JPS6365908B2 - - Google Patents

Info

Publication number
JPS6365908B2
JPS6365908B2 JP55024329A JP2432980A JPS6365908B2 JP S6365908 B2 JPS6365908 B2 JP S6365908B2 JP 55024329 A JP55024329 A JP 55024329A JP 2432980 A JP2432980 A JP 2432980A JP S6365908 B2 JPS6365908 B2 JP S6365908B2
Authority
JP
Japan
Prior art keywords
retardation plate
output
angular error
polarization
phase difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55024329A
Other languages
Japanese (ja)
Other versions
JPS56119867A (en
Inventor
Yoshihiko Yoshikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2432980A priority Critical patent/JPS56119867A/en
Publication of JPS56119867A publication Critical patent/JPS56119867A/en
Publication of JPS6365908B2 publication Critical patent/JPS6365908B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/66Radar-tracking systems; Analogous systems
    • G01S13/68Radar-tracking systems; Analogous systems for angle tracking only

Description

【発明の詳細な説明】 この発明は目標の発する電波を受信するアンテ
ナを用いて、アンテナの指向方向と目標の方向と
の指向角度誤差を検出する角度誤差検出装置に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an angle error detection device that uses an antenna that receives radio waves emitted by a target to detect a pointing angle error between the pointing direction of the antenna and the direction of the target.

従来このような角度誤差検出装置は目標の発す
る偏波が円偏波の場合とか直線偏波の場合のよう
に定まつている場合には比較的簡単な方法があ
り、すでに多く実用に供せられている。しかしな
がら目標の発する偏波が任意偏波でかつ時間とと
もにその橢円偏波率や偏波の傾きが変化する場合
の角度誤差検出装置が、近年の直交する2偏波を
用いた周波数再利用通信方式の実用化の上で障害
となつている降雨時の伝ぱん路での交差偏波補償
方式の実用化等にともなつて必要になつてきた。
Conventionally, such angular error detection devices have relatively simple methods when the polarization emitted by the target is fixed, such as in the case of circular polarization or linear polarization, and many have already been put into practical use. It is being However, when the polarization emitted by the target is arbitrary polarization and its circular polarization rate and polarization slope change over time, angular error detection devices have recently been developed for frequency reuse communication using two orthogonal polarizations. This has become necessary along with the practical application of cross-polarization compensation methods for propagation paths during rain, which has been an obstacle in the practical application of such methods.

第1図は従来のこの種の角度誤差検出装置の一
例である。第1図において目標よりの信号はアン
テナ1で受信され、角度誤差を検出するための2
つの高次モード結合器2,3により円形導波管内
に励起する高次モード成分のみを取出す。このと
き2つの高次モード結合器2と3とは互いに直交
関係にある高次モード結合器で例えばTE゜01モー
ド結合器2及びTM゜01モード結合器3を用いる。
なお基本モード成分は高次モード結合器2,3を
素通りして偏波変換器4及び5により偏波の形、
偏波面を変換する。この例では偏波変換器として
90゜位相差板4180゜位相差板5を用いる。偏波変
換された信号は偏分波器6によつて、直交する2
つの偏波成分EXC、EYCに分離される。ここにEXC
は主偏波成分、EYCは直交偏波成分である。EXC
位相検波器(以下PSDと呼ぶ)7ループフイル
タ8及び電圧制御発振器(以下VCOと呼ぶ)9
により、いわゆる位相同期ループ(以下PLLと
呼ぶ)を構成し、VCO9の出力がEXCと90゜位相
が異なる状態に保持されるようにする。一方EYC
をPSD17でVCO9の出力で検波し増幅器18
を介してモータ19により前記偏波変換器5を駆
動すると同時に歯車箱20を介して偏波変換器4
を駆動する。
FIG. 1 shows an example of a conventional angle error detection device of this type. In Fig. 1, the signal from the target is received by antenna 1, and antenna 2 is used to detect the angle error.
Only the high-order mode components excited in the circular waveguide are extracted by the two high-order mode couplers 2 and 3. At this time, the two higher-order mode couplers 2 and 3 are higher-order mode couplers that are orthogonal to each other, and for example, a TE° 01 mode coupler 2 and a TM° 01 mode coupler 3 are used.
Note that the fundamental mode component passes through the higher-order mode couplers 2 and 3 and is converted into a polarized wave shape by the polarization converters 4 and 5.
Convert polarization plane. In this example, as a polarization converter
A 90° retardation plate 4 and a 180° retardation plate 5 are used. The polarization-converted signal is passed through a polarization demultiplexer 6 into two orthogonal signals.
It is separated into two polarization components E XC and E YC . E XC here
is the main polarization component, and E YC is the orthogonal polarization component. E XC is a phase detector (hereinafter called PSD) 7 a loop filter 8 and a voltage controlled oscillator (hereinafter called VCO) 9
This forms a so-called phase-locked loop (hereinafter referred to as PLL), so that the output of the VCO 9 is maintained at a phase difference of 90° from that of EXC . On the other hand E YC
is detected by the output of VCO 9 using PSD 17 and sent to amplifier 18.
The polarization converter 5 is driven by the motor 19 via the motor 19, and at the same time, the polarization converter 4 is
to drive.

一方高次モード結合器2及び3よりの高次モー
ド成分は直交偏波合成器33により合成され、位
相差板4,5と同等の偏波変換器34,35を通
つて、偏分波器36で2つの直交成分EXD及びEYD
に分波しこれらをPSD37及び47により、
VCO9の出力あるいはそれを90゜移相器10によ
り90゜移相したものを用いて同期検波しこれを低
域ろ波器38及び48にて直流成分のみを取出す
ことにより2つの角度誤差電圧ΔX,ΔYを得る。
On the other hand, the higher-order mode components from the higher-order mode couplers 2 and 3 are combined by an orthogonal polarization combiner 33, passed through polarization converters 34 and 35 equivalent to the phase difference plates 4 and 5, and then 36 with two orthogonal components E XD and E YD
These are split into PSD37 and PSD47,
Synchronous detection is performed using the output of the VCO 9 or its phase shifted by 90° by the 90° phase shifter 10, and only the DC component is extracted by the low-pass filters 38 and 48, thereby producing two angular error voltages ΔX. , ΔY is obtained.

