe
Hashemi Comparative study of fracture appearance in crack tip opening angle testing of gas pipeline steels
Liu et al. Significance of biaxial stress on the strain concentration and crack driving force in pipeline girth welds with softened HAZ
Ichiyama et al. Factors affecting flash weldability in high strength steel–a study on toughness improvement of flash welded joints in high strength steel
Yan et al. Cold cracking susceptibility of X100 pipeline steel
Hasenhütl et al. Inverse Fracture: What is it All About?
Nolan et al. Hardness prediction models based on HAZ simulation for in-service welded pipeline steels
JPH06331530A (en) Method for testing hic characteristic of steel tube material
Bhatt et al. Formability of mash seam welded blanks: Effects of welding set-up conditions
JP7248882B2 (en) Brittle crack arrest property test method and test piece
JPH09196244A (en) Steel pipe excellent in aseismic characteristic
Aihara et al. Evaluation on dependence of ductile crack propagation resistance on crack velocity
Denys Wide-Plate Testing of Weldments: Part III—Heat-Affected Zone Wide-Plate Studies
Yamaguchi et al. Fatigue crack propagating behavior from inner surface crack on bent sheet of ultra-high strength steel
Sas et al. Investigation of S960QL type high strength steels and its weld joints applying absorbed specific fracture energy and notch opening displacement
Akahoshi et al. Study on Correcting Method for Predicting Brittle Fracture of Surface Cracked Plates in Mixed-Mode Loading
Futch et al. Into the Void: Understanding the Impact of Hydrotests on Flaws in ERW Welds
Theocaris Exhaustion of extensional ductility by torsional prestrain
DE102023002911A1 (en) Method for measuring a diffusible hydrogen content in a weld seam
Ragai et al. Experimental investigation of springback of dual-phase steels