JPS6365870A - Implant - Google Patents

Implant

Info

Publication number
JPS6365870A
JPS6365870A JP61209454A JP20945486A JPS6365870A JP S6365870 A JPS6365870 A JP S6365870A JP 61209454 A JP61209454 A JP 61209454A JP 20945486 A JP20945486 A JP 20945486A JP S6365870 A JPS6365870 A JP S6365870A
Authority
JP
Japan
Prior art keywords
powder
implant
ceramic
phosphate
tricalcium phosphate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61209454A
Other languages
Japanese (ja)
Inventor
塩津 立三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advance Co Ltd
Original Assignee
Advance Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advance Co Ltd filed Critical Advance Co Ltd
Priority to JP61209454A priority Critical patent/JPS6365870A/en
Publication of JPS6365870A publication Critical patent/JPS6365870A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明はインプラントの改良に関する乙のである。本発
明は人体各部の骨に一般に応用され得る。近年、人工臓
器、人工血管、人工関節、人工骨、人工歯根などの人工
材料を生体内に挿入、置換して失われた生体の一部や機
能を回復させるインプラントが脚光を浴びているが、特
に骨や歯根等のインプラントも治療や機能回復に大きな
効果をおさめてきたか、しかし、いまだ生体材料として
積極的に治療修復するような生体活性があり、安全かつ
耐久性1こ富むをいう必要十分な条件を満足する人工骨
、人工関節、人工歯根はない。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in implants. The present invention can be generally applied to bones in various parts of the human body. In recent years, implants, which restore lost parts and functions of the living body by inserting and replacing artificial materials such as artificial organs, artificial blood vessels, artificial joints, artificial bones, and artificial tooth roots, have been in the spotlight. In particular, implants for bones and tooth roots have had a great effect on treatment and functional recovery. There is no artificial bone, artificial joint, or artificial tooth root that satisfies these conditions.

従来主に骨や歯に使われてきた人工材料は金属材料とし
てはCo−Cr系合金、ステンレス綱、チタン、タンタ
ルなどがあり、セラミックス(材料としてはTi0z、
 A(LO3,Ca0−AQtO3,AQ203−S1
02系ガラス、5iOt−NazO−CaO−P205
系ガラス(生体ガラス)炭素などがあるが、リン酸力ル
ンウム系材料を主体とした生体セラミックスが注目され
ている。
Artificial materials that have traditionally been mainly used for bones and teeth include metal materials such as Co-Cr alloys, stainless steel, titanium, and tantalum, and ceramics (materials include Ti0z,
A(LO3, Ca0-AQtO3, AQ203-S1
02 series glass, 5iOt-NazO-CaO-P205
Although there are other types of ceramics such as glass (bioglass) and carbon, bioceramics based on phosphate-based materials are attracting attention.

金属材料は機械的強度、特に衝撃強度には優れているが
、生体組織への親和性に問題が多い。
Although metal materials have excellent mechanical strength, particularly impact strength, they often have problems with their affinity for living tissues.

例えば金属イオンが溶出してインプラント周辺の骨細胞
の細胞毒性として作用する。又、熱伝導が良すぎること
に起因すると考えられる遺骨作用への障害がある。セラ
ミックスからなるインプラントは一般に骨との親和性が
良く組織と反応せず耐久性に富むが、骨組織との固着に
問題がある。又、これらの人工材料は骨や歯の硬組織の
組成とは全く異変のものであり、毒性こそないものの生
体内では死んだ材料にすぎない。
For example, metal ions are eluted and act as cytotoxic agents for bone cells surrounding the implant. In addition, there is an obstacle to the functioning of cremated remains, which is thought to be due to too good heat conduction. Implants made of ceramics generally have good affinity with bone, do not react with tissue, and are highly durable, but they have a problem with fixation with bone tissue. In addition, these artificial materials have a completely different composition from the hard tissues of bones and teeth, and although they are not toxic, they are nothing more than dead materials in living organisms.

