JPS6366659B2 - - Google Patents

Info

Publication number
JPS6366659B2
JPS6366659B2 JP57115965A JP11596582A JPS6366659B2 JP S6366659 B2 JPS6366659 B2 JP S6366659B2 JP 57115965 A JP57115965 A JP 57115965A JP 11596582 A JP11596582 A JP 11596582A JP S6366659 B2 JPS6366659 B2 JP S6366659B2
Authority
JP
Japan
Prior art keywords
flame
vinyl chloride
tube
weight
resin layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57115965A
Other languages
Japanese (ja)
Other versions
JPS597039A (en
Inventor
Kazuhiro Shiraishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP57115965A priority Critical patent/JPS597039A/en
Publication of JPS597039A publication Critical patent/JPS597039A/en
Publication of JPS6366659B2 publication Critical patent/JPS6366659B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は電線の配線等に使用される可撓波形管
に関するものである。 電気配線用の電線管は埋設したときに圧壊しな
いだけの扁平強度と配管時に人力で屈曲させられ
る可撓性とが要求されることから、特公昭46−
20230号公報に記載されているように、波高、肉
厚、ピツチ、ヤング率等を所定の範囲と特定の関
係を有する合成樹脂製波形管が使用されている。 しかし、かかる電線管は建物内に配管されるこ
とが多いため、難燃性を有することが要望される
が、従来の電線管はポリオレフインなど燃焼し易
い合成樹脂で作られていて難燃性に劣るものであ
つた。また、実公昭55−43704号公報には上記電
線管の引張強度が低く、これに起因して無用の伸
び又は撓みを生じ、コンクリート打込時その圧力
により電線管の埋込位置に狂いを生じさせ電線引
込性を損うなどの欠点があるのを、波形管からな
る内管の外周上に、外管として外面が平滑で内面
に内管の外面波形に対応する波付部を設けた前記
内管材よりも軟質の合成樹脂からなる内面波付管
を、外管の山部が内管の谷部を完全に埋めつくさ
ないように嵌合させてなる合成樹脂可撓電線管と
することにより解消することが記載されている。 この公報には、更に内管として硬質ポリエチレ
ン、外管として軟質塩化ビニルを使用した例が示
され、難燃性が要求される場合には、難燃性に富
む塩化ビニール樹脂を用いることが開示されてい
る。 しかしながら、前記合成樹脂可撓電績管は、波
付内管の外周上に、外面平滑な内面波付管を嵌合
させてなるので、肉厚が厚くなり外管の肉厚分だ
け重量が増えて長尺の巻き物として持ち運び難く
なり施工作業性に劣つたものとなると共に小さな
曲率半径で屈曲させることができなくなり建物に
沿つた配管を行うためには継手を使用しなければ
ならないという欠点がある。 また、外径と内径とを従来の波形管と同じ寸法
にしようとすると内管の波高を小さくする必要が
あり、扁平強度に劣ると共に可撓性も小さくな
る。更に、従来の波形管に外管を嵌合させたもの
とすると外管の厚さ分だけ外径が大となり、コネ
クターとして専用のサイズのものが必要となる
し、外径を同じにして内管の波高を同じにすると
内管の内径が小さくなり、通線電線の太さが小さ
いものに限定されるという欠点がある。本発明は
上述の従来の電線管における欠点を解決した管体
を提供することを目的としたものであつて、その
要旨は、塩化ビニル含有量50重量%以上の塩化ビ
ニル系樹脂からなる肉厚0.05〜0.3mmの難燃性樹
脂層を外層とし、オレフイン系樹脂層を内層とし
て押出し成形された二層管が波形に賦形されてな
る可撓波形管に存する。第1図は本発明の可撓波
形管の一例を一部省略し一部断面で示す正面図
で、1は可撓波形管、2は難燃性樹脂層であり、
難燃性樹脂層2が可撓波形管1の外面に密接して
被覆されている。可撓波形管1はオレフイン系樹
脂からなる。これは屋内配線の電線管は通電によ
る発熱等のために50℃〜60℃程度に加熱されるこ
とがあるが、この温度でも初期の強度を有してい
ることが必要であり、オレフイン系樹脂はこの温
度範囲におけるヤング率の低下が小さいからであ
る。オレフイン系樹脂としては、ポリエチレン、
ポリプロピレン、ポリブデン、ポリペンテン、エ
チレン−プロピレン共重合樹脂、エチレン−低級
α−オレフイン共重合樹脂、架橋ポリエチレン等
のポリオレフイン樹脂、オレフイン含有量が50重
量%以上であるオレフインとアクリル酸アルキ
ル、アクリル酸、酢酸ビニル、酢酸ビニル−塩化
ビニル等との共重合樹脂が使用できる。 又、難燃性樹脂層2は燃焼しにくくかつ炎を当
てて燃焼させても炎を取り去ると自然に消える性
質を有する樹脂からなり、例えば塩化ビニル含有
量50重量%以上の塩化ビニル系樹脂や塩化ビニリ
デン樹脂等が使用できる。塩化ビニル系樹脂とし
ては、フタル酸エステル、二塩基酸エステル、グ
リコールエステル、脂肪酸エステル、リン酸エス
テル等の可塑剤を添加した塩化ビニル樹脂、エチ
レン−酢酸ビニル−塩化ビニル共重合樹脂、塩化
ビニル−エチレン共重合樹脂、等の塩化ビニルと
他のモノマーとの共重合樹脂、等があげられる。
塩化ビニル含有量を50重量%以上とするのは、波
形管1に難燃性を付与すると共に前記した波形管
の加熱下においても扁平強度、引張強度、耐熱変
形等の強度を保持するためである。 本発明では、二層押出し成形により上述したオ
レフイン系樹脂からなる直管の外面に難燃性樹脂
層2が密接して被覆された二層管を、押出し方向
に回動している金型に挾持した状態で金型面に沿
うようブロー成形して連続的に長尺の波形管1が
得られる。 そして、波形管1の形状は山と谷とが周方向に
形成されたものであつても螺旋状に形成されたも
のであつてもよい。また山と谷との形状は、正弦
曲線に似た形状でも台形状であつてもよいが、図
示の如く山部の外面が円筒面となされ、この山部
と山部との間に山部の幅より大で、円弧状の底部
が形成された谷部をを有する形状とすると扁平強
度が大でかつ屈曲可撓性に富んだものとなるため
好ましい。特に山部は軸方向の断面外形が台形状
(両側辺のなす角が40゜以下)となされ、山部で厚
く、谷部で薄くなされているのが好ましい。 又、難燃性樹脂層2は波形管1の外面にほゞ均
一に密接被覆されるが、その厚さは0.05〜0.3mm
とするのが好ましい。厚さが0.05mm未満であると
薄くて炎を当てて波形管1が燃焼すると炎をはな
しても消えなくなり難燃性に劣るからであり、ま
た0.3mmより厚くなると本発明の波形管の厚さを
厚くする即ち難燃性樹脂層2の厚さの増大分だけ
厚くしなければ加熱下における扁平強度、引張強
度、耐熱強度、耐熱変形等の強度を維持できなく
