JPS6365851A - Nuclear magnetic resonance imaging apparatus - Google Patents

Nuclear magnetic resonance imaging apparatus

Info

Publication number
JPS6365851A
JPS6365851A JP61207933A JP20793386A JPS6365851A JP S6365851 A JPS6365851 A JP S6365851A JP 61207933 A JP61207933 A JP 61207933A JP 20793386 A JP20793386 A JP 20793386A JP S6365851 A JPS6365851 A JP S6365851A
Authority
JP
Japan
Prior art keywords
coil
subject
magnetic field
frequency
magnetic resonance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61207933A
Other languages
Japanese (ja)
Inventor
岸野 秀則
博幸 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP61207933A priority Critical patent/JPS6365851A/en
Publication of JPS6365851A publication Critical patent/JPS6365851A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は核磁気共鳴イメージング装置(以下MRI装置
という)に係シ、特に被検体の選択励起面以外からの熱
雑音等を最小限に押えて受侶するのに好適な高周波コイ
ルに関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a nuclear magnetic resonance imaging apparatus (hereinafter referred to as an MRI apparatus), and in particular, to minimizing thermal noise etc. from sources other than the selective excitation plane of a subject. The present invention relates to a high-frequency coil suitable for use as a receiver.

〔従来の技術〕[Conventional technology]

M几工装虚の画質に決定する最大の要素である高周波コ
イルはその性能を高めるために被検体に密着させる方向
で開発が進められてきた。その結果、視野は狭いが高空
間分解能を有する表面コイルや腹部用密着コイルが開発
された。
In order to improve the performance of the high-frequency coil, which is the most important factor determining the image quality of M-photography, development has proceeded in the direction of bringing it into close contact with the subject. As a result, surface coils and abdominal close-contact coils, which have a narrow field of view but high spatial resolution, have been developed.

しかし、一定視野を確保するためにはコイルの大きさに
下限があり、またコイルは信号の他に被検体の熱雑音を
拾う役割も果たしている。この点の改善については従来
配慮されていなかった。
However, there is a lower limit to the size of the coil in order to ensure a constant field of view, and the coil also plays the role of picking up thermal noise from the subject in addition to signals. Conventionally, no consideration has been given to improving this point.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は、高周波受信コイルが、一定視野を確保
することを目的に、第4図に示した磁束30の様な広が
りを有することを配慮してい・ケいっりまシ被検体1の
S部付近を走るコイルは、選択励起面29から遠ざかっ
ている為、コイルの感度分布を考えると、同面からの信
号受信に寄与するよジ、被検体1よ)発せられる熱雑音
を磁束30を通して拾う方に寄与している方が大きいと
考えられる。そこでコイル32をY軸方向に縮めて、磁
束30の広がシを狭くすることが考えられる。
The above conventional technology takes into consideration that the high-frequency receiving coil has a spread like the magnetic flux 30 shown in FIG. 4 in order to secure a constant field of view. Since the coil running near the selective excitation surface 29 is far away from the selective excitation surface 29, considering the sensitivity distribution of the coil, it will contribute to signal reception from the same surface. It is thought that the person who contributes to the picking up has a larger contribution. Therefore, it is conceivable to contract the coil 32 in the Y-axis direction to narrow the spread of the magnetic flux 30.

しかし、選択励起面31について考えるとコイル32を
これよ、9Y軸方向について縮めると選択励起i31か
らの信号に対しコイル32を遠ざけることになシ受信感
度を悪くする。
However, considering the selective excitation surface 31, if the coil 32 is shortened in the 9Y-axis direction, the reception sensitivity will be deteriorated by moving the coil 32 away from the signal from the selective excitation i31.

以上、述べた様に高周波受信コイルの2/N比を上げる
ことと、視野を確保することは、互いに矛盾する問題が
あった。
As described above, increasing the 2/N ratio of the high-frequency receiving coil and securing the field of view are contradictory to each other.