そこで骨や歯の組成と近似した材料としてリン酸カルシ
ウム材料の中でらリン酸三カルシウム及び/又はリン酸
四カルンウムは、骨や歯の無機成分に近似したヒドロキ
シアパタイト前駆体であり、組織内で溶解吸収され生体
代謝に取り入れて硬組織誘導を新生骨で置換されるため
、特に生体親和性、生体活性に優れている。
Among calcium phosphate materials, tricalcium phosphate and/or tetracalcium phosphate are materials that have a composition similar to that of bones and teeth. Tricalcium phosphate and/or tetracalcium phosphate are hydroxyapatite precursors that are similar to the inorganic components of bones and teeth, and dissolve in tissues. Since it is absorbed and incorporated into the body's metabolism, and hard tissue induction is replaced by new bone, it has particularly excellent biocompatibility and bioactivity.

本発明は上記のような欠点を考慮して改良したもので、
セラミックスの長所を失うことなく、更に強固な固定が
得られるインプラントを存するしのである。
The present invention has been improved in consideration of the above-mentioned drawbacks.
What is needed is an implant that provides even stronger fixation without losing the advantages of ceramics.

本発明のインプラントは芯材が密なセラミックスで製造
され、組織と接触する全表面上に、■)リン酸三カルシ
ウム粉末及び/又はリン酸四カルンウム粉末、2)セラ
ミックス粉末及びリン酸三カルシウム粉末及び/又はリ
ン酸四カルノウム粉末の混合粉末又は、3)セラミック
ス粉末次いでリン酸三カルシウム粉末及び/又はリン酸
四カルシウム粉末で、溶射被覆したしのである。セラミ
ックス粉末の溶射層は若干の気孔を有し生体との親和性
が良く、新生骨細胞が層表面の気孔に進入し強固な固定
が得られる。リン酸三カルシウム粉末及び/又はリン酸
四カルソウム粉末の溶射層はインプラントの最外層で生
体組織と接しており、体内で吸収されながら新生骨で置
き換えられ、これらは又セラミックス溶射層と同じよう
に気孔を存しており骨Mi織の進入がある。
The implant of the present invention has a core material made of dense ceramics, and on all surfaces in contact with tissue, ■) tricalcium phosphate powder and/or tetracarunium phosphate powder, 2) ceramic powder and tricalcium phosphate powder. and/or mixed powder of tetracarnoum phosphate powder, or 3) ceramic powder and then thermal spray coating with tricalcium phosphate powder and/or tetracalcium phosphate powder. The sprayed layer of ceramic powder has some pores and has good affinity with living organisms, and new bone cells enter the pores on the surface of the layer and are firmly fixed. The sprayed layer of tricalcium phosphate powder and/or tetracalcium phosphate powder is the outermost layer of the implant and is in contact with the living tissue, and is absorbed by the body and replaced by new bone, just like the ceramic sprayed layer. It has pores and intrusion of bone tissue.

セラミックス粉末及びリン酸三カルシウム粉末及び/又
はリン酸四カルシウム粉末は溶射て被膜を形成しており
、溶射被膜は優れた機減強度及び接着強度を有する。該
インプラントはセラミックス及びリン酸三カルシウム及
び/又はリン酸四カルシウムが生体組織と非常に優れた
親和性を持つだけでなく溶射層表面が凹凸状をなしてお
り骨組織が凹凸部に増殖してアンカー効果を示すため、
従来から人工歯根、人工骨、人工関節に用いられている
ボーンセメントを必要としない。
The ceramic powder and the tricalcium phosphate powder and/or the tetracalcium phosphate powder are thermally sprayed to form a coating, and the thermally sprayed coating has excellent mechanical strength and adhesive strength. The implant not only has ceramics and tricalcium phosphate and/or tetracalcium phosphate that have a very good affinity with living tissue, but also has an uneven surface of the sprayed layer, which prevents bone tissue from growing on the uneven areas. To show the anchor effect,
It does not require the bone cement traditionally used for artificial tooth roots, artificial bones, and artificial joints.

次に図面に従って本発明を説明する。Next, the present invention will be explained according to the drawings.