なりコストアツプとなるからである。 以下に本発明の実施例及び比較例を示す。 実施例 1〜6 波形管1として高密度ポリエチレン(M=
0.4、密度=0.96)を使用し、難燃性樹脂層2と
してポリ塩化ビニル(平均重合度=1400)100重
量部、錫系安定剤0.8重量部、ステアリン酸カル
シウム0.5重量部、ステアリン酸0.5重量部、ジオ
クチルフタレート(可撓剤)とからなる樹脂を使
用して、図示の例において、外径Do=23mm、内
径Di=16mm、波高さh=2.5mm、ピツチp=3.5
mm、外周の円筒面の幅B=1.75mm、厚さt=1.0
mm(このうち難燃性樹脂層2の厚さt0は第1表に
記載の通り)の波形管を作つた。ジオクチルフタ
レートの配合量は各実施例における塩化ビニル含
有量に応じて変えられており、塩化ビニル含有量
が50重量%の配合では100重量部、95重量%の配
合では3.5重量部である。 得られた波形管につき、諸性能を測定した結果
を第1表に示す。 比較例 実施例において、塩化ビニル含有量を45重量%
(ジオクチルフタレートの配合量を120重量部)と
したもの(比較例1〜5)、難燃性樹脂層2の厚
さを0.03mmと薄くしたり、0.5mmと厚くしたもの
(比較例6〜9)及び難燃性樹脂層2を設けない
もの(比較例10)を作り、それぞれの諸性能を測
定した結果を第1表に示す。尚、第1表中*印は
電線管としての性能を満足しないことを示す。
The present invention relates to a flexible corrugated tube used for wiring electric wires, etc. Conduit conduits for electrical wiring are required to have flatness strength that will not collapse when buried, and flexibility that can be bent manually during piping.
As described in Japanese Patent No. 20230, a synthetic resin corrugated pipe is used which has wave height, wall thickness, pitch, Young's modulus, etc. in a specific relationship within a predetermined range. However, since such electrical conduits are often installed inside buildings, they are required to be flame retardant, but conventional electrical conduits are made of easily combustible synthetic resins such as polyolefin and are not flame retardant. It was inferior. In addition, Japanese Utility Model Publication No. 55-43704 discloses that the tensile strength of the electrical conduit is low, which causes unnecessary elongation or deflection, and the pressure caused by the conduit when pouring concrete causes the embedded position of the electrical conduit to be misaligned. In order to solve the problem of impairing the wire drawing performance, the above-mentioned method is provided with a corrugated inner tube having a smooth outer surface and a corrugated inner surface corresponding to the outer surface corrugation of the inner tube. By making a synthetic resin flexible electrical conduit made by fitting an internally corrugated tube made of a synthetic resin softer than the inner tube material so that the peaks of the outer tube do not completely fill the valleys of the inner tube. It is stated that it will be resolved. This publication also provides an example of using hard polyethylene for the inner tube and soft vinyl chloride for the outer tube, and discloses that if flame retardancy is required, vinyl chloride resin, which is highly flame retardant, can be used. has been done. However, the synthetic resin flexible conductor tube has a corrugated inner tube with a smooth outer surface fitted onto the outer periphery of a corrugated inner tube, so the wall thickness is thicker and the weight is increased by the thickness of the outer tube. This makes it difficult to carry as a long roll, resulting in poor construction workability, and the drawback is that it cannot be bent with a small radius of curvature, and joints must be used to run piping along the building. be. Furthermore, if it is attempted to make the outer diameter and inner diameter the same as those of conventional corrugated tubes, it is necessary to reduce the wave height of the inner tube, resulting in inferior flat strength and reduced flexibility. Furthermore, if an outer