そこで、本発明の目的は、従来と同じ大きさの高周波受
信コイルにおいて選択励起面からの信号受信に大きく関
与する部分疋けを用いて受1ざを行い、不用な熱雑音を
拾わない方法を確立し画像のSlN比をより向上させる
ことにある。
Therefore, the purpose of the present invention is to develop a method of receiving a high-frequency receiver coil of the same size as the conventional one using a partial cutout that is largely involved in signal reception from the selective excitation surface, and not picking up unnecessary thermal noise. The objective is to establish this and further improve the SIN ratio of images.

〔問題点を解決するための手段〕[Means for solving problems]

上記の問題点を解決する本発明の手段は、被検体の体軸
方向と直交する方向(垂直方向)に静磁場を発生させる
静磁場発生磁石を有すると共に、上記被検体に近接して
配置され該被検体に電磁波を照射したシ、lたは被検体
から放出される電磁波を検出する高周波コイルを有する
、ソレノイド形で1ターン毎にLCの共振回路を独立に
形成し、それぞれに可変容量を組み込み、各ターンの同
調を独立に制御できることによってなされる。
Means of the present invention for solving the above problems includes a static magnetic field generating magnet that generates a static magnetic field in a direction perpendicular to the body axis direction of the subject (vertical direction), and is arranged close to the subject. A solenoid-type LC resonant circuit is formed independently for each turn, and has a high-frequency coil that detects the electromagnetic waves irradiated to the subject or the electromagnetic waves emitted from the subject, and each has a variable capacitance. This is done by incorporating and being able to independently control the tuning of each turn.

〔作用〕[Effect]

各ターンごとに独立制御可能なLC共振回路で構成され
たソレノイド形高周波受信コイルは、その任意のターン
ごと、またはその徂合わせて同調をとることが可能であ
る。例えば、横断像の場合選択励起間付近を走るコイル
のみの同調をとり、他は同調をとらず1選択励起面付近
のコイルだけに受信状態を設定することがofMlとな
る。
A solenoid-type high-frequency receiving coil composed of an LC resonant circuit that can be independently controlled for each turn can be tuned for each arbitrary turn or in combination with each other. For example, in the case of a cross-sectional image, ofMl is to tune only the coil running near the selected excitation area, leave the others untuned, and set the reception state only to the coil near one selected excitation plane.

それによって、高周波受信コイルは選択励起面からだけ
信号?受信し、被検体の他の部分からの不用な熱雑音を
最小限に抑えることができる。
Thereby, the high frequency receiving coil only receives signals from the selective excitation plane? reception and unnecessary thermal noise from other parts of the subject can be minimized.

選択励起面に合わせて、同Stとるコイルの位置を変え
ることで1選択励起面の位置に依らず不用な熱雑音を最
小限に抑え、かつ最も信号に近い位置での受信が可能と
なる。従って撮像中に・くルスシーケンスに同調をとる
コイルの位置を随時変えることでマルチスライス(同時
多断層面撮像)にも応用できる。
By changing the position of the coil having the same St in accordance with the selective excitation plane, unnecessary thermal noise can be minimized regardless of the position of the first selective excitation plane, and reception can be performed at the position closest to the signal. Therefore, by changing the position of the coil that tunes to the pulse sequence at any time during imaging, it can be applied to multi-slice (simultaneous multi-sectional imaging).

〔実施例〕〔Example〕

以下、本発明の実施例と添付図面に基づいて詳細に説明
する。
Hereinafter, the present invention will be described in detail based on embodiments and the accompanying drawings.