第1図及び第2図は本発明に係るインプラントの例に示
すしので、第1図は歯科用インプラント、第2図は人工
関節であり、その形状に於いては従来の金属性のものと
変わりはなく、芯材1にセラミックス焼結体を使用する
点で相違する。セラミックス焼結体は従来の加工技術に
より圧縮、曲げ、引張及び衝撃など賎械的性質の優れた
しのができ、インプラントに要求される各種外力に対し
ても充分に抗し得るものである。
Figures 1 and 2 show examples of implants according to the present invention, where Figure 1 shows a dental implant and Figure 2 shows an artificial joint, which differs in shape from conventional metal implants. The difference is that a ceramic sintered body is used for the core material 1. Ceramic sintered bodies can withstand excellent mechanical properties such as compression, bending, tension, and impact using conventional processing techniques, and can sufficiently withstand various external forces required for implants.

セラミックス製芯材1は、その外周に第1図に於いては
セラミックス粉末の溶射層2及びリン酸三カルシウム粉
末及び/又はリン酸四カルシウム粉末の溶射層3を、第
2図に於いてはリン酸三カルシウム粉末及び/又はリン
酸四カルンウム粉末の溶射層4を備えており、溶射層の
気孔に骨細胞が進入して強固な固定が得られる。
The ceramic core material 1 has a thermally sprayed layer 2 of ceramic powder and a thermally sprayed layer 3 of tricalcium phosphate powder and/or tetracalcium phosphate powder on its outer periphery in FIG. 1 and in FIG. A sprayed layer 4 of tricalcium phosphate powder and/or tetracalcium phosphate powder is provided, and bone cells enter the pores of the sprayed layer to provide firm fixation.

本発明で用いるセラミックスとしては、従来より金属の
耐食、耐摩耗、表面処理に使用されている金属酸化物が
そのままあるいは混合物として使用できる。例えば金属
酸化物としては、A(hoz、 Trot、 2nOt
、 5ift、 5nOt、 P、Os、 Cab。
As the ceramics used in the present invention, metal oxides conventionally used for corrosion resistance, wear resistance, and surface treatment of metals can be used as they are or as a mixture. For example, as metal oxides, A(hoz, Trot, 2nOt
, 5ift, 5nOt, P, Os, Cab.

B、0.などが挙げられる。又、本発明におけるリン酸
三カルシウムは、カルシウム源としては、CaCO3,
Cab、 Ca(Off)=、  リン酸源としてP−
Os。
B, 0. Examples include. In addition, the tricalcium phosphate in the present invention includes CaCO3, CaCO3,
Cab, Ca(Off) =, P- as phosphate source
Os.

+1.PO,、N1.lI*PQ、、 (N)1.)、
llPO4及びカルシウムとリン酸の両者を含qするC
aHPOi、 Ca(HtPOJ*等を使用し、常法に
より調整されCaz(PO4)tで表わされろ。又、本
発明でのリン酸三カルシウムはα型、β型もしくはα、
β混合物でもさしつかえないが、特に生体内活性及び溶
射等の条件で次の製造方法が好ましい、その製造方法は
、特に限定されるものではないが乾熱法等で合成のα型
リン酸三カルシウムを粉砕した。好ましくは70μm以
下の粉体を出発原料とし、これを通常p117〜8の水
で5. fl!’Jさせ1〜IO気圧程度の・加圧下、
圧縮成型し、800〜1300℃で1〜IO時間焼成処
理し、好ましくは粒径100μm程度以下に調整してな
る粉末等が好適に使用され得ろ。
+1. PO,,N1. lI*PQ,, (N)1. ),
llPO4 and qC containing both calcium and phosphate
aHPOi, Ca(HtPOJ*, etc.), prepared by a conventional method and expressed as Caz(PO4)t. In addition, tricalcium phosphate in the present invention may be α-type, β-type, or α-type,
A β-mixture may also be used, but the following manufacturing method is preferable, especially under conditions such as in vivo activity and thermal spraying.The manufacturing method is not particularly limited, but α-type tricalcium phosphate synthesized by dry heat method etc. was crushed. Preferably, a powder of 70 μm or less is used as a starting material, and this is usually mixed with water of 117 to 8. Fl! 'J under pressure of about 1 to IO atmosphere,
A powder formed by compression molding and firing at 800 to 1300° C. for 1 to 10 hours, preferably adjusted to a particle size of about 100 μm or less, may be suitably used.