以上の動作を算式を用いて以下説明する。 The above operation will be explained below using formulas.

第2図はこのような角度誤差検出装置を用いる
場合の目標と本装置を備えた追尾アンテナ及び偏
波の関係を示す図であり、図中Eは本装置を備え
た追尾アンテナ、Tは目標であり、Tを含む面内
に追尾アンテナEのビームの中心方向とこの面の
交点Oを原点とする座標系XYを想定する。なお
EO→とET→とのなす角度Δθが追尾アンテナの角度
誤差、φが角度誤差の向きと、X軸方向との傾き
を示す角度、到来偏波の形が図のようであるとき
Emaxはだ円偏波の長軸電界、Eminは同軸短軸
電界であり角度αはEmaxの方向のX軸よりの傾
き角度である。
Figure 2 is a diagram showing the relationship between the target, the tracking antenna equipped with this device, and polarization when using such an angular error detection device. In the figure, E indicates the tracking antenna equipped with this device, and T indicates the target. Assume a coordinate system XY whose origin is the intersection O of this plane and the center direction of the beam of the tracking antenna E in a plane including T. In addition
The angle Δθ between EO→ and ET→ is the angular error of the tracking antenna, φ is the angle indicating the direction of the angular error and the inclination with the X-axis direction, and when the shape of the arriving polarized wave is as shown in the figure.
Emax is the long axis electric field of the elliptical polarization, Emin is the coaxial short axis electric field, and angle α is the inclination angle of the direction of Emax from the X axis.

第2図のような状態で第1図の角度誤差検出装
置を追尾アンテナに備えていると第1図の偏波変
換器4の入力部の電界EXA及びEYAは、 EXA=Emaxcosγ−jEminsinγ EYA=Emaxcosγ+jEmincosγ ……〔1〕 で表わされる。ここにEXA、EYAは第2図X、Y
座標をEO方向に平行移動したときのEXA、EYA
定める点におけるX及びY成分の電界である。以
下EXB、EYB、EXC、EYC、EYDについても同様であ
る。これを偏波変換器4,5の角度をそれぞれα
及びβとしてEXC、EYC求めると〔2〕式を得る。
When the tracking antenna is equipped with the angular error detection device shown in FIG. 1 in the state shown in FIG. 2, the electric fields E XA and E YA at the input section of the polarization converter 4 shown in FIG. It is expressed as jEminsinγ E YA = Emaxcosγ + jEmincosγ ... [1]. Here, E XA and E YA are X and Y in Figure 2.
This is the electric field of the X and Y components at the point that determines E XA and E YA when the coordinates are translated in parallel in the EO direction. The same applies to E XB , E YB , E XC , E YC , and E YD below. The angles of polarization converters 4 and 5 are α
By calculating E XC and E YC as and β, the formula [2] is obtained.

EXC=−Emaxsim(α-2β)sim(α-γ) +Emincos(α-2β)sin(α-γ) −jEmaxcos(α-2β)cos(α-γ) +jEminsin(α-2β)cos(α-γ) EYC=−Emaxcos(α-2β)sin(α-γ) −Eminsin(α-2β)sin(α-γ) −jEmaxsin(α-2β)cos(α-γ) +jEmincos(α-2β)cos(α-γ) 〔2〕 第1図を直線偏波受信用とする場合には、歯車
箱20によりα=2βの関係を与えることにより、
PSD17増幅器18及びモータ19によつて自
動的にα=γとなる制御がなされる。このとき EXC=−jEmax EYC=jEmin 〔3〕 となる。
E -γ) E YC = −Emaxcos(α-2β)sin(α-γ) −Eminsin(α-2β)sin(α-γ) −jEmaxsin(α-2β)cos(α-γ) +jEmincos(α-2β )cos(α-γ) [2] When using Fig. 1 for linear polarization reception, by providing the relationship α=2β using the gear box 20,
The PSD 17 amplifier 18 and motor 19 automatically control α=γ. In this case, E XC = −jEmax E YC = jEmin [3].

一方高次モード結合器2,3で取出される角度
誤差信号は直交偏波合成器33で合成されてEXB
EYBとなるが、これらはΔθが小さいときは EXB=kΔθ{Emaxcos(γ−ψ) −jEminsin(γ−φ)} EYC=kΔθ{Emaxsin(γ−ψ) −jEminsin(γ−φ)} 〔4〕 と表わされる。ただしkは比例定数である。
On the other hand, the angular error signals taken out by the higher-order mode couplers 2 and 3 are combined by the orthogonal polarization combiner 33, and E
E YB , but when Δθ is small, E } [4]. However, k is a proportionality constant.

偏波変換器34及び35は4及び5と同じ角度
であり、それぞれα及びβであるから、α=2β
かつα=γという条件を与えると偏分波器36の
出力EXD、EYDは〔5〕式で表わされる。
Polarization converters 34 and 35 have the same angle as 4 and 5, α and β respectively, so α=2β
When the condition α=γ is given, the outputs E XD and E YD of the polarization splitter 36 are expressed by equation [5].

EXD=kΔθ{−Eminsinψ−jEmaxcosψ} EYD=kΔθ{−Eminsinψ+jEmaxcosψ}〔5〕 したがつて〔3〕式のEXCを基準として、EXD
うちのEXCと同相分のみをPSD37で検波すると
ΔXとして ΔX=Re(EXD/EXC)=kΔθcosψ ……〔6〕 を得る。
E _ _ _ _ Then, as ΔX, we obtain ΔX=Re(E XD /E XC )=kΔθcosψ ... [6].