第3図は本発明に係る核磁気共鳴イメージング装置の全
体構成を示すブロック図である。この核磁気共鳴イメー
ジング装置は、核磁気共鳴(NMR)現象を利用して被
検体の断層−象を得るもので、静磁場発生磁石10と、
中央処理袋fit(CPU)11と、シーケンサ12と
、送信系13と、磁場勾配発生系14と、受信系15と
信号処理系16とから成る。上記静磁場発生磁石10は
、被検体1の周υにその体軸方向と直交する方向(垂直
方向)に強く均一な静磁場を発生させるもので、上記被
検体lの周)のおる広がり分もった空間に永久磁石方式
または常電導方式あるいは超シ導方式の磁場発生手段4
Q;配置されている。上記シーケンサ12は、CPUI
Iの制御で動作し、被検体1の断層画像のデータ収果に
必要な種々の命令を送信系13及び磁場勾配発生系14
並びに受信系15に送るものである。上記送信系13は
、高周波発振器17と変調器18と高周波増幅器19と
送信側の高周波コイル20aとから成シ、上記高周波発
振器17から出力された高周波パルスをシーケンサ12
の命令に従って変調器18で振幅変調し、この振幅変調
された高周波パルスを高周波増幅器19で増幅した後に
被検体1に近接して配置された高周波コイル20aに供
給することによシ、−磁波が上記被検体1に照射される
ようになっている。上記磁場勾配発生系14は、X、Y
FIG. 3 is a block diagram showing the overall configuration of a nuclear magnetic resonance imaging apparatus according to the present invention. This nuclear magnetic resonance imaging apparatus uses a nuclear magnetic resonance (NMR) phenomenon to obtain a tomographic image of a subject, and includes a static magnetic field generating magnet 10,
It consists of a central processing unit (CPU) 11, a sequencer 12, a transmission system 13, a magnetic field gradient generation system 14, a reception system 15, and a signal processing system 16. The static magnetic field generating magnet 10 generates a strong and uniform static magnetic field around the circumference υ of the subject 1 in a direction perpendicular to the body axis direction (vertical direction), and the magnet 10 generates a strong and uniform static magnetic field in the direction (vertical direction) perpendicular to the body axis direction of the subject 1. A permanent magnet type, normal conduction type, or superconducting type magnetic field generating means 4 is installed in the space.
Q: It is located. The sequencer 12 is a CPU
The transmission system 13 and the magnetic field gradient generation system 14 operate under the control of
It is also sent to the receiving system 15. The transmission system 13 includes a high-frequency oscillator 17, a modulator 18, a high-frequency amplifier 19, and a high-frequency coil 20a on the transmitting side.
The amplitude is modulated by the modulator 18 in accordance with the command of the magnetic wave, and the amplitude-modulated high-frequency pulse is amplified by the high-frequency amplifier 19 and then supplied to the high-frequency coil 20a placed close to the subject 1. The above-mentioned subject 1 is irradiated with the light. The magnetic field gradient generation system 14 includes X, Y
.

2の三軸方向に巻かれた傾斜磁場コイル21と、それぞ
れのコイルを、駆動する傾斜磁場電源22とから成υ、
上記シーケンサ12からの命令に従ってそれぞれのコイ
ルの1頃斜磁場屯源22を駆動することによシ、x、y
、zの三軸方向の傾斜磁場Gx、Gy、Qzを被検体1
に印加するようになっている。この傾斜磁場の加え方に
より、被検体1に対するスライス面を設定することがで
きる。
It consists of gradient magnetic field coils 21 wound in the triaxial directions of 2 and a gradient magnetic field power supply 22 that drives each coil,
By driving the oblique magnetic field source 22 around 1 of each coil according to the command from the sequencer 12,
, z in the three axial directions of the gradient magnetic fields Gx, Gy, Qz of the object 1
It is designed to be applied to Depending on how this gradient magnetic field is applied, a slice plane for the subject 1 can be set.