tube is fitted to a conventional corrugated tube, the outer diameter will increase by the thickness of the outer tube, requiring a special size connector, and if the outer diameter is the same but the inner tube is If the wave heights of the tubes are made the same, the inner diameter of the inner tube will become smaller, which has the disadvantage that the diameter of the conductive wire is limited to small ones. The purpose of the present invention is to provide a pipe body that solves the drawbacks of the conventional electrical conduit pipes, and its gist is to provide a pipe body with a thick wall made of vinyl chloride resin containing 50% by weight or more of vinyl chloride. A flexible corrugated tube is formed by extruding a two-layer tube with a flame-retardant resin layer of 0.05 to 0.3 mm as an outer layer and an olefinic resin layer as an inner layer and shaped into a corrugated shape. FIG. 1 is a partially omitted front view showing an example of the flexible corrugated tube of the present invention in partial cross section, in which 1 is the flexible corrugated tube, 2 is a flame-retardant resin layer,
A flame retardant resin layer 2 is closely coated on the outer surface of the flexible corrugated tube 1. The flexible corrugated tube 1 is made of olefin resin. This is because indoor wiring conduits are sometimes heated to about 50℃ to 60℃ due to heat generation due to electricity, but it is necessary to have initial strength even at this temperature, so olefin resin is used. This is because the decrease in Young's modulus in this temperature range is small. Examples of olefin resins include polyethylene,
Polyolefin resins such as polypropylene, polybutene, polypentene, ethylene-propylene copolymer resin, ethylene-lower α-olefin copolymer resin, cross-linked polyethylene, olefin with an olefin content of 50% by weight or more, alkyl acrylate, acrylic acid, acetic acid Vinyl, vinyl acetate-vinyl chloride copolymer resins, etc. can be used. The flame-retardant resin layer 2 is made of a resin that is difficult to burn and has the property of disappearing naturally when the flame is removed even if it is burnt by applying a flame, such as a vinyl chloride resin with a vinyl chloride content of 50% by weight or more. Vinylidene chloride resin etc. can be used. Examples of vinyl chloride resins include vinyl chloride resins with added plasticizers such as phthalate esters, dibasic acid esters, glycol esters, fatty acid esters, and phosphate esters, ethylene-vinyl acetate-vinyl chloride copolymer resins, and vinyl chloride-based resins. Examples include copolymer resins of vinyl chloride and other monomers, such as ethylene copolymer resins.
The vinyl chloride content is set to 50% by weight or more in order to impart flame retardancy to the corrugated tube 1 and to maintain strength such as flat strength, tensile strength, and heat deformation resistance even when the corrugated tube is heated. be. In the present invention, a two-layer tube made of the above-mentioned olefin resin, whose outer surface is closely covered with a flame-retardant resin layer 2 by two-layer extrusion molding, is placed in a mold rotating in the extrusion direction. A long corrugated tube 1 is continuously obtained by blow molding along the