同様にEYDのうちのEXCと直交成分のみをPSD4
7で検波するとΔYとして ΔY=Im(−EYD/EXC)=kΔθsinψ ……〔7〕 を得る。
Similarly, only the orthogonal component to E XC of E YD is set to PSD4.
7, we obtain ΔY as ΔY=Im(−E YD /E XC )=kΔθsinψ ...[7].

〔6〕式及び〔7〕式で与えられるΔX,ΔY
は第2図からもわかるように角度誤差ΔθのX方
向及びY方の成分を表わすものとなつている。
ΔX, ΔY given by formulas [6] and [7]
As can be seen from FIG. 2, represents the components of the angular error Δθ in the X direction and the Y direction.

次に第1図を円偏波受信用として用いる場合は
偏波変換器4,5,34,35は駆動せず固定し
ておき、α=−π/4、β=0とする。
Next, when FIG. 1 is used for circularly polarized wave reception, the polarization converters 4, 5, 34, and 35 are not driven but fixed, and α=-π/4 and β=0.

このとき となる。 At this time becomes.

したがつて EXD/EXC=kΔθe-j〓=kΔθ(cosψ−jsinψ)〔
10〕 となり、EXDをEXCを基準としてPSD37及び4
7で検波することによりΔX,ΔYとして ΔX=ReEXD/EXC=kΔθcosψ 〔11〕 ΔY=Im−EXD/EXC=kΔθsinψ を得ることができる。
Therefore, E XD /E XC =kΔθe -j 〓=kΔθ(cosψ−jsinψ)
10], and PSD37 and 4 with E XD as standard
7, it is possible to obtain as ΔX and ΔY ΔX=ReE XD /E XC =kΔθcosψ [11 ] ΔY=Im− E

このとき第1図のスイツチ41は図に示されて
いるように接続され、直線偏波の場合はEYD側に
接続される。
At this time, the switch 41 in FIG. 1 is connected as shown in the figure, and in the case of linear polarization, it is connected to the E YD side.

以上のように第1図の方式では到来偏波の状態
によつて角度誤差検出回路を適当に切換えてやる
ことにより角度誤差電圧ΔX及びΔYを得ること
ができる。第1図に示したものでは円偏波の場合
と直線偏波の場合とで装置の構成を切換えること
が必要であり、このために到来偏波の変化の激し
い場合には操作が複雑となるだけでなく受信をつ
ねに良好な状態に保ち得ない欠点があつた。
As described above, in the method shown in FIG. 1, the angular error voltages ΔX and ΔY can be obtained by appropriately switching the angular error detection circuit depending on the state of the arriving polarized wave. In the system shown in Figure 1, it is necessary to switch the configuration of the device for circularly polarized waves and linearly polarized waves, which makes the operation complicated when the arriving polarized wave changes drastically. Another drawback was that it was not possible to maintain good reception at all times.

すなわちEXCに到来偏波のうち全成分を取り出
すことができないという欠点があつた。例えば右
旋円偏波を受信する状態で左旋円偏波が到来する
とEXC=0という場合が生じ〔8〕式において
Emax=−Eminとなる)受信不能となる可能性
がある。
In other words, E For example, if a left-handed circularly polarized wave arrives while a right-handed circularly polarized wave is being received, a case will occur where E XC = 0, and in equation [8]
(Emax = -Emin) There is a possibility that reception will be impossible.

この発明は上記のような従来のものの欠点を除
去するためになされたもので、任意の到来偏波に
対して適切に偏波変換器を制御すると同時にそれ
によつて生じる角度誤差信号への影響を取除くこ
とによつて、つねに良好な受信状態を保ちながら
安定な角度誤差電圧を得る角度誤差検出装置を提
供することを目的とする。
This invention was made in order to eliminate the drawbacks of the conventional ones as described above, and it is possible to appropriately control a polarization converter for any incoming polarized wave and at the same time reduce the effect on the angle error signal caused by it. It is an object of the present invention to provide an angular error detection device that obtains a stable angular error voltage while always maintaining a good reception condition by removing the angular error voltage.

以下、この発明の一実施例を図について説明す
る。第3図において、第1図と同じ番号を付した
ものは同じ機能を有するものであり、基本モード
成分をEXCに取出し、これに対してPLLを構成し
てEXCと同期して90゜の位相差を有する信号を
VCO9の出力として得る。
An embodiment of the present invention will be described below with reference to the drawings. In Fig. 3, the parts with the same numbers as in Fig. 1 have the same functions; the fundamental mode component is taken out to E XC , a PLL is configured for it, and it is synchronized with E A signal with a phase difference of
Obtained as the output of VCO9.

この発明では任意偏波を有する到来波を90゜位
相差板4と180゜位相差板5の遅れ面(以下遅相面
と呼ぶ)を、偏分波器の交差偏波端子出力EYC
最小になるように、それぞれ独立にPSD17及
び27の出力を増幅器18及び28を介してモー
タ19及び20にて回転制御することにより偏波
損失の少ない基準信号EXCを得る。
In this invention, the arriving wave having arbitrary polarization is transferred to the lag surfaces (hereinafter referred to as lag surfaces) of the 90° retardation plate 4 and the 180° retardation plate 5 by the cross-polarization terminal output E YC of the polarization demultiplexer. By independently controlling the rotation of the outputs of the PSDs 17 and 27 by motors 19 and 20 via amplifiers 18 and 28 so as to minimize the polarization loss, a reference signal E XC with little polarization loss is obtained.

以下第3図の動作原理について詳述する。 The operating principle shown in FIG. 3 will be explained in detail below.