リン酸三カルシウム溶射層の気孔を制御するために」二
記セラミックス粉末等をリン酸三カルシウム粉末と混合
することらできる。又、本発明に於けるリン酸四カルン
ウムは、カルシウム源としてCaC0,、Cab、 C
a(Ofl)!、  リン酸源としてPfO,、Hjf
’O,、NH,H2PO,、(N11.)tHPo、、
及びカルシウムとリン酸の両者を含有するCaHPO,
、Ca(nfPo、)、等を使用し、常法により調整さ
れCa。
In order to control the porosity of the tricalcium phosphate sprayed layer, ceramic powders and the like can be mixed with the tricalcium phosphate powder. In addition, tetracarunium phosphate in the present invention can be used as a calcium source such as CaC0, Cab, C
a(Ofl)! , PfO,, Hjf as phosphoric acid source
'O,,NH,H2PO,,(N11.)tHPo,,
and CaHPO containing both calcium and phosphoric acid,
, Ca(nfPo, ), etc., and adjusted by a conventional method.

(PO,)、Oで表わされる。又、本発明でのリン酸四
カルンウムの製造方法は、■リン酸水素カルンウム(C
allPO,)、あるいはγ−ビロリン酸カルシウム(
catpfot)等と炭酸カルシウム(CaCOl)を
混合した後、1000〜1500℃で焼成し、以下の化
学式で示されるが、空気中で急冷するか窒素ガス雰囲気
で焼成するのが好ましい。
(PO,), represented by O. In addition, the method for producing tetracarunium phosphate in the present invention is as follows: ■ carunium hydrogen phosphate (C
allPO, ) or γ-calcium birophosphate (
After mixing calcium carbonate (CaCOl) with calcium carbonate (CaCOl), it is fired at 1000 to 1500°C and is represented by the chemical formula below, but it is preferable to rapidly cool it in air or to fire it in a nitrogen gas atmosphere.

■2CaCOff + 2Ca11POa→Ca4(P
O4)20−1−11tO+ 2CO2■ 7 Cat
PtOt+ 2CaCOt→Ca4(PO4)to+ 
2COpその製造方法は、特に限定されるしのではない
が乾熱法等で合成のリン酸四カルンウムを粉砕した。好
ましくは粒径100μm程度以下にF1整してなる粉末
等が好適に使用され得る。
■2CaCoff + 2Ca11POa→Ca4(P
O4) 20-1-11tO+ 2CO2■ 7 Cat
PtOt+ 2CaCOt→Ca4(PO4)to+
The manufacturing method for 2COp is not particularly limited, but synthetic tetracarunium phosphate was pulverized by a dry heat method or the like. Preferably, a powder prepared by F1 adjustment to a particle size of about 100 μm or less may be suitably used.

リン酸四カルシウム溶射層の気孔を制御するために、上
記セラミックス粉末等をリン酸四カルシウム粉末と混合
することもできる。
In order to control the porosity of the tetracalcium phosphate sprayed layer, the above-mentioned ceramic powder etc. can also be mixed with the tetracalcium phosphate powder.

本発明のインプラントの適応個所は、特に呪定しないが
虜囚、骨内、骨膜下、粘膜内などに使用されることは言
うまでもない。該インプラントに於いてセラミックス製
芯材の形状は特に限定されるものではなく、ピン型、ス
クリコー型、ブレード型、アンカー型、プレート型、メ
ツンユ型など含まれる。
It goes without saying that the implant of the present invention may be used in a captive, intraosseous, subperiosteal, intramucosal, etc. area, although there is no particular limitation. The shape of the ceramic core material in the implant is not particularly limited, and includes pin-type, scrico-type, blade-type, anchor-type, plate-type, mesh-type, and the like.