mold surface in the clamped state. The shape of the corrugated tube 1 may be one in which peaks and valleys are formed in the circumferential direction, or may be formed in a spiral shape. Further, the shape of the peaks and valleys may be a shape similar to a sine curve or a trapezoidal shape, but as shown in the figure, the outer surface of the peak is a cylindrical surface, and the peak and valley are formed between the peaks. It is preferable to use a shape having a valley having a width larger than the width of , and having an arc-shaped bottom, since this results in high flat strength and high bending flexibility. In particular, it is preferable that the peaks have a trapezoidal cross-sectional shape in the axial direction (the angle formed by both sides is 40° or less), and that the peaks are thick and the valleys are thin. Further, the flame retardant resin layer 2 is closely and uniformly coated on the outer surface of the corrugated pipe 1, and its thickness is 0.05 to 0.3 mm.
It is preferable that If the thickness is less than 0.05 mm, the corrugated tube 1 is so thin that if it burns when exposed to a flame, it will not go out even if the flame is removed, resulting in poor flame retardancy.If it is thicker than 0.3 mm, the thickness of the corrugated tube of the present invention This is because unless the flame-retardant resin layer 2 is made thicker, that is, the flame-retardant resin layer 2 is made thicker, the flat strength, tensile strength, heat resistance strength, heat deformation resistance, and other strengths under heating cannot be maintained, resulting in an increase in cost. Examples and comparative examples of the present invention are shown below. Examples 1 to 6 High-density polyethylene (M=
0.4, density = 0.96), and as flame retardant resin layer 2, 100 parts by weight of polyvinyl chloride (average degree of polymerization = 1400), 0.8 parts by weight of tin-based stabilizer, 0.5 parts by weight of calcium stearate, and 0.5 parts by weight of stearic acid. In the illustrated example, outer diameter Do=23 mm, inner diameter Di=16 mm, wave height h=2.5 mm, pitch p=3.5.
mm, width of outer cylindrical surface B = 1.75 mm, thickness t = 1.0
A corrugated pipe with a thickness of mm (the thickness t 0 of the flame-retardant resin layer 2 is as shown in Table 1) was produced. The amount of dioctyl phthalate was varied depending on the vinyl chloride content in each example, and was 100 parts by weight for a formulation with a vinyl chloride content of 50% by weight, and 3.5 parts by weight for a formulation with a vinyl chloride content of 95% by weight. Table 1 shows the results of various performance measurements of the obtained corrugated tube. Comparative Example In the example, the vinyl chloride content was 45% by weight.
(compounding amount of dioctyl phthalate is 120 parts by weight) (Comparative Examples 1 to 5), and flame retardant resin layer 2 with a thickness as thin as 0.03 mm or as thick as 0.5 mm (Comparative Examples 6 to 5). 9) and one without the flame-retardant resin layer 2 (Comparative Example 10) were prepared, and the various performances of each were measured. Table 1 shows the results. Note that the mark * in Table 1 indicates that the performance as a conduit is not satisfied.