EXC及びEYCの前述の一般式〔2〕においての式
を簡単化するために Emax=Ecosδ 〔12〕 Emin=Esinδ とおくと EXC=E{−sin(α-γ)sin(α-2β-δ) −jcos(α-γ)cos(α-2β+δ)} EYC=E{−sin(α-γ)cos(α-2β-δ) +jcos(α-γ)sin(α-2β-δ)} 〔13〕 を得る。
To simplify the above general formula [2] for E XC and E YC , let Emax=Ecosδ [12] Emin=Esinδ, then E 2β-δ) −jcos(α-γ)cos(α-2β+δ)} E YC =E{−sin(α-γ)cos(α-2β-δ) +jcos(α-γ)sin(α- 2β-δ)} [13] is obtained.

式〔13〕においてEXCを基準としてEYCを求める
と〔14〕式となる。
In formula [13], E YC is calculated using E XC as a reference, and formula [14] is obtained.

EYC/EXC=−cos2(α−2β)sin2δ−sin2(α−2β
)cos2δcos2(α−γ)−jsin2(α−γ)cos2δ/2
{sin2(α−γ)sin2(α−2β−δ)−cos2(α−γ
)cos2(α−2β+δ)}〔14〕 式〔14〕において虚数部を0とする条件の一つ
にα=γがあり、第3図においてPSD17によ
りEXCと90゜位相差を有するVCO9の出力によつ
てEYCを検波して、この出力が0となるようにモ
ータ19で偏波変換器4を駆動すれば、この条件
が満足される。α=γとなると式〔14〕は EYC/EXC=−sin2(α−2β+δ)/2{sin2(α−
γ)sin2(α−2β−δ)+cos2(α−γ)−cos2(α
−2β+δ)〔15〕 と変換される。したがつてPSD27によりVCP
9出力を90゜移相器10により90゜の位相差を与え
たもの、すなわちEXCと同位相の信号を用いてEYC
を検波し、これが0となるようにモータ29によ
つて偏波変換器5を駆動すれば〔15〕式を0とす
る条件α−2β+δ=0が得られる。
E YC /E XC = −cos2(α−2β) sin2δ−sin2(α−2β
)cos2δcos2(α−γ)−jsin2(α−γ)cos2δ/2
{sin 2 (α−γ) sin 2 (α−2β−δ)−cos 2 (α−γ
) cos 2 (α−2β+δ)} [14] In equation [14], one of the conditions for setting the imaginary part to 0 is α=γ, and in Fig. 3, the VCO 9 with a 90° phase difference with E This condition is satisfied if E YC is detected by the output of , and the polarization converter 4 is driven by the motor 19 so that this output becomes zero. When α=γ, equation [14] becomes E YC /E XC = −sin2 (α−2β+δ)/2{sin 2 (α−
γ) sin 2 (α−2β−δ)+cos2(α−γ)−cos 2
−2β+δ)[15] Therefore, VCP by PSD27
E _
If the polarization converter 5 is driven by the motor 29 so that the detected wave becomes 0, the condition α-2β+δ=0 is obtained, which makes the equation [15] 0.

α=γ及びα−2β+δ=0の2つの条件が満
足されるとEXC=−jEとなり到来波の基本モード
成分はすべてEXCの端子に得られ、当然のことな
がらEYC=0となる。したがつて任意偏波の到来
波に対して基本的にはEXCにはつねに基本モード
成分の全電力が得られるので従来の方式の欠点が
なくなる。
When the two conditions α = γ and α-2β + δ = 0 are satisfied, E XC = -jE, and all the fundamental mode components of the arriving wave are obtained at the terminal of E . Therefore, for arriving waves of arbitrary polarization, the full power of the fundamental mode component is basically always obtained in E XC , eliminating the drawbacks of the conventional system.

一方、目標物を追尾するための角度誤差信号回
路に用いている90゜位相差板34と180゜位相差板
35を基準信号回路90゜位相差板4と180゜位相差
板5とそれぞれ同一の角度に設定したのでは、任
意偏波の目標に対する角度誤差信号を容易には取
出せない。このため、90゜位相差板34と180゜位
相差板35を以下に示すように、特定の角度関係
に設定することにより任意偏波に対する自動追尾
を可能ならしめる。
On the other hand, the 90° retardation plate 34 and 180° retardation plate 35 used in the angular error signal circuit for tracking the target are the same as the reference signal circuit 90° retardation plate 4 and 180° retardation plate 5, respectively. If the angle is set to , it is not easy to extract the angular error signal for the arbitrary polarization target. Therefore, by setting the 90° retardation plate 34 and the 180° retardation plate 35 in a specific angular relationship as shown below, automatic tracking of arbitrary polarized waves is made possible.

第2図に示す到来偏波は第3図のa点でも同様
の状態を保つている。第4図はa点での橢円偏波
をCCW回転の円偏波71とCW回転の円偏波7
2に分解したものである。
The arriving polarized wave shown in FIG. 2 maintains the same state at point a in FIG. 3. Figure 4 shows the circularly polarized wave at point a, a circularly polarized wave 71 with CCW rotation and a circularly polarized wave 7 with CW rotation.
It is broken down into two parts.

第4図においてCCW円偏波71電界をE1a、
CW円偏波72電界72をE2aとすれば、X軸か
らγの角度において E1a=E1 E2a=E2 (16) ここで E1=(Emax+Emin)/2 E2=(Emax−Emin)/2 (17) 90゜位相差板4の設定角度(遅相面)αを α=γ+90゜ (18) とすれば、b点での偏波状態は、71は73で示
す直線偏波E1bに、72は74で示す直線偏波
E2bに変換される。
In Figure 4, the CCW circularly polarized wave 71 electric field is E 1 a,
If the electric field 72 of the CW circularly polarized wave 72 is E 2 a, at the angle γ from the X axis, E 1 a=E 1 E 2 a=E 2 (16) where E 1 = (Emax + Emin)/2 E 2 = (Emax−Emin)/2 (17) If the setting angle (slow plane) α of the 90° retardation plate 4 is α = γ + 90° (18), the polarization state at point b is 71 is 73. Linearly polarized wave E 1 b as shown, 72 is linearly polarized wave shown as 74
Converted to E 2 b.

