JPS6366295B2 - - Google Patents

Info

Publication number
JPS6366295B2
JPS6366295B2 JP56100042A JP10004281A JPS6366295B2 JP S6366295 B2 JPS6366295 B2 JP S6366295B2 JP 56100042 A JP56100042 A JP 56100042A JP 10004281 A JP10004281 A JP 10004281A JP S6366295 B2 JPS6366295 B2 JP S6366295B2
Authority
JP
Japan
Prior art keywords
glycidol
reaction
alcohol
raw material
glycerin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56100042A
Other languages
Japanese (ja)
Other versions
JPS58927A (en
Inventor
Kyoshi Yasuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP56100042A priority Critical patent/JPS58927A/en
Publication of JPS58927A publication Critical patent/JPS58927A/en
Publication of JPS6366295B2 publication Critical patent/JPS6366295B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は塩基性触媒の存在下でグリシドールと
C1〜C4の脂肪族アルコールとを反応させて一般
式HOCH2CH(OH)CH2・ORで表わされるグリ
セリンモノアルキルエーテルを収率よく製造する
方法に関するものである。 更に詳しく述べれば、C1〜C4の脂肪族アルコ
ールにグリシドールを反応するにあたつて、反応
系内における原料アルコール/グリシドールの存
在モル比が50/1以上になるように該アルコール
中へのグリシドールの添加所要時間、反応温度、
原料アルコール/グリシドールの総仕込モル比を
コントロールして反応させ、一般式HOCH2CH
(OH)CH2・ORで表わされるグリセリンモノア
ルキルエーテルを製造する方法に関するものであ
る。 グリセリンモノアルキルエーテルは合成樹脂及
び化学薬品の中間体、例えば水溶性の空気乾燥型
アルキツド樹脂の改質剤等として有用なものであ
る。 グリシドールは分子内にエポキシ基および水酸
基の2種の官能基を有しているため、高温にした
り、酸や塩基の存在下では極めて不安定で重合し
やすい性質をもつている。特にアルコールとグリ
シドールの反応では原料アルコール、グリシドー
ルおよび反応生成物であるグリセリンモノアルキ
ルエーテルのいづれもが水酸基を有しているため
原料アルコールの水酸基とグリシドールのエポキ
シ基のみを選択性よく反応させることは非常に困
難であると考えられる。従つて、本発明の場合に
は目的生成物の他に、グリシドールダイマー、ジ
グリセリンモノアルキルエーテル、高重合体及び
2級位付加のグリセリンエーテル異性体等が副生
するので、これ等副反応の抑制が大きな問題とな
る。 従来の技術(J.A.C.S.、71、1152(1949))で
は、グリセリンモノアルキルエーテルへの選択率
を高めるために反応させるアルコールとグリシド
ールの仕込モル比を大きくするのが普通である。
しかしながら、例えばアルコール/グリシドール
の総仕込モル比を10/1とした場合でも、グリセ
リンモノアリルエーテルの収率は高々71%であ
り、本発明者が後述の比較例で述べる如く、他の
アルコール類では更に低い収率しか得られず、工
業的に満足な技術とは言えない。 本発明者らは、原料および生成物中の水酸基の
反応性に着目し、鋭意検討を重ねた結果、必ずし
もC1〜C4の脂肪族アルコールを大過剰に仕込ん
で反応させなくとも、該アルコールへのグリシド
ールの逐次添加速度を調節し、実質的に反応系内
における原料アルコール/グリシドールの存在モ
ル比を50/1以上に保つことによつて目的とする
グリセリンモノアルキルエーテルが収率よく得ら
れることを見い出し、本発明を完成するに到つ
た。 本発明で用いられる反応系内における原料アル
コール/グリシドールの存在モル比は50/1以上
に維持することが肝要である。本発明における
dC1は反応器内に事前に全量仕込まれ、かつ、反
応の進行と共に変化する脂肪族アルコールのモル
濃度の瞬間値を、また、dC2は逐次添加されて反
応の進行と共に変化するグリシドールのモル濃度
の瞬間値を示し、dC1〜dC2は反応の開始から終
了までの各時点における原料アルコール/グリシ
ドールの存在モル比を表わす。この比率dC1
dC2を50/1以上に保持することが本発明のポイ
ントである。この場合、グリシドールの2モル以
上の付加体(副生物)はグリシドールダイマーを
経由して生成すると考えられるので、反応系内に
存在するグリシドールの濃度を低く抑えることが
グリセリンモノアルキルエーテルの選択率及び収
率の向上につながる。従つて、該アルコール中へ
のグリシドールの添加速度及び所要時間は反応温
度等の函数であるが、反応粗液の分析値によつて
適宜制御する必要がある。又、原料アルコール/
グリシドールの総仕込モル比は通常5/1程度で
充分目的を達し得る。 本発明で用いられる反応温度は原料アルコール
の種類によつて異なり、通常50〜150℃の温度範
囲から選ばれるが、好ましくは原料アルコール沸
点付近である。50℃以下の温度では十分な反応速
度が得られず、従つて反応液中の原料アルコー
ル/グリシドールの存在モル比を50/1以上に保
つためには、いたづらに長い時間をかけてグリシ
ドールを滴下せねばならず、150℃以上の温度で
はグリシドール自身の分解や重合その他の副反応
が顕著となるため好ましくない。 本発明の対象とする原料アルコールはC1〜C4
の脂肪族アルコールであり、具体的にはメタノー
ル、エタノール、プロパノール、ブタノール、ア
リルアルコール等が挙げられる。又、グリシドー
ルは反応に不活性な炭化水素溶媒で稀釈されたも
のでも使用できる。 塩基性触媒は無機又は有機の化合物から選ばれ
例えば、水酸化カリウム、水酸化ナトリウム、炭
酸ナトリウム等のアルカリ金属化合物;例えば、
トリエチルアミン、ピリジン等のアミン化合物等