【表】 尚、第1表中の諸性能の試験方法は次の通りで
ある。 扁平強度:長さ50mmの試料を外径の30%扁平させ
るに要する荷重。 引張強度:破断に至るまでの最大荷重。 可撓性:300mmの長さの試料の一端を固定し、他
端に1Kgの荷重をかけた場合の変位量。 耐熱変形:長さ100mmの試料を台上に置き、直径
6mmの鋼棒を試料の軸方向と直交して載置し2
Kgの荷重をかける。60℃で24時間後の試料外径
の変化率で表す。 耐熱性:長さ約600mmの試料を垂直に保持し、こ
の試料の下端より100mmの位置を、水平面に対
して45゜傾けたブンゼンパーナー(酸化炎の長
さが約100mmで還元炎の長さが約50mmのもの)
の還元炎の先端で25秒間燃焼させ、その炎を取
り去つたとき30秒間以内で自然に消えることが
必要。 接着性:ポリ塩化ビニル製コネクターと接続(ポ
リ塩化ビニル用接着剤を使用)し室温にて24時
間養生後の強度。 本発明の可撓性波形管は叙上の如く構成されて
いるので、薄い難燃性樹脂層で耐燃性にすぐれた
ものとなつており、従来のものに比べて軽量で加
熱時における扁平強度にすぐれ、層間の接着性に
もすぐれ、かつコストの安いものとなると共に、
波形も従来のオレフイン樹脂からなる波形管とほ
とんど変らないものとなるために可撓性があり、
曲率半径の小さい屈曲配管を行うことができるも
のである。
[Table] The test methods for the various performances in Table 1 are as follows. Flattening strength: The load required to flatten a 50 mm long sample by 30% of its outer diameter. Tensile strength: Maximum load before breaking. Flexibility: Amount of displacement when one end of a 300 mm long sample is fixed and a load of 1 kg is applied to the other end. Heat deformation resistance: Place a 100 mm long sample on a table, place a 6 mm diameter steel rod perpendicular to the axial direction of the sample.
Apply a load of Kg. It is expressed as the rate of change in the outer diameter of the sample after 24 hours at 60°C. Heat resistance: Hold a sample with a length of about 600 mm vertically, and use a Bunsen Parrner (the length of the oxidizing flame is about 100 mm and the length of the reducing flame is (approximately 50mm)
Burn for 25 seconds at the tip of the reducing flame, and when the flame is removed, it must naturally extinguish within 30 seconds. Adhesiveness: Strength after connecting to a PVC connector (using PVC adhesive) and curing at room temperature for 24 hours. Since the flexible corrugated tube of the present invention is constructed as described above, it has a thin flame-retardant resin layer and has excellent flame resistance, and is lighter than conventional tubes and has a flat strength when heated. It has excellent adhesion between layers, and is inexpensive.
The waveform is almost the same as that of conventional corrugated tubes made of olefin resin, so it is flexible.
It is possible to create bent piping with a small radius of curvature.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の可撓波形管の一例を一部省略
し一部断面で示す正面図である。 1:可撓波形管、2:難燃性樹脂層。
FIG. 1 is a partially omitted and partially sectional front view of an example of the flexible corrugated tube of the present invention. 1: Flexible corrugated tube, 2: Flame retardant resin layer.