E1b=√2E1 E2b=√2E2 (19) ゆえに73と74は同相ゆえに、これの合成波
75は直線偏波になる。75をE〓bとすれば E〓b=√2(2 12 2 (20) であり、そのX軸からの傾き角γは γ=γ−45゜+ρ (21) ここで ρ=tan-1(E2/E1) (22) となる。180゜位相差板5の設定角度βを β=1/2γ+90゜ (23) とすればC点での偏波は76となりX軸に一致し
た直線偏波となる。第5図はCCW回転円偏波7
1とCW回転円偏波72がC点で示す偏波状態を
描いたもので71は77に72は78となり、7
7と78の合成波76はX軸に一致した直線偏波
になることを示している。76をE〓とすれば E〓=√2(2 12 2=√2 nax2 nio (24) となる。E〓が角度基準信号であり、EXCに等しい。
E 1 b=√2 E1 E 2 b=√2 E2 (19) Therefore, since 73 and 74 are in phase, their combined wave 75 becomes a linearly polarized wave. If 75 is E〓 b , then E〓 b = √2 ( 2 1 + 2 2 (20), and its inclination angle γ from the X axis is γ = γ - 45° + ρ (21) where ρ = tan -1 (E 2 /E 1 ) (22) If the setting angle β of the 180° retardation plate 5 is β = 1/2γ + 90° (23), the polarization at point C will be 76 and the polarization will be on the X axis. The result is a matched linearly polarized wave.Figure 5 shows a CCW rotating circularly polarized wave 7.
This is a drawing of the polarization state of 1 and CW rotating circularly polarized wave 72 shown at point C. 71 becomes 77, 72 becomes 78, and 7.
It is shown that the composite wave 76 of 7 and 78 becomes a linearly polarized wave that coincides with the X axis. 76 as E〓, E〓 = √2 ( 2 1 + 2 2 = √ 2 nax + 2 nio (24). E〓 is the angle reference signal and is equal to E XC .

次に互に直交な高次モードをそれぞれ2と3で
検出し、直交偏波合成器33で直交偏波合成する
と第6図の81で示すCCW円偏波E1dと82で示
すCW円偏波E2dに分解した偏波となる。第6図
において81と82はd点での偏波であり、X軸
からγ−ψ傾いた角度において E1d=kΔθE1 E2d=kΔθE2 (25) となる。
Next, mutually orthogonal higher-order modes are detected at 2 and 3, respectively, and the orthogonal polarizations are synthesized by the orthogonal polarization combiner 33, resulting in a CCW circular polarization E 1 d shown at 81 in FIG. 6 and a CW circular wave shown at 82. It becomes a polarized wave decomposed into polarized waves E 2 d. In FIG. 6, 81 and 82 are polarized waves at point d, and at an angle γ-ψ inclined from the X axis, E 1 d=kΔθE 1 E 2 d=kΔθE 2 (25).

90゜位相差板34の設定角度α′を α′=α+ρ (26) とすれば、e点では81は83の直線偏波E1e、
82は84の直線偏波E2eに変換される。E1eと
E2eは で示される位相と振幅をもつ。この83と84を
X軸からβ′の角度に設定された180゜位相差板35
を通す。
If the setting angle α' of the 90° phase difference plate 34 is α'=α+ρ (26), then at point e, 81 becomes the linearly polarized wave of 83 E 1 e,
82 is converted into 84 linearly polarized wave E 2 e. E 1 e and
E 2 e is It has the phase and amplitude shown by . A 180° retardation plate 35 with these 83 and 84 set at an angle of β' from the X axis.
Pass through.

このとき β′=β とすれば、f点の偏波状態は第7図のようにな
る。第7図において、87は83を、また88は
84をそれぞれ180゜位相差板35により変換され
たものであり、87をE1f、88をE2fとすれば E1f=E1d=√2kΔθE1e-j(+) (28) E2f=E2d=√2kΔθE2ej(+) (29) である。
If β'=β at this time, the polarization state at point f will be as shown in FIG. In FIG. 7, 87 is 83, and 88 is 84 converted by the 180° retardation plate 35. If 87 is E 1 f and 88 is E 2 f, then E 1 f = E 1 d=√2kΔθE 1 e -j(+) (28) E 2 f=E 2 d=√2kΔθE 2 e j(+) (29).

90゜位相差板50を例えば90゜に設置(固定)す
ればg点では E1g=E1f=√2kΔθE1e-j(+) (30) E2g=E2fe−-/2=√2kΔθE2ej(+-/2)(3
1) このE1gとE2gはそれぞれX軸とY軸に一致し
た直線偏波であるので、偏分波器36を45゜傾け
となるように分波すれば となる。
For example, if the 90° retardation plate 50 is installed (fixed) at 90°, at point g E 1 g=E 1 f=√2kΔθE 1 e -j(+) (30) E 2 g=E 2 fe− -/2 =√2kΔθE 2 e j(+-/2) (3
1) Since E 1 g and E 2 g are linearly polarized waves that coincide with the X and Y axes, respectively, tilt the polarization splitter 36 by 45 degrees. If we divide the waves so that becomes.

