JPS6366296B2 - - Google Patents

Info

Publication number
JPS6366296B2
JPS6366296B2 JP57143775A JP14377582A JPS6366296B2 JP S6366296 B2 JPS6366296 B2 JP S6366296B2 JP 57143775 A JP57143775 A JP 57143775A JP 14377582 A JP14377582 A JP 14377582A JP S6366296 B2 JPS6366296 B2 JP S6366296B2
Authority
JP
Japan
Prior art keywords
diglycerin
activated carbon
temperature
glycerin
distillation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57143775A
Other languages
Japanese (ja)
Other versions
JPS5933238A (en
Inventor
Kozo Nakajima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP14377582A priority Critical patent/JPS5933238A/en
Publication of JPS5933238A publication Critical patent/JPS5933238A/en
Publication of JPS6366296B2 publication Critical patent/JPS6366296B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、一旦蒸留精製したジグリセリンを粒
状活性炭で処理し、更に高品質のジグリセリンを
製造する方法に関するものである。 ジグリセリンは界面活性剤、ポリエステル樹脂
等に広く用いられ、特に最近、特殊用途、例えば
食品原料、化粧品原料等として、外観(色相)に
関して加熱経時変化の少ない高品質のものが要求
されている。 ジグリセリンはグリセリンの脱水縮合液よりあ
るいはグリセリン製造時の高沸点缶残液より製造
されている。いずれの場合もジグリセリンはトリ
グリセリン、テトラグリセリン、さらにそれ以上
のポリグリセリンの混合物として得られ、着色が
著しく、そのままでは商品価値が低い。高品質の
ジグリセリンを得る為には、この混合物を分離精
製する必要がある。 分離精製の方法としては、真空蒸留による分離
が考えられる。しかし、ジグリセリンは沸点184
℃/0.28Torrと非常に高く、通常の単なる減圧
蒸留では加熱時の長い滞留時間によつて副反応
(分解、縮合等)を起こす為、これを経済的に精
製(回収)することは困難であり、特定の品質面
で充分でない場合も多い。 次に、脱色を目的とした精製方法としては各種
の吸着操作、例えば活性炭、白土、ゼオライト、
アルミナゲル、シリカゲル、イオン交換樹脂等が
知られている。(特開昭47−2443、特公昭52−
28773) ところで、我々の追試結果では活性炭以外の吸
着処理では脱色効果は少なく、使用する場合も補
助的な役目で活性炭処理は高品位ジグリセリンを
得るための必要な処理と考えられた。しかし従来
のジグリセリン活性炭処理はジグリセリンが高粘
度であること、高温では色相が悪化すること等の
理由により水で希釈し、粉末炭を用いて行われて
来た。この方法は常温での処理が可能であるが再
度蒸発脱水を行う必要がある。設備が大きくなり
処理費用も多くなる。更に再加熱によつて色相の
熱安定性が悪くなる等で必らずしも満足できな
い。 本発明者は、種々の検討を重ねた結果、これら
の欠点を解決した蒸留と粒状活性炭の連続処理法
を組合せる方法を見出し、本発明に到達した。即
ち、合成グリセリン製造時のグリセリンの脱水縮
合液または高沸点缶残液より蒸溜分離と活性炭処
理とを組合わせてジグリセリンを精製するに際
し、凝縮温度100℃〜200℃で蒸留々出させたジグ
リセリンを引き継いで該温度を維持させながら水
等の希釈剤の不存在下で連続的に活性炭処理する
ことを特徴とするジグリセリンの精製方法であ
る。 本発明で採用される蒸留は公知の方法によつて
行なつてもよいが、次の方法によつて行なうこと
が、より好ましい。それは単なる回分蒸留ではな
く、副反応を抑制するため、加熱蒸留時間を短か
くするフラツシユ蒸発と分縮効果を持つ分縮とか
ら構成される。 該蒸留の一実施態様としては、例えば流下薄膜
型蒸発器(熱媒温度250℃)を用いて5Torrの減
圧下、分離温度100〜200℃で行なわれ、効率よく
精ジグリセリンを得る方法である。 この蒸留での凝縮液を引続き高温状態のまゝ次
の活性炭処理を行なう。 本発明で採用される活性炭処理は粒状活性炭の
固定床を用いた連続通液法で行なわれる。使用さ
れる活性炭は平均粒径0.5mm以上を有する粒状、
あるいはペレツト状のもの、例えばダイヤホープ
008(三菱化成商品名)等が使用される。粒径0.5
mm以下のもの、或いは粉末活性炭はジグリセリン
が粘稠液であるため、流通抵抗が大きく、又後者
ではこれとの分離のため過(時間)が必要とな
り、不都合である。 使用される温度は100〜200℃、好ましくは120
〜170℃の範囲から選ばれる。この温度が100℃以
下ではジグリセリンが粘稠液となり、流通抵抗が
大きく、処理量が限定される。又200℃以上では
ジグリセリンの副反応が激しくなるため、不都合
である。通常、液滞留時間は約0.5〜2.0時間であ
る。そして活性炭の使用量は処理液の約700倍
(重量比)と小型の設備で、且つ少ない活性炭の
使用で大きな効果が得られる。 他方、バツチ処理や再加熱では、その長い加熱
滞留時間によりジグリセリンの副反応が起こり高
品質のジグリセリンを得るには処理能力を大きく
上げる必要がある。 得られた脱色処理液は外観変化を抑制するよう
通常、窒素雰囲気下、保存される。 なお、この活性炭処理槽の脱気、乾燥には通液
処理温度が高温であるため、過熱蒸気を用いて行
なう。この方法では脱気と共に槽の乾燥が同時に
行なわれ、使用開始時の水の混入を最小限にして
すぐれた脱色効果を上げることができる。 斯様にして本発明の方法を実施すれば、ジグリ
セリンは製品化されてからの再加熱がなく、高温
下の熱履歴も短かいため、初期外観が良く、且つ
外観加熱経時変化が極めて少ない高品質のジグリ
セリンを得ることができる。さらに従来法に比べ
て設備が小型で簡単である。用役費が少ない。活
性炭の使用量が少ない。製品ロスが少ない。等多
くの利点が期待できるので、その工業的価値は非
常に大きいと言える。 以下実施例及び比較例によつて本発明を具体的
に説明する。 実施例 1 初期外観 蒸留;分縮用の凝縮器を備えた内径23mm、長さ
500mmのステンレス製流下薄膜型蒸発器(熱媒
温度250℃)を用いて、グリセリン製造時の缶
残液(グリセリン3%、ジグリセリン50%及び
ポリグリセリンその他残り)を、5Torrの減圧
下、凝縮温度150℃で連続フラツシユ蒸留にか
けた。結果、蒸留得率約35%で精ジグリセリン
(グリセリン3%、ジグリセリン90%及びポリ
グリセリン残り)を得た。 活性炭処理;上記で得られた精グリセリンを引続
いて、そのまゝの温度(150℃)を維持しなが
ら、活性炭層(三菱化成製粒状活性炭、ダイヤ
ホープ008)に連続通液した。この結果を第1
表に示す。