である。触媒使用量は原料アルコールを基準とし
て0.5〜5.0重量%が適当である。この場合、酸性
触媒ではアルキル基が2級位に付加したグリセリ
ンエーテル異性体が副生するので、好ましくな
い。 グリシドールの添加終了と共に、更に約1〜2
時間、同じ反応温度で熟成した後、得られた反応
粗液は例えば、酢酸等の弱酸で中和する。次いで
公知の方法で蒸留すれば目的生成物が得られる。 以下実施例で発明の詳細を説明する。 実施例 1 還流冷却器及び撹拌機を備えた500mlジヤケツ
ト付反応器にアリルアルコールを200g(3.44ml)
及び水酸化カリウム1.7g(原料アルコールに対
し0.85重量%)を仕込み、97℃に加熱した。加熱
及び撹拌を続けながらグリシドール36.5g(純度
98%)(0.483ml)を定量仕込ポンプを用いて36.5
g/hrの速度で逐次添加し、反応させた。グリシ
ドールの添加終了後同温度で更に1hr撹拌を続け
た後、反応粗液をガスクロマトグラフイーで分析
したところ、以下のような結果であつた。 グリシドール変化率 100%(グリシドール基準) グリセリンモノアリルエーテル収率
97%( 〃 ) グリセリングリシジルエーテル収率
0.5%( 〃 ) グリセリンモノアリルエーテル収率
2.5%( 〃 ) なお、グリシドールの添加終了と同時に反応粗液
を分析したところ、反応液中のアリルアルコー
ル/グリシドールの存在モル比は141であつた
(同総仕込モル比は7.1である。) 比較例 1 グリシドールの添加を10分で終了した以外は、
実施例1と同様にして反応させたところ以下のよ
うな結果であつた。 反応終了後 グリシドール変化率
100%(グリシドール基準) グリセリンモノアリルエーテル収率
69%( 〃 ) グリセリングリシジルエーテル収率
2%( 〃 ) 反応終了後 ジグリセリンモノアリルエーテル収
率 10%( 〃 ) 添加終了時 反応液中のアリルアルコール/グリ
シドールの存在モル比 40 実施例 2〜6 グリシドールと各種のアルコールとの反応を表
−1に示した条件を採用して実施例1と同様にし
て反応させた。結果を表−1に示した。
In the present invention, glycidol is produced in the presence of a basic catalyst.
The present invention relates to a method for producing glycerin monoalkyl ether represented by the general formula HOCH 2 CH(OH)CH 2 .OR in good yield by reacting with a C 1 -C 4 aliphatic alcohol. More specifically, when reacting glycidol with a C1 to C4 aliphatic alcohol, the amount of alcohol added to the alcohol is such that the molar ratio of raw material alcohol/glycidol in the reaction system is 50/1 or more. Glycidol addition time, reaction temperature,
By controlling the total molar ratio of raw material alcohol/glycidol and reacting, the general formula HOCH 2 CH
This invention relates to a method for producing glycerin monoalkyl ether represented by (OH)CH 2 .OR. Glycerin monoalkyl ethers are useful as intermediates for synthetic resins and chemicals, such as modifiers for water-soluble air-drying alkyd resins. Since glycidol has two functional groups, an epoxy group and a hydroxyl group, in its molecule, it is extremely unstable and easily polymerized at high temperatures or in the presence of acids or bases. In particular, in the reaction of alcohol and glycidol, since the raw material alcohol, glycidol, and the reaction product glycerin monoalkyl ether all have hydroxyl groups, it is difficult to react only the hydroxyl groups of the raw material alcohol and the epoxy groups of glycidol with good selectivity. It is considered to be extremely difficult. Therefore, in the case of the present invention, in addition to the desired product, glycidol dimer, diglycerin monoalkyl ether, high polymer, glycerin ether isomer added at the 2nd position, etc. are produced as by-products. Restraint is a big problem. In the conventional technique (JACS, 71 , 1152 (1949)), it is common to increase the molar ratio of alcohol and glycidol to be reacted in order to increase the selectivity to glycerin monoalkyl ether.