式(34)よりEXDの実数部をPSD37にて検波
し低域ろ波器38を通すと を、式(35)よりEYD虚数部をPSD47にて検波
し低域ろ波器48を通すと を得ることができる。すなわち、アンテナの角度
指向誤差方向ψに対して、式(36)はcooψに比
例し、式(37)sinψに比例した振幅、すなわちそ
れぞれX方向とY方向の誤差に比例した振幅を示
す制御用信号となる。
From equation (34), when the real part of E From Equation (35), when the imaginary part of E YD is detected by PSD 47 and passed through low-pass filter 48, we get can be obtained. In other words, for the antenna's angular pointing error direction ψ, equation (36) is proportional to cooψ, and equation (37) is an amplitude proportional to sinψ, that is, the control signal has an amplitude proportional to the error in the X direction and Y direction, respectively. It becomes a signal.

ここで式(26)でのρは ρ=2β−γ−135゜ (38) であり、αは式(18)、βは式(23)と式(21)
で示されるので、90゜位相差板34の設定角度
α′は α′=2β−45゜ (39) となる。すなわち、90゜位相差板34は180゜位相
差板5の角度の2倍で、また180゜位相差板35
は、5と1対1の回転角度関係で制御することに
より式(36)と37)に示す信号を得ることができ
る。
Here, ρ in equation (26) is ρ = 2β − γ − 135° (38), α is from equation (18), and β is from equation (23) and equation (21).
Therefore, the setting angle α' of the 90° retardation plate 34 is α'=2β−45° (39). That is, the angle of the 90° retardation plate 34 is twice the angle of the 180° retardation plate 5, and the angle of the 180° retardation plate 35 is twice the angle of the 180° retardation plate 5.
By controlling the rotation angle in a one-to-one relationship with 5, the signals shown in equations (36) and 37) can be obtained.

なお、第3図の固定の90゜位相差板50と偏分
波器36は、互の関係位置が45゜傾いた状態であ
るので、いわゆる円偏波発生器として動作してい
る。ゆえにこれの代りに、第8図に示すような構
成としても上に示したと同等の目的を達成するこ
とが可能である。第8図において36は偏分波
器、51はマジツクTで代表されるいわゆる180゜
ハイブリツド、52は90゜位相器である。
The fixed 90° retardation plate 50 and polarization splitter 36 shown in FIG. 3 operate as a so-called circularly polarized wave generator because their relative positions are inclined at 45°. Therefore, instead of this, it is possible to achieve the same purpose as shown above by using a configuration as shown in FIG. In FIG. 8, 36 is a polarization splitter, 51 is a so-called 180° hybrid represented by Magic T, and 52 is a 90° phase shifter.

さらに、第3図の本発明の一実施例において、
角度誤差信号回路の90゜位相差板34と180゜位相
差板35を次に示す関係の角度に設定すれば、固
定の90゜位相差板50は除くことが可能となる。
これは、固定の90゜位相差板50は第5図に示す
77と78の偏波成分のうち、78を90゜遅らせ
る機能を有するものである。このため、第3図に
おける90゜位相差板34を式(26)あるいは式
(39)で示す角度よりも45゜余分に回転させれば、
すなわち α′=2β (40) とすればe点での成分E1eとE2eは となる。次に180゜位相差板35を β′=β+22.5゜ (42) になるような角度に設定すればf点での成分E1f
とE2fは E1f=√2kΔθE1e-j(++/4) (43) E2f=√2kΔθE2ej(++/4) (44) の位相と振幅をもつ、第7図の87と88に示す
ような直線偏波となる。この信号を45゜傾いた偏
分波器36で となるよに分波すれば すなわち、式(24)のE〓を(−π/4)の位相
回路を通した信号でもつて式(36)と式(37)の
処理を施してΔXとΔYを得ることが可能である。
Furthermore, in one embodiment of the present invention shown in FIG.
If the 90° retardation plate 34 and the 180° retardation plate 35 of the angle error signal circuit are set to the angles shown in the following relationship, the fixed 90° retardation plate 50 can be removed.
This is because the fixed 90° retardation plate 50 has the function of delaying 78 by 90° out of the polarization components 77 and 78 shown in FIG. Therefore, if the 90° retardation plate 34 in FIG. 3 is rotated by 45° more than the angle shown by equation (26) or equation (39),
That is, if α′=2β (40), the components E 1 e and E 2 e at point e are becomes. Next, if the 180° retardation plate 35 is set at an angle such that β' = β + 22.5° (42), the component E 1 f at point f
and E 2 f is the phase of E 1 f=√2kΔθE 1 e -j(++/4) (43) E 2 f=√2kΔθE 2 e j(++/4) (44) It becomes a linearly polarized wave as shown at 87 and 88 in FIG. 7, with an amplitude of . This signal is passed through a polarization splitter 36 tilted at 45°. If we divide the waves so that That is, it is possible to obtain ΔX and ΔY by applying the processing of equations (36) and (37) to E〓 of equation (24) as a signal passed through a (−π/4) phase circuit.