本発明のインプラントを得る方法としては、セラミック
ス材料を従来技術により焼結して芯材を作成する。例え
ば静水圧圧縮あるいは泥臭鋳入により成型した後、10
00〜2000℃の温度で約5分間焼結を行う。芯材表
面の凹凸が必要な場合は、焼結前、焼結途中あるいは焼
結後のいずれかの時点に於いて切削、グリッドブラスト
などの機械加工により粗面下を行う。又、複雑な形状の
芯材作成についてら上記のような機械加工などにより形
状を整えることができる。作成した芯材の外周に、■)
リン酸三カルシウム粉末及び/又はリン酸四カルソウム
粉末、2)セラミックス粉末及びリン酸三カルシウム粉
末及び/又はリン酸四カルシウム粉末、3)セラミック
ス粉末次いでリン酸三カルシウム粉末及び/又はリン酸
四カルシウム粉末をそれぞれ市販の溶射装置、好ましく
はプラズマ溶射装置を用いて溶射する。溶射不要の個所
はグリッドプラストする旧にマスキングしておく。溶射
されたセラミックス及びリン酸三カルシウム及び/又は
リン酸四カルシウムの被膜はそのまま使用されるが、部
位によっては表面を研摩して使用することらある。又、
空気中あるいは真空中、不活性ガス中に於いて、800
〜1700℃の温度で焼成を行い使用することらある。
In order to obtain the implant of the present invention, a core material is created by sintering a ceramic material using conventional techniques. For example, after molding by isostatic pressure compression or mud casting, 10
Sintering is carried out at a temperature of 00-2000°C for about 5 minutes. If it is necessary to make the surface of the core material uneven, the surface roughening is performed by machining such as cutting or grid blasting before, during, or after sintering. Further, when creating a core material having a complicated shape, the shape can be adjusted by machining as described above. ■) on the outer periphery of the core material you created.
tricalcium phosphate powder and/or tetracalcium phosphate powder, 2) ceramic powder and tricalcium phosphate powder and/or tetracalcium phosphate powder, 3) ceramic powder and then tricalcium phosphate powder and/or tetracalcium phosphate The powders are each sprayed using commercially available thermal spray equipment, preferably plasma spray equipment. Areas that do not require thermal spraying are masked before Grid Plast. The sprayed ceramic and tricalcium phosphate and/or tetracalcium phosphate coatings can be used as they are, but depending on the location, the surface may be polished before use. or,
800 in air, vacuum, or inert gas
It is sometimes used by performing firing at a temperature of ~1700°C.

以下に実施例により本発明の詳細な説明するが限定され
ろものではない。
The present invention will be explained in detail below with reference to Examples, but the present invention is not limited thereto.

実施例1 酸化アルミニウムを用いてインプラント芯(オを作成し
た。プラズマ溶射装置を用いてセラミクス製インプラン
ト芯材にリン酸三カルシウム粉末を溶射し、平均200
/1mのリン酸三カルシウム粉を得た。本島を家兎の脛
骨中に埋太し2力月経過した時点でX線透視観察を行−
コた結果、インブラットの周辺に緻京質の造管作用が認
められた。
Example 1 An implant core (O) was created using aluminum oxide. Tricalcium phosphate powder was sprayed onto the ceramic implant core material using a plasma spraying device.
/1 m of tricalcium phosphate powder was obtained. The main island was implanted into the tibia of a domestic rabbit, and X-ray fluoroscopic observation was performed after 2 months had passed.
As a result, a tube-forming effect of the phlegmon was observed around the imblat.

実施例2 実施例1とすべて同様にし、第2層にリン酸三カルノウ
ム50重量%にアルミナ(メテコ粉末番号105)50
重量%の混合粉末を溶射してインプラントを得た。氷晶
をヤギの下顎骨に埋没し2力月経過しX線透視観察を行
った結果、インプラント周辺に遺骨作用が認められた。
Example 2 The procedure was the same as in Example 1, and the second layer was made of 50% by weight of tricarnoum phosphate and 50% of alumina (Meteco powder number 105).
The implant was obtained by thermal spraying the mixed powder of % by weight. After 2 months had elapsed since the ice crystals were buried in the goat's mandible, X-ray fluoroscopic observation revealed a cremation effect around the implant.