However, even when the total molar ratio of alcohol/glycidol is 10/1, the yield of glycerin monoallyl ether is at most 71%, and as described by the inventor in the comparative example below, other alcohols However, even lower yields can be obtained, and this cannot be said to be an industrially satisfactory technique. The present inventors focused on the reactivity of hydroxyl groups in raw materials and products, and as a result of extensive studies, we found that it is not necessary to charge a large excess of C1 to C4 aliphatic alcohol to cause the reaction. The target glycerin monoalkyl ether can be obtained in good yield by adjusting the rate of sequential addition of glycidol to the reaction system and substantially maintaining the molar ratio of raw material alcohol/glycidol in the reaction system to 50/1 or more. This discovery led to the completion of the present invention. It is important to maintain the molar ratio of raw material alcohol/glycidol in the reaction system used in the present invention to 50/1 or more. In the present invention
dC 1 is the instantaneous value of the molar concentration of aliphatic alcohol that is charged in advance in the reactor and changes as the reaction progresses, and dC 2 is the molar value of glycidol that is added sequentially and changes as the reaction progresses. The instantaneous value of the concentration is shown, and dC 1 to dC 2 represent the molar ratio of raw material alcohol/glycidol present at each point from the start to the end of the reaction. This ratio dC 1 /
The key point of the present invention is to maintain dC 2 at 50/1 or higher. In this case, adducts (by-products) of 2 moles or more of glycidol are thought to be generated via glycidol dimer, so keeping the concentration of glycidol in the reaction system low will improve the selectivity of glycerin monoalkyl ether. Leads to improved yield. Therefore, the rate of addition of glycidol into the alcohol and the required time are a function of the reaction temperature, etc., and must be appropriately controlled based on the analytical value of the reaction crude liquid. Also, raw material alcohol/
The total molar ratio of glycidol to be charged is usually about 5/1, which is sufficient to achieve the purpose. The reaction temperature used in the present invention varies depending on the type of raw material alcohol, and is usually selected from a temperature range of 50 to 150°C, but is preferably around the boiling point of the raw material alcohol. A sufficient reaction rate cannot be obtained at temperatures below 50°C, and therefore, in order to maintain the molar ratio of raw material alcohol/glycidol in the reaction solution to 50/1 or higher, it takes a long time to dissolve glycidol. It must be added dropwise, and temperatures of 150°C or higher are not preferable because decomposition, polymerization, and other side reactions of glycidol itself become significant. The raw material alcohol targeted by the present invention is C 1 to C 4