The present invention relates to a method for producing higher quality diglycerin by treating diglycerin that has been purified by distillation with granular activated carbon. Diglycerin is widely used as surfactants, polyester resins, etc., and recently, high quality products with little change in appearance (color) over time are required for special purposes such as food raw materials, cosmetic raw materials, etc. Diglycerin is produced from a dehydrated condensation liquid of glycerin or from the high-boiling bottom liquid from the production of glycerin. In either case, diglycerin is obtained as a mixture of triglycerin, tetraglycerin, and even higher polyglycerin, and is extremely colored and has low commercial value as it is. In order to obtain high quality diglycerin, it is necessary to separate and purify this mixture. As a method of separation and purification, separation by vacuum distillation can be considered. However, diglycerin has a boiling point of 184
℃/0.28 Torr, which is extremely high, and it is difficult to economically purify (recover) it because ordinary vacuum distillation causes side reactions (decomposition, condensation, etc.) due to the long residence time during heating. However, in many cases, certain quality aspects are insufficient. Next, purification methods for the purpose of decolorization include various adsorption operations such as activated carbon, clay, zeolite, etc.
Alumina gel, silica gel, ion exchange resin, etc. are known. (Japanese Patent Publication No. 47-2443, Special Publication No. 52-
28773) By the way, our follow-up test results show that adsorption treatments other than activated carbon have little decolorizing effect, and when used, activated carbon treatment is considered to be a necessary treatment to obtain high-grade diglycerin, with an auxiliary role. However, conventional diglycerin activated carbon treatment has been carried out using powdered charcoal diluted with water because diglycerin has a high viscosity and its hue deteriorates at high temperatures. Although this method allows treatment at room temperature, it is necessary to perform evaporation and dehydration again. As the equipment becomes larger, processing costs also increase. Furthermore, reheating deteriorates the thermal stability of the hue, which is not always satisfactory. As a result of various studies, the present inventors have discovered a method of combining distillation and a continuous treatment method for granular activated carbon that solves these drawbacks, and have arrived at the present invention. That is, when purifying diglycerin from the dehydrated condensation liquid of glycerin during the production of synthetic glycerin or from the high-boiling point bottom liquid by combining distillation separation and activated carbon treatment, diglycerin is distilled out at a condensation temperature of 100°C to 200°C. This method of purifying diglycerin is characterized in that glycerin is continuously treated with activated carbon in the absence of a diluent such as water while maintaining the same temperature. Although the distillation employed in the present invention may be carried out by any known method, it is more preferable to carry out the following method. It is not just a batch distillation, but consists of flash evaporation, which shortens the heating distillation time, and partial condensation, which has a partial condensation effect, in order to suppress side reactions. One embodiment of this distillation is, for example, using a falling film evaporator (heating medium temperature: 250°C) under a reduced pressure of 5 Torr and at a separation temperature of 100 to 200°C, which is a method for efficiently obtaining refined diglycerin. . The condensate from this distillation is then subjected to the next activated carbon treatment while still in a high temperature state. The activated carbon treatment employed in the present invention is carried out by a continuous liquid flow method using a fixed bed of granular activated carbon. The activated carbon used is granular with an average particle size of 0.5 mm or more.