Claims (1)

【特許請求の範囲】[Claims] 1 塩化ビニル含有量50重量%以上の塩化ビニル
系樹脂からなる肉厚0.05〜0.3mmの難燃性樹脂層
を外層とし、オレフイン系樹脂層を内層として押
出し成形された二層管が波形に賦形されてなる可
撓波形管。
1 A two-layer pipe extruded with a flame-retardant resin layer of 0.05 to 0.3 mm thick made of vinyl chloride resin containing 50% by weight or more of vinyl chloride as the outer layer and an olefin resin layer as the inner layer is shaped into a corrugated shape. Flexible corrugated tube.
JP57115965A 1982-07-02 1982-07-02 Flexible corrugated pipe Granted JPS597039A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57115965A JPS597039A (en) 1982-07-02 1982-07-02 Flexible corrugated pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57115965A JPS597039A (en) 1982-07-02 1982-07-02 Flexible corrugated pipe

Publications (2)

Publication Number Publication Date
JPS597039A JPS597039A (en) 1984-01-14
JPS6366659B2 true JPS6366659B2 (en) 1988-12-21

Family

ID=14675517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57115965A Granted JPS597039A (en) 1982-07-02 1982-07-02 Flexible corrugated pipe

Country Status (1)

Country Link
JP (1) JPS597039A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5856278B2 (en) * 1978-09-14 1983-12-14 株式会社東芝 Printed wiring board carrier mounting mechanism

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4936509U (en) * 1972-07-03 1974-04-01
JPS5856278U (en) * 1981-10-14 1983-04-16 金尾 史朗 Bellows-shaped synthetic resin multilayer flexible tube

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5856278B2 (en) * 1978-09-14 1983-12-14 株式会社東芝 Printed wiring board carrier mounting mechanism

Also Published As

Publication number Publication date
JPS597039A (en) 1984-01-14

Similar Documents

Publication Publication Date Title
JPS6372539A (en) Multilayer film structure and electric cable including said structure
JPS6366659B2 (en)
JPS6330175Y2 (en)
JPH0452888Y2 (en)
GB2195163A (en) Heat-insulated conduit
US4877467A (en) Electrically insulated wire
JP3246999B2 (en) Synthetic resin flexible corrugated tube
JP2002005348A (en) Corrugated conduit tube
JPH05195590A (en) Injection flexible pipe for joint in building
JPH0722547Y2 (en) Corrugated composite pipe
JP4927792B2 (en) Corrugated tube and piping structure
JPS6349058Y2 (en)
CN220688282U (en) Prefabricated heat preservation bellows of steel sheath
JP3516270B2 (en) Tubed wire and method of manufacturing the same
KR20220069816A (en) Non-crosslinked insulating cable
JPH0219786B2 (en)
CN210860150U (en) HDPE double-wall corrugated pipe
JP2008271657A (en) Protection tube for cable or the like
JP2000161541A (en) Plastic corrugated pipe
JPS5841693Y2 (en) Flexible tube for cable
JPS6031130Y2 (en) coaxial cable
JPH11314273A (en) Production of heat shrinkable pvc tube
JP2006177496A (en) Corrugated tube
JPS5962142A (en) Heat-shrinkable tube and its manufacture
JPH1187U (en) Corrugated composite pipe