上記受信系15は、受信側のソレノイド形の高周波コイ
ル20bと増幅器23と直交位相検波器24とA/1)
変換器25とから成う、上記送信側の高周波コイル20
aから照射された電磁波による被検体lの応答の電磁波
(NMR信号)は被検体1に近接して配置された高周波
コイル20bで検出され、増幅器23及び直交位相検波
器241介してA/D変換器25に入力してデジタル量
に変換され、さらにシーケンサ12からの命令によるタ
イミングで直交位相検波器24によりサンプリングされ
た二系列の収集データとされ、その信号が信号処理系1
6に送られるようになっている。
The receiving system 15 includes a solenoid-type high-frequency coil 20b on the receiving side, an amplifier 23, a quadrature phase detector 24, and A/1).
the transmitting side high frequency coil 20 consisting of a converter 25;
The electromagnetic waves (NMR signals) in response to the electromagnetic waves irradiated from the object 1 are detected by the high frequency coil 20b placed close to the object 1, and are A/D converted via the amplifier 23 and the quadrature phase detector 241. The signals are input to the signal processing system 1 and converted into digital quantities, which are then sampled by the quadrature phase detector 24 at the timing according to the commands from the sequencer 12, resulting in two series of collected data.
It is set to be sent to 6.

この信号処理系16は、CPUIIと、磁気ディスク2
6及び磁気テープ27等の記録装置と、CRT等のディ
スプレイ28とから成り、上記CPUI 1でフーリエ
変換、補正係数計算像再構成等の処理を行い、任意断面
の信号強度分布あるいは複数の信号に適当な演算を行っ
て得られた分布を画像化してディスプレイ28に表示す
るようになっている。なお、第1図において、送信側及
び受信側の高周波コイル20a、20bと傾斜磁場コイ
ル21は、被検体1の周シの空間に配置された静磁場発
生磁石10の磁場空間内に配置されている。
This signal processing system 16 includes a CPU II and a magnetic disk 2.
6, a recording device such as a magnetic tape 27, and a display 28 such as a CRT.The CPU 1 performs processing such as Fourier transform, correction coefficient calculation, and image reconstruction, and displays the signal intensity distribution of an arbitrary cross section or multiple signals. The distribution obtained by performing appropriate calculations is converted into an image and displayed on the display 28. In FIG. 1, the high-frequency coils 20a, 20b and the gradient magnetic field coil 21 on the transmitting side and the receiving side are arranged in the magnetic field space of the static magnetic field generating magnet 10 arranged in the circumferential space of the subject 1. There is.

ここで1本発明においては受信側の高周波コイル20b
が第1図に示す様に、各ターン毎に独立にLC共振回路
を形成している。同図は本発明を頭部用受信コイルに適
用した一実施例を示す。コイルは1ターン毎に独立して
いるが、谷ターンともすべて同じ構成である。
Here, in the present invention, the high frequency coil 20b on the receiving side
As shown in FIG. 1, an LC resonant circuit is formed independently for each turn. This figure shows an embodiment in which the present invention is applied to a receiving coil for the head. The coils are independent for each turn, but all have the same configuration as the valley turns.

今、被検体lの頭頂部に位置するコイル33に着目する
。同コイルは成気抵抗の少ない非磁性金属、例えば、銅
の蕾より成るコイル導体部と同調回路34よシ構成され
る。なお、同コイルと高周波照射コイル20 aとの結
合を考慮し、被検体が直接コイル導体に接触しないよう
に、その次面には高周波損失の少ない材質の絶縁層を有
している。
Now, attention is paid to the coil 33 located at the top of the head of the subject l. The coil is composed of a coil conductor portion made of a non-magnetic metal having low magnetic resistance, such as a copper bud, and a tuning circuit 34. In addition, in consideration of the coupling between the coil and the high-frequency irradiation coil 20a, an insulating layer made of a material with low high-frequency loss is provided on the next surface so that the subject does not come into direct contact with the coil conductor.