以上のこの発明の実施例では、基準信号回路の
任意偏波受信に対処する偏波変換回路として、モ
ード結合器により近い側に90゜位相差板を設けそ
の後段に180゜位相差板を設ける構成であるが、第
9図のようにこの関係を逆にしても、上記と同様
に任意偏波受信に対処できる。第9図は第3図に
おける90゜位相差板4と180゜位相差板5の設置位
置を入れ換えた構成であり、同図においてEYC
受信レベルが最小となる条件は、90゜位相差板4
の設定角度をα″、80゜位相差板5の設定角度を
β″とすれば、EYCが最小となる条件は α″=ρ+45゜ (48) β″=1/2γ+90゜ (49) となる。式(49)と式(23)から β=β″ (50) ゆえに、第3図の誤差回路の90゜位相差板34
と180゜位相差板35の設定角度は前記いずれの実
施例でもβにのみ関係した量であるので、第9図
の34と35は第3図の34と35と同じ設定角
度でよいことは明らかである。
In the above-described embodiment of the present invention, a 90° retardation plate is provided on the side closer to the mode coupler and a 180° retardation plate is provided in the subsequent stage as a polarization conversion circuit for dealing with arbitrary polarization reception of the reference signal circuit. However, even if this relationship is reversed as shown in FIG. 9, arbitrary polarization reception can be handled in the same manner as above. Figure 9 shows a configuration in which the installation positions of the 90° retardation plate 4 and the 180° retardation plate 5 in Figure 3 are swapped. Board 4
If the setting angle of is α″ and the setting angle of 80° retardation plate 5 is β″, then the conditions for minimizing E YC are α″=ρ+45° (48) β″=1/2γ+90° (49) Become. From equation (49) and equation (23), β=β″ (50) Therefore, the 90° retardation plate 34 of the error circuit in Fig. 3
and 180° Since the setting angle of the retardation plate 35 is a quantity related only to β in any of the above embodiments, 34 and 35 in FIG. 9 may be the same setting angle as 34 and 35 in FIG. 3. it is obvious.

さらに第9図における50,36を第8図のよ
うに構成する方法でも、さらに、50を省き、3
4と35をそれぞれ式(40)と式(42)の関係式
のように設定しても同様の機能が得られることは
明らかである。
Furthermore, even in the method of configuring 50 and 36 in FIG. 9 as shown in FIG. 8, 50 is omitted and 3
It is clear that the same function can be obtained even if 4 and 35 are set as in the relational expressions of equation (40) and equation (42), respectively.

以上の実施例での角度誤差回路の90゜位相差板
34と180゜位相差板35はいずれも、基準信号回
路の180゜位相差板の回転角度と1対1あるいは1
対2の回転比でもよい。このような制御操作は歯
車等の機械的な連結、あるいはシンクロとモータ
等を用いた電気的な連結でもつて容易に実施でき
る。さらに90゜位相差板及び180゜位相差板の遅相
面の制御はいずれもモータにより回転させること
で説明しているが、フエライト素子を用いた位相
差板を用い、電気信号により遅相面の制御法も同
様に実施できる。
In the above embodiment, both the 90° retardation plate 34 and the 180° retardation plate 35 of the angle error circuit are one-to-one or one-to-one with the rotation angle of the 180° retardation plate of the reference signal circuit.
A rotation ratio of 2:2 may also be used. Such a control operation can be easily carried out by a mechanical connection such as gears or an electrical connection using a synchronizer and a motor. Furthermore, although the explanation explains that the slow planes of the 90° retardation plate and the 180° retardation plate are both rotated by a motor, it is possible to control the slow phase plane using an electric signal using a retardation plate using a ferrite element. The control method can also be implemented in the same way.

以上のように、この発明によれば、角度誤差信
号回路の90゜位相差板を基準信号回路の180°位相
差板と1対2の回転比で制御するとともに、角度
誤差回路の180゜位相差板を基準信号回路の180゜位
相差板と1対1の回転比で制御するようにしたの
で、任意の偏波に対して効率よく受信しつつ正確
な角度誤差信号の検出を得ることができるので、
到来波の偏波変動の大きなロケツトや衛星などを
自動追尾するための角度誤差検出装置として用い
る場合に効果的である。
As described above, according to the present invention, the 90° phase difference plate of the angle error signal circuit is controlled at a rotation ratio of 1:2 with respect to the 180° phase difference plate of the reference signal circuit, and the 90° phase difference plate of the angle error signal circuit is controlled at a rotation ratio of 1:2. Since the retardation plate is controlled with a rotation ratio of 1:1 with the 180° retardation plate of the reference signal circuit, it is possible to efficiently receive arbitrary polarized waves and to obtain accurate angle error signal detection. Because you can
It is effective when used as an angular error detection device for automatically tracking rockets, satellites, etc. whose polarization variation of arriving waves is large.