Or pellets, such as Diamond Hope.
008 (Mitsubishi Kasei product name) etc. are used. Particle size 0.5
Since diglycerin is a viscous liquid, activated carbon of less than mm or powdered activated carbon has a large flow resistance, and the latter requires time to separate from diglycerin, which is inconvenient. The temperature used is 100-200℃, preferably 120℃
Selected from the range of ~170℃. If the temperature is below 100°C, diglycerin becomes a viscous liquid, resulting in high flow resistance and a limited amount of processing. Furthermore, if the temperature is higher than 200°C, side reactions of diglycerin will become more intense, which is disadvantageous. Typically, the liquid residence time is about 0.5 to 2.0 hours. The amount of activated carbon used is about 700 times that of the treatment liquid (weight ratio), making it possible to obtain large effects with small equipment and using a small amount of activated carbon. On the other hand, in batch processing and reheating, side reactions of diglycerin occur due to the long heating residence time, and it is necessary to greatly increase the processing capacity in order to obtain high quality diglycerin. The obtained decolorizing solution is usually stored under a nitrogen atmosphere to suppress changes in appearance. Note that degassing and drying of this activated carbon treatment tank are carried out using superheated steam because the liquid passing treatment temperature is high. In this method, deaeration and drying of the tank are performed simultaneously, and excellent decolorizing effects can be achieved with minimal water contamination at the beginning of use. If the method of the present invention is carried out in this way, diglycerin does not need to be reheated after being made into a product, and its thermal history at high temperatures is short, resulting in a good initial appearance and extremely little change in appearance over time after heating. High quality diglycerin can be obtained. Furthermore, the equipment is smaller and simpler than conventional methods. Utility expenses are low. Uses less activated carbon. Less product loss. Since it can be expected to have many advantages, it can be said that its industrial value is very large. The present invention will be specifically explained below using Examples and Comparative Examples. Example 1 Initial appearance distillation; internal diameter 23 mm, length with condenser for partial condensation
Using a 500 mm stainless steel falling film evaporator (heating medium temperature 250°C), the residual liquid from glycerin production (3% glycerin, 50% diglycerin, and the remainder of polyglycerin) was condensed under a reduced pressure of 5 Torr. It was subjected to continuous flash distillation at a temperature of 150°C. As a result, purified diglycerin (3% glycerin, 90% diglycerin, and the remainder polyglycerin) was obtained with a distillation yield of about 35%. Activated carbon treatment: The purified glycerin obtained above was continuously passed through an activated carbon bed (granular activated carbon manufactured by Mitsubishi Kasei, Diahope 008) while maintaining the same temperature (150°C). This result is the first
Shown in the table.