同調回路34の1実施列を第2図に示す。コイル導体部
によシはぼ決定されるインダクタ43とそれに直列に入
るラーモア周波数(静磁場強度と核種によシ決定される
共鳴周波数)同調用コンデンサ37%バリキャップダイ
オードなどの同調微調整用コンデ/す39及びインダク
タ43に並列に入るインピーダンス整合用コンデンサ3
8、そして給電点42より構成される。
One implementation of tuning circuit 34 is shown in FIG. An inductor 43, which is determined by the coil conductor, and a capacitor for fine tuning, such as a Larmor frequency (resonant frequency determined by the static magnetic field strength and the nuclide) tuning capacitor and a 37% varicap diode, which are connected in series with the inductor 43. Impedance matching capacitor 3 connected in parallel to /S 39 and inductor 43
8, and a feeding point 42.

次に、制御方法及び動作機序について述べる。Next, the control method and operating mechanism will be described.

今、被検体1の頭頂部付近を選択励起し横′ffr像分
彫る場合を想定する。前述の如く、まず選択励起面に最
も近いコイル33のみ同調をとる。同調用コンデンサ3
7及びインピーダンス整合用コンデンサ38は、被検体
1を入れた状態でコイル0インピーダンスが例えば、は
ぼ50Ωの純抵抗となるよう予め両者の定数を決定しで
ある。しかし、被検体1の検査部位の形状、大きさなど
の個人差に工)同調状態がずれる。そこで、シーケンサ
112内の直流可変4源41から同調微調用コンデンサ
39にちょうど同調がとれる最適l圧を供給する。1抗
40は、その際50Ωに対し充分大きな値、例えばIO
KΩなどとし、分圧比を大きくスルことでコイル側への
ノイズの混入を防止する。
Now, assume that the vicinity of the top of the head of the subject 1 is selectively excited and a horizontal 'ffr image is carved. As described above, first, only the coil 33 closest to the selective excitation plane is tuned. Tuning capacitor 3
The constants of 7 and the impedance matching capacitor 38 are determined in advance so that the zero impedance of the coil with the subject 1 inserted is, for example, a pure resistance of approximately 50Ω. However, due to individual differences in the shape and size of the test site of the subject 1, the state of synchronization may deviate. Therefore, the four variable DC sources 41 in the sequencer 112 supply the fine tuning capacitor 39 with the optimum l pressure that allows for just tuning. 1 resistance 40 is a sufficiently large value for 50Ω, for example, IO
By setting the voltage to KΩ and increasing the voltage division ratio, noise is prevented from entering the coil side.

同調微調用コンデンサ39に供給する最適電圧の決定方
法については給α点42より得られる信号のS/N比を
規準とする方法等が考えられる。コイル33と他のター
ンのコイルとの結合を最小にするためにターンのコイル
には同調微調整用コンデンサ39による調整は行なわず
、故意に同調を外しておく。
As a method for determining the optimum voltage to be supplied to the fine tuning capacitor 39, there may be a method using the S/N ratio of the signal obtained from the supply α point 42 as a standard. In order to minimize the coupling between the coil 33 and the coils of other turns, the coils of the turns are not adjusted by the fine tuning adjustment capacitor 39, but are intentionally kept out of tune.

給電点42から得られた信号はプリアンプ35で増幅さ
れる。コイル33以外から得られ九信号も同様に各々の
プリアンプで増1隔される。そこで、コイル33からの
信号だけを選択するためにスイッチ36を設け、プリア
ンプ35からの信号のみを接続状態にし直交位相検波器
24に送る。
The signal obtained from the feed point 42 is amplified by the preamplifier 35. Nine signals obtained from sources other than the coil 33 are similarly amplified by each preamplifier. Therefore, a switch 36 is provided to select only the signal from the coil 33, and only the signal from the preamplifier 35 is connected and sent to the quadrature phase detector 24.