It is an aliphatic alcohol such as methanol, ethanol, propanol, butanol, allyl alcohol, etc. Glycidol can also be used diluted with a hydrocarbon solvent inert to the reaction. The basic catalyst is selected from inorganic or organic compounds, such as alkali metal compounds such as potassium hydroxide, sodium hydroxide, and sodium carbonate;
These include amine compounds such as triethylamine and pyridine. The appropriate amount of catalyst used is 0.5 to 5.0% by weight based on the raw material alcohol. In this case, an acidic catalyst is not preferred because a glycerin ether isomer having an alkyl group added to the secondary position is produced as a by-product. When the addition of glycidol is completed, about 1 to 2 more
After aging at the same reaction temperature for a certain period of time, the resulting crude reaction solution is neutralized with a weak acid such as acetic acid. The desired product can then be obtained by distillation using a known method. The details of the invention will be explained below with reference to Examples. Example 1 200 g (3.44 ml) of allyl alcohol was placed in a 500 ml jacketed reactor equipped with a reflux condenser and a stirrer.
and 1.7 g of potassium hydroxide (0.85% by weight based on the raw alcohol) and heated to 97°C. While continuing to heat and stir, add 36.5 g of glycidol (purity
98%) (0.483 ml) using a metering pump to 36.5
They were added sequentially at a rate of g/hr and allowed to react. After the addition of glycidol was completed, stirring was continued for another 1 hour at the same temperature, and the reaction crude liquid was analyzed by gas chromatography, and the results were as follows. Glycidol conversion rate 100% (glycidol standard) Glycerin monoallyl ether yield
97% (〃) glycerin glycidyl ether yield
0.5% (〃) Glycerin monoallyl ether yield
2.5% (〃) When the reaction crude liquid was analyzed at the same time as the addition of glycidol was completed, the molar ratio of allyl alcohol/glycidol in the reaction liquid was 141 (the total molar ratio of the same was 7.1). Comparative Example 1 Except that the addition of glycidol was finished in 10 minutes,
When the reaction was carried out in the same manner as in Example 1, the following results were obtained. Glycidol change rate after reaction completion
100% (based on glycidol) Glycerin monoallyl ether yield
69% (〃) Glycerin glycidyl ether yield
2% (〃) After the completion of the reaction Diglycerin monoallyl ether yield 10% (〃) At the end of the addition Molar ratio of allyl alcohol/glycidol in the reaction solution 40 Examples 2 to 6 Reactions of glycidol and various alcohols The reaction was carried out in the same manner as in Example 1 using the conditions shown in Table 1. The results are shown in Table-1.