【表】 比較例 1 実施例1で得られた精ジグリセリンを、一旦室
温に降温したものを採用した。 ジグリセリンにおける温度と粘度との関係を測
定した。
[Table] Comparative Example 1 The purified diglycerin obtained in Example 1, which had been cooled to room temperature, was used. The relationship between temperature and viscosity in diglycerin was measured.

【表】 又、上記試料に関して、温度を変えてN2雰囲
気下加熱経時変化テストを行つた。
[Table] In addition, a heating aging test was conducted on the above samples under N 2 atmosphere at different temperatures.

【表】 比較例 2 初期外観 比較例1で得られた試料を120℃に昇温し、活
性炭及びその添加量を変えて、2時間撹拌し(→
加圧過)、回分処理した(120℃)。 又、等量の水で希釈した後、活性炭を加えて2
時間撹拌し(→過、減圧脱水)、回分処理した
(室温)。これ等の結果を第4表に示す。
[Table] Comparative Example 2 Initial Appearance The sample obtained in Comparative Example 1 was heated to 120°C, and the activated carbon and the amount added thereof were changed and stirred for 2 hours (→
(overpressure) and batch processing (120°C). Also, after diluting with an equal amount of water, add activated carbon and
The mixture was stirred for hours (→filtration, dehydration under reduced pressure) and treated in batches (room temperature). These results are shown in Table 4.

【表】【table】

【表】 実施例2及び比較例3 外観加熱経時変化 実施例1及び比較例2で得られた試料をN2
囲気下120℃で加熱経時変化テストを行つた。 この結果を第5表に示す。
[Table] Example 2 and Comparative Example 3 Appearance Change over Time on Heating The samples obtained in Example 1 and Comparative Example 2 were subjected to a test on change over time under heating at 120° C. in an N 2 atmosphere. The results are shown in Table 5.

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 合成グリセリン製造時のグリセリンの脱水縮
合液または高沸点缶残液より蒸溜分離と活性炭処
理とを組み合わせてジグリセリンを精製するに際
し、凝縮温度100℃〜200℃で蒸溜々出させたジグ
リセリンを引き続いて、該温度を維持させながら
水などの希釈剤の不存在下で連続的に活性炭処理
することを特徴とするジグリセリンの精製方法。
1. When purifying diglycerin from the dehydrated condensation liquid of glycerin or high boiling point bottom liquid during the production of synthetic glycerin by combining distillation separation and activated carbon treatment, the diglycerin distilled out at a condensation temperature of 100°C to 200°C is A method for purifying diglycerin, which comprises successively treating diglycerin with activated carbon in the absence of a diluent such as water while maintaining the temperature.
JP14377582A 1982-08-18 1982-08-18 Purification of diglycerin Granted JPS5933238A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14377582A JPS5933238A (en) 1982-08-18 1982-08-18 Purification of diglycerin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14377582A JPS5933238A (en) 1982-08-18 1982-08-18 Purification of diglycerin

Publications (2)

Publication Number Publication Date
JPS5933238A JPS5933238A (en) 1984-02-23
JPS6366296B2 true JPS6366296B2 (en) 1988-12-20

Family

ID=15346722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14377582A Granted JPS5933238A (en) 1982-08-18 1982-08-18 Purification of diglycerin

Country Status (1)

Country Link
JP (1) JPS5933238A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS495911A (en) * 1972-05-10 1974-01-19

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS495911A (en) * 1972-05-10 1974-01-19

Also Published As

Publication number Publication date
JPS5933238A (en) 1984-02-23

Similar Documents

Publication Publication Date Title
JPH0581239B2 (en)
JPH0232316B2 (en)
SE444169B (en) SET TO MAKE TERTIARY OLEFINES OF SIMILAR ALKYL-TERT.ALKYLETRES
JPS6338188B2 (en)
US2670325A (en) Distillation purification of phthalic anhydride
US3850758A (en) Purification of crude maleic anhydride by treatment with dimethylbenzophenone
US2234367A (en) Method of manufacture of activated magnesium oxide
JPS6366296B2 (en)
US2560931A (en) Dehydration of acetonitrile
US3040104A (en) Purification of polyhydric alcohols
US4233228A (en) Purification of tetrahydrofuran
US2698336A (en) Purification of crude wax oxidates
US2261704A (en) Process for producing acrolein of high concentration
US5972121A (en) Decolorization of sugar syrups using functionalized adsorbents
US2704296A (en) Treatment of maleic acid liquors with chlorine
US5484511A (en) Process for the removal of impurities from hydrazine hydrate
Robinson et al. Adsorption of fatty acids from solvents-duolite AZ anion exchange resin
JPS582217B2 (en) Production method of decanedicarboxylic acid-(1,10)
US2594440A (en) Invert sirup process
US2097904A (en) Production of maleic acid
US2766301A (en) Production of tricyclodecane
US2413802A (en) Hydrolysis of ethyl ether
JPS61251662A (en) Purification of pyridine
GB2044236A (en) Converting hydragillite to boehmite
US2556248A (en) Ether purification by distillation and adsorption