前述の同調微調用コンデンサ39の最適電圧の決定及び
スイッチ36の切換えの制御はすべてシーケンサ12に
て行う。撮像面の位置に応じて同調をとるコイルの位置
を選択することで任意の位置の横′ljT面についてま
ったく前述と同様の撮像ができる。
The above-mentioned determination of the optimum voltage of the fine tuning capacitor 39 and control of switching of the switch 36 are all performed by the sequencer 12. By selecting the position of the coil for tuning depending on the position of the imaging plane, it is possible to image the horizontal 'ljT plane at any position in exactly the same way as described above.

撮像開始前に各ター/のコイルについてシーケンサ12
から同調微調用コンデンサ39に供給する最適電圧を予
めシーケンサ12内のメモリーに記憶させてひけば、パ
ルスシーケンスに同期したm f& 中のコイルのメー
ン毎の切換えが可能となる。
The sequencer 12 for each coil before starting imaging.
If the optimum voltage to be supplied to the fine tuning capacitor 39 is stored in advance in the memory within the sequencer 12, it becomes possible to switch the coils in m f& for each main in synchronization with the pulse sequence.

それによって、マルチスライス(同時多断面撮1象)へ
の応用も可能である。
This allows application to multi-slices (simultaneous multi-sectional imaging of one image).

以上述べたように1本発明は特に横断面像について有効
であるが、各プリアンプからの増幅1J号の利得及び位
相上そ、うえておき、その出力信号を加算すれば矢状所
面、冠状断面の撮像にも適用できる。
As described above, the present invention is particularly effective for cross-sectional images, but considering the gain and phase of the amplification No. 1J from each preamplifier, and adding the output signals, the sagittal plane, coronal plane It can also be applied to cross-sectional imaging.

本実施例ではS/N比を最大とする為に各コイルに独立
にプリアンプを設けているが、プリアンプを1個とし、
コイルを切換る方式や、各コイル間を接続しておき、同
Aは調用コンデンサ39により所望・つコイルを選択す
る方式など他の実施方式も考えらnる。本#5明の意図
するところは、撮影面での最大S/N比のコイルを選択
することにあり、この意図にそった他の実施例も本発明
の4中であることに江意されたい、 〔発明の効果〕 本発明は以上説明したように、被検体lから放出される
電磁政を検出するソレノイド形高周波コイルを各ターン
ごとに独立させ、それぞれに制御可能な可変容」を組み
込む構成としたので、上記コイルの任意のターンで同調
をとることが可能とな)、選択励起面付近のターンだけ
に同調ととることができる。
In this example, in order to maximize the S/N ratio, each coil is provided with an independent preamplifier, but with only one preamplifier,
Other implementation methods are also conceivable, such as a method of switching the coils, or a method of connecting each coil and selecting a desired coil using a regulating capacitor 39. The intention of book #5 is to select the coil with the maximum S/N ratio on the imaging surface, and it is intended that other embodiments that meet this intention are also included in the fourth aspect of the present invention. [Effects of the Invention] As explained above, the present invention separates the solenoid-type high-frequency coil for each turn to detect the electromagnetic force emitted from the subject l, and incorporates a controllable variable capacitor in each turn. Because of this configuration, it is possible to tune at any turn of the coil) or only at the turns near the selective excitation surface.