また降雨等により伝ぱん路で偏波状態が影響を
受けやすいような高い周波数帯に用いる場合にも
同様の効果が得られる。
A similar effect can also be obtained when used in a high frequency band where the polarization state in the propagation path is easily affected by rain or the like.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の角度誤差検出装置の一例を示す
系統図、第2図はこの発明の動作説明のための目
標と本装置を備えたアンテナとの位置関係を示す
概念図、第3図は本発明の一実施例を示す系統
図、第4図と第5図は本発明の動作説明のための
基準信号の偏波関係概念図、第6図と第7図は同
じく誤差信号の偏波関係概念図、第8図と第9図
は本発明の他の実施例を示す系統図である。 図中1は放射器、2,3は高次モード結合器、
4,34は90゜位相差板、5,35は180゜位相差
板、6,36は偏分波器、7,17,27,37
は位相検波器、8はループフイルタ、9は電圧制
御発振器、10は90°位相器、33は直交偏波合
成器である。なお図中同一符号は同一又は相当部
分を示す。
Fig. 1 is a system diagram showing an example of a conventional angle error detection device, Fig. 2 is a conceptual diagram showing the positional relationship between a target and an antenna equipped with this device for explaining the operation of the present invention, and Fig. 3 is a system diagram showing an example of a conventional angle error detection device. A system diagram showing an embodiment of the present invention, FIGS. 4 and 5 are conceptual diagrams of the polarization relationship of the reference signal for explaining the operation of the present invention, and FIGS. 6 and 7 are also polarization diagrams of the error signal. 8 and 9 are system diagrams showing other embodiments of the present invention. In the figure, 1 is a radiator, 2 and 3 are higher-order mode couplers,
4, 34 are 90° retardation plates, 5, 35 are 180° retardation plates, 6, 36 are polarization demultiplexers, 7, 17, 27, 37
8 is a phase detector, 8 is a loop filter, 9 is a voltage controlled oscillator, 10 is a 90° phase shifter, and 33 is an orthogonal polarization synthesizer. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] 1 目標の発する電波を受信する装置の受信偏波
損失が最小となるようにその遅相面を制御される
第1の少なくとも1つの180゜位相差板と1つの
90゜位相差板を通過した導波管内の基本モードに
より基準信号を取り出し、かつ互に直交関係を有
する2つの高次モードを用いて角度誤差信号を取
り出して前記基準信号に同期した局部発振器出力
を用いて前記角度誤差信号を同期検波することに
よつて互いに直交する2つの角度誤差を検出する
角度誤差検出装置において、前記角度誤差信号を
取り出す回路が少なくとも前記直交関係を有する
2つの高次モードを取り出す高次モード検出器
と、前記2つの高次モード出力を直交関係を保つ
ように合成する回路と、その遅相面が回転可能な
第2の少なくとも1つの90゜位相差板と180゜位相
差板の継続接続された回路とこの回路に接続され
た固定の90゜位相差板とを備え、前記第2の90゜位
相差板を前記合成する回路側に設けるとともにそ
の遅相面を前記第1の180゜位相差板の遅相面の2
倍の角度関係で制御するとともに前記第2の180゜
位相差板の遅相面を前記第1の180゜位相差板の遅
相面と1対1の角度関係で制御し、前記第2の
180゜位相差板の出力を前記固定の90゜位相差板を
通した後に互に直交する偏波成分に分岐し、第1
の分岐出力を前記基準信号に同期した局部発振器
出力を用いて同期検波して第1の角度誤差出力と
するとともに、第2の分岐出力を前記局部発振器
出力によつて第1の角度誤差出力と90゜の位相差
を有する同期検波して第1の角度誤差出力とは直
交な第2の角度誤差出力とすることを特徴とする
角度誤差検出装置。
1 At least one first 180° retardation plate whose slow phase is controlled so that the reception polarization loss of the device that receives the radio waves emitted by the target is minimized;
A reference signal is extracted by the fundamental mode in the waveguide that has passed through the 90° phase difference plate, and an angular error signal is extracted using two higher-order modes having an orthogonal relationship with each other, and the local oscillator output is synchronized with the reference signal. In the angular error detection device that detects two angular errors that are orthogonal to each other by synchronously detecting the angular error signal using a high-order mode detector for extracting the output of the high-order mode, a circuit for composing the two high-order mode outputs so as to maintain an orthogonal relationship, and at least one second 90° phase difference plate whose slow phase plane is rotatable at 180°. It comprises a circuit in which a retardation plate is continuously connected and a fixed 90° retardation plate connected to this circuit, and the second 90° retardation plate is provided on the circuit side to be synthesized, and its slow phase face is 2 of the slow phase surface of the first 180° retardation plate
The slow surface of the second 180° retardation plate is controlled in a one-to-one angular relationship with the slow surface of the first 180° retardation plate.
After passing the output of the 180° phase difference plate through the fixed 90° phase difference plate, the output is split into mutually orthogonal polarized components.
The branch output of is synchronously detected using a local oscillator output synchronized with the reference signal to produce a first angular error output, and the second branch output is used as a first angular error output by the local oscillator output. An angular error detection device characterized by performing synchronous detection with a phase difference of 90° to produce a second angular error output orthogonal to the first angular error output.
JP2432980A 1980-02-27 1980-02-27 Angle error detector Granted JPS56119867A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2432980A JPS56119867A (en) 1980-02-27 1980-02-27 Angle error detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2432980A JPS56119867A (en) 1980-02-27 1980-02-27 Angle error detector

Publications (2)

Publication Number Publication Date
JPS56119867A JPS56119867A (en) 1981-09-19
JPS6365908B2 true JPS6365908B2 (en) 1988-12-19

Family

ID=12135135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2432980A Granted JPS56119867A (en) 1980-02-27 1980-02-27 Angle error detector

Country Status (1)

Country Link
JP (1) JPS56119867A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6056442B2 (en) * 2012-12-11 2017-01-11 三菱電機株式会社 Tracking antenna device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5942831A (en) * 1982-08-31 1984-03-09 株式会社 ナカジマ Electric float

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5942831A (en) * 1982-08-31 1984-03-09 株式会社 ナカジマ Electric float

Also Published As

Publication number Publication date
JPS56119867A (en) 1981-09-19

Similar Documents

Publication Publication Date Title
EP1693922B1 (en) Aircraft with an antenna apparatus
JP5745080B2 (en) Antenna system
JPS5953738B2 (en) Crossed polarization compensation method
CA1141012A (en) Method an dsystem for tracking and object radiating a circularly or linearly polarized electromagnetic signal
CA1234910A (en) Antenna tracking device
WO2023019649A1 (en) Monopulse antenna tracking and phase correction method
JP2000349547A (en) Antenna power feeding device
JPS6365908B2 (en)
JPS5942831B2 (en) Angle error detection device
US20220003836A1 (en) Channel combining and time-division processing circuit of dual-plane pulse doppler radar seeker
US4578679A (en) Method and apparatus for obtaining antenna tracking signals
EP0073258B1 (en) Angular error detecting device
EP0306654B1 (en) Angular error detecting device
US4408207A (en) Angular error detecting device
US3174104A (en) Electric signal combining arrangements
JP2000349535A (en) Primary radiator
GB1265226A (en)
JP3058007B2 (en) Antenna feeder
CA1184636A (en) Angular error detecting device
CN109860962B (en) Circular waveguide 180-degree polarization tracker
JP3060878B2 (en) Antenna feeder
JPH10319107A (en) Simplified angle measurement system for tracking stationary satellite
JPH0354425Y2 (en)
JP3566419B2 (en) Polarization plane detector and polarization plane controller
JPH1051208A (en) Branching filter