【表】 比較例 2〜4 実施例2、4および6に対応する比較のため、
グリシドールの添加を短時間に実施した。結果を
表−2に示した。
[Table] Comparative Examples 2 to 4 For comparison corresponding to Examples 2, 4 and 6,
Addition of glycidol was carried out in a short period of time. The results are shown in Table-2.

【表】【table】

Claims (1)

【特許請求の範囲】 1 塩基性触媒の存在下でグリシドールとC1
C4の脂肪族アルコールと反応させ、対応する一
般式 HOCH2CH(OH)CH2・OR ……() で表わされるグリセリンモノアルキルエーテルを
バツチ方式で製造するにあたり、反応器内に事前
に全量仕込まれ、かつ、反応の進行と共に変化す
る脂肪族アルコールのモル濃度をdC1、逐次添加
され反応の進行と共に変化するグリシドールのモ
ル濃度をdC2とし、dC1/dC2≧50に保持すること
を特徴とするグリセリンモノアルキルエーテルの
製造法。 [一般式()において、RはC1〜C4の脂肪族
アルコール残基]。
[Claims] 1 Glycidol and C 1 ~ in the presence of a basic catalyst
When reacting with a C 4 aliphatic alcohol to produce glycerin monoalkyl ether represented by the corresponding general formula HOCH 2 CH (OH) CH 2・OR ... () in batch mode, the entire amount is added to the reactor in advance. Let dC 1 be the molar concentration of the aliphatic alcohol that is charged and change as the reaction progresses, and dC 2 be the molar concentration of glycidol that is added sequentially and change as the reaction progresses, and maintain dC 1 /dC 2 ≧50. A method for producing glycerin monoalkyl ether characterized by: [In the general formula (), R is a C1 - C4 aliphatic alcohol residue].
JP56100042A 1981-06-26 1981-06-26 Preparation of glycerin monoalkyl ether Granted JPS58927A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56100042A JPS58927A (en) 1981-06-26 1981-06-26 Preparation of glycerin monoalkyl ether

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56100042A JPS58927A (en) 1981-06-26 1981-06-26 Preparation of glycerin monoalkyl ether

Publications (2)

Publication Number Publication Date
JPS58927A JPS58927A (en) 1983-01-06
JPS6366295B2 true JPS6366295B2 (en) 1988-12-20

Family

ID=14263456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56100042A Granted JPS58927A (en) 1981-06-26 1981-06-26 Preparation of glycerin monoalkyl ether

Country Status (1)

Country Link
JP (1) JPS58927A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2397531T3 (en) * 2005-12-09 2013-03-07 Kao Corporation Production process of polyglyceryl ether derivative

Also Published As

Publication number Publication date
JPS58927A (en) 1983-01-06

Similar Documents

Publication Publication Date Title
JP3085722B2 (en) Method for producing alkylene carbonate
Inoue et al. Synthesis of optically active polymers by asymmetric catalysts. VI. Behavior of organozinc catalyst systems in the stereoselective polymerization of propylene oxide
CN107466289B (en) Process for producing ethylenically unsaturated carboxylic acids or esters
CA1178621A (en) Production of ethylene glycol by reaction of methanol, an organic peroxide and formaldehyde
US2579411A (en) Production of vinyl ethers
GB2078748A (en) Preparation of 2-methylenealdehydes
JPS625892B2 (en)
JPH0273049A (en) Common prodoction of 3- dialkylaminopropionitrile, bis-(2-cyanoethyl) ether and, if desired, ethylene cyanohidrin
EP0184731A1 (en) Process for the preparation of 2-(1-hydroxymethyl) acrylonitrile and acrylates
JPS6366295B2 (en)
US4709072A (en) Joint preparation of ethylene cyanohydrin and its ethers
Hoover et al. Chemistry of Isocyanic Acid. II. Reactions with α, β-Unsaturated Ethers
US3384654A (en) Process for the manufacture of cyanoacetic acid esters
US6093857A (en) Preparation of cyclopentanols
US2984688A (en) Methods for producing vinyl ethers
EP0675129A1 (en) Process for preparing hetero substituted acetals
JPS6133180A (en) Production of epoxy compound
CN1307165C (en) 4-methyl-5-formylthiazole preparation method
JP2585628B2 (en) Production method of halogen alcohol
US4127497A (en) Michael adducts of (substituted) cyclopentadiene and esters: a process therefor and derivatives thereof
JPH0717935A (en) Production of 3-aminopropionitrile
US4568759A (en) Preparation of epoxides
US2474175A (en) Process for carrying out condensation reactions
JPH07215904A (en) Production of hydroxypivalaldehyde
JPS61118348A (en) Manufacture of hydroxymethylenealkoxyacetic acid ester