又、肉眼観察によっても歯周組織に異常が全く起こって
いなかった。
Furthermore, macroscopic observation revealed that no abnormality had occurred in the periodontal tissues.

実施例3 高純度アルミナをインプラント芯材として用いた他は、
実施例Iと同様な手順で人工関節の人工骨頭囲を作成し
た。氷晶をイヌの股関節に埋没し3力月が経過した時点
で全く異常は認められなかった。
Example 3 Except for using high-purity alumina as the implant core material,
An artificial bone head circumference for an artificial joint was prepared in the same manner as in Example I. No abnormalities were observed after 3 months had passed since ice crystals were implanted in the dog's hip.

実施例4 Co −Cr −N i系合金(ノビリアム社製Nob
ilium)を用いて高周波溶解し、遠心鋳造を行って
得た鋳造体を研摩し、インプラント芯材(1g)を得た
Example 4 Co-Cr-Ni alloy (Nobilium Co., Ltd. Nob
The cast body obtained by performing high frequency melting using ilium and centrifugal casting was polished to obtain an implant core material (1 g).

この金属芯材をブラスト装置(英国製メデュ社製ヘレチ
ブラスト装置マンモス型)を用いてグリソトブラスト(
ブラスト材はメチコライトvF。
This metal core material is grisot blasted (
The blasting material is Methycolyte vF.

圧力30psi)を行った。続いて、プラズマ溶射装置
(メテコ社製6MR−630型電供給装置つき)により
、アルゴン、水素、プラズマジェットフレーム(ARC
電流5QOAmp)を発生させ、まず第1層として自己
結合性ボンデング剤であるニッケルーアルミニウム合金
粉末(メテコ粉末番号450)を溶解し、芯材の全面に
厚さ約80μmの被膜を形成した。第2層にはリン酸四
カルシウム粉末(−1−記製造方法で合成した粒径10
0μm以下の白色粉末)を平均的200μm厚になるよ
うに溶射した。
The pressure was 30 psi). Next, argon, hydrogen, and plasma jet flame (ARC
A current of 5 QOAmp) was generated, and nickel-aluminum alloy powder (Meteco powder number 450), which was a self-bonding bonding agent, was dissolved as a first layer to form a film with a thickness of about 80 μm over the entire surface of the core material. The second layer contains tetracalcium phosphate powder (particle size 10 synthesized by the production method described in -1-).
A white powder of 0 μm or less was sprayed to an average thickness of 200 μm.

真空電気炉中1200 ’Cで10分間焼成を行いイン
プラントを得た氷晶を家兎の脛骨中に埋入して2力月経
過した時点でX線通視観察を行、った結果、インプラン
トの周辺に緻密質の遺骨作用が認められた。
The ice crystals obtained by baking the implant at 1200'C in a vacuum electric furnace for 10 minutes were implanted into the tibia of a domestic rabbit, and 2 months later, X-ray observation was performed.As a result, the implant was observed. Dense skeletal remains were observed around the area.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、歯科用インプラントとして本発明を用いた場
合の実施例を示す断面図。 第2図は人工股関節として本発明を用いた場合の実施例
を示す斜視図である。 ■ ・・・・・・・・・・・・・・・・・・・・芯部2
 ・・・・・・・・・・・・・・・・・・・・セラミッ
クス層3.4 ・・・・−・・・・・・リン酸三カルノ
ウム支び/又はリン酸四カルシウムの浩射層 特許出願人 株式会社アドバンス開発研究所第1図 第2図
FIG. 1 is a sectional view showing an embodiment in which the present invention is used as a dental implant. FIG. 2 is a perspective view showing an embodiment in which the present invention is used as an artificial hip joint. ■ ・・・・・・・・・・・・・・・・・・ Core part 2
・・・・・・・・・・・・・・・・・・ Ceramic layer 3.4 ・・・・・・・・・・・・Tricarnoum phosphate support/or tetracalcium phosphate layer Radiation patent applicant: Advance Development Institute Co., Ltd. Figure 1 Figure 2

Claims (3)

【特許請求の範囲】[Claims] (1)セラミックス製インプラント芯材の外周にリン酸
三カルシウム粉末及び/又はリン酸四カルシウム粉末の
溶射層を有することを特徴とするインプラント。
(1) An implant characterized by having a sprayed layer of tricalcium phosphate powder and/or tetracalcium phosphate powder on the outer periphery of a ceramic implant core material.
(2)セラミックス製インプラント芯材の外周にセラミ
ックス粉末及びリン酸三カルシウム粉末及び/又はリン
酸四カルシウム粉末の混合粉末の溶射層を有することを
特徴とするインプラント。
(2) An implant characterized by having a sprayed layer of a mixed powder of ceramic powder and tricalcium phosphate powder and/or tetracalcium phosphate powder on the outer periphery of a ceramic implant core material.
(3)セラミックス製インプラント芯材の外周に形成し
たセラミックス粉末の溶射層、次いでリン酸三カルシウ
ム粉末及び/又はリン酸四カルシウム粉末の溶射層を有
することを特徴とするインプラント。
(3) An implant characterized by having a sprayed layer of ceramic powder formed on the outer periphery of a ceramic implant core material, followed by a sprayed layer of tricalcium phosphate powder and/or tetracalcium phosphate powder.
JP61209454A 1986-09-08 1986-09-08 Implant Pending JPS6365870A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61209454A JPS6365870A (en) 1986-09-08 1986-09-08 Implant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61209454A JPS6365870A (en) 1986-09-08 1986-09-08 Implant

Publications (1)

Publication Number Publication Date
JPS6365870A true JPS6365870A (en) 1988-03-24

Family

ID=16573140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61209454A Pending JPS6365870A (en) 1986-09-08 1986-09-08 Implant

Country Status (1)

Country Link
JP (1) JPS6365870A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011522578A (en) * 2008-05-22 2011-08-04 デピュイ・プロダクツ・インコーポレイテッド Implants having a roughened surface made of metal powder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011522578A (en) * 2008-05-22 2011-08-04 デピュイ・プロダクツ・インコーポレイテッド Implants having a roughened surface made of metal powder

Similar Documents

Publication Publication Date Title
JPS5839533B2 (en) Implant noseizouhouhou
JPS5946911B2 (en) implant
de Groot Clinical applications of calcium phosphate biomaterials: a review
Sun et al. Material fundamentals and clinical performance of plasma‐sprayed hydroxyapatite coatings: A review
US4746532A (en) Method for the production of endosseous implants
Berndt et al. Thermal spraying for bioceramic applications
Kalita et al. Nanocrystalline calcium phosphate ceramics in biomedical engineering
US4818559A (en) Method for producing endosseous implants
US4917702A (en) Bone replacement material on the basis of carbonate and alkali containing calciumphosphate apatites
Weng et al. The role of amorphous phase in nucleating bone-like apatite on plasma-sprayed hydroxyapatite coatings in simulated body fluid
JPH0624585B2 (en) Biocompatible composite manufacturing method
JPS5911843A (en) Dental implant for mounting denture
Wie et al. Hot isostatic pressing-processed hydroxyapatite-coated titanium implants: light microscopic and scanning electron microscopy investigations.
JPH0148774B2 (en)
Oshida Hydroxyapatite: synthesis and applications
JPS5850737B2 (en) implant
Pawłowski Synthesis, properties and applications of hydroxyapatite
JPS6365870A (en) Implant
Layrolle et al. Physicochemistry of apatite and its related calcium phosphates
JPS6365871A (en) Production of implant
JPS6234558A (en) Production of bone implant
JPS6338443A (en) Implant for artificial dental root and its production
JPH07114803B2 (en) Method for producing substitute material for biological hard tissue repair
JPH0449972A (en) Preparation of substitute and composite molded body of hard tissue of human body
JP3069921B2 (en) Manufacturing method of implant material