それによって、高周波受信コイルは選択励起面に最も近
いコイルで訂号を受イ3でき、他面からの不用な熱雑音
の受信を最小限に抑える効果がある。
As a result, the high-frequency receiving coil can receive the signal at the coil closest to the selective excitation surface, which has the effect of minimizing reception of unnecessary thermal noise from the other surface.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る高周波コイルの一実施例を示す説
明図、第2図は上記高周波コイルの同調回路を示す説明
図、第3図は4i:発明に系るM RI装置の全体構成
と示tブロック図、第4図は従来のMRI装置における
ソレノイド形の高周波コイルの問題点を示す説明図であ
る。 1・・・被検体、10・・・静磁場発生磁石、11・・
・中央処理装置(CPU)、12・・・/−ケンサ、1
3・・・送信系、14・・・磁場勾配発生系、15・・
・受信系、16・・・信号慇理系、20a・・・送信側
の高周波コイル、20b・・・受信側の高周波コイル、
29.31・・・選択励起面、30・・・磁束、32.
33・・・コイル、34・・・同調回路、35・・・プ
リアンプ、36・・・スイッチ、37・・・同調用コン
デンサ、38・・・インピーダンス整合用コンデンサ、
39・・・同調微調用コンデンサ、40・・・抵抗、4
1・・・直流可変電源、42・・・Dr1点、43・・
・インダクタ。
FIG. 1 is an explanatory diagram showing an embodiment of the high-frequency coil according to the present invention, FIG. 2 is an explanatory diagram showing a tuning circuit of the high-frequency coil, and FIG. 3 is 4i: Overall configuration of the MRI apparatus according to the invention. FIG. 4 is an explanatory diagram showing problems with solenoid-type high-frequency coils in conventional MRI apparatuses. 1... Subject, 10... Static magnetic field generating magnet, 11...
・Central processing unit (CPU), 12.../-kensa, 1
3... Transmission system, 14... Magnetic field gradient generation system, 15...
- Receiving system, 16... Signal control system, 20a... High frequency coil on the transmitting side, 20b... High frequency coil on the receiving side,
29.31...Selective excitation surface, 30...Magnetic flux, 32.
33... Coil, 34... Tuning circuit, 35... Preamplifier, 36... Switch, 37... Tuning capacitor, 38... Impedance matching capacitor,
39... Capacitor for fine tuning, 40... Resistor, 4
1...DC variable power supply, 42...1 Dr point, 43...
・Inductor.

Claims (1)

【特許請求の範囲】[Claims] 1、被検体の体軸と直交する方向(垂直方向)に静磁場
を発生させる静磁場発生磁石を有すると共に上記被検体
に近接して配置され該被検体に電磁波を照射したり、ま
たは被検体から放出される電磁波を検出する高周波コイ
ルを有する核磁気共鳴イメージング装置において、上記
高周波コイルはソレノイド形で1ターン毎にLCの共振
回路を独立に形成し、各ターン毎に可変容量を組み込み
、各容量を独立に制御することを特徴とする核磁気共鳴
イメージング装置。
1. It has a static magnetic field generating magnet that generates a static magnetic field in a direction perpendicular to the body axis of the subject (vertical direction) and is placed close to the subject to irradiate the subject with electromagnetic waves, or In a nuclear magnetic resonance imaging system that has a high-frequency coil that detects electromagnetic waves emitted from A nuclear magnetic resonance imaging device characterized by independently controlling capacitance.
JP61207933A 1986-09-05 1986-09-05 Nuclear magnetic resonance imaging apparatus Pending JPS6365851A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61207933A JPS6365851A (en) 1986-09-05 1986-09-05 Nuclear magnetic resonance imaging apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61207933A JPS6365851A (en) 1986-09-05 1986-09-05 Nuclear magnetic resonance imaging apparatus

Publications (1)

Publication Number Publication Date
JPS6365851A true JPS6365851A (en) 1988-03-24

Family

ID=16547944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61207933A Pending JPS6365851A (en) 1986-09-05 1986-09-05 Nuclear magnetic resonance imaging apparatus

Country Status (1)

Country Link
JP (1) JPS6365851A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6431717U (en) * 1987-08-18 1989-02-27
JPH07204178A (en) * 1993-10-21 1995-08-08 Univ California Method and equipment for tuning up magnetic resonance imaging rf coil

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6431717U (en) * 1987-08-18 1989-02-27
JPH0541686Y2 (en) * 1987-08-18 1993-10-21
JPH07204178A (en) * 1993-10-21 1995-08-08 Univ California Method and equipment for tuning up magnetic resonance imaging rf coil

Similar Documents

Publication Publication Date Title
JP3216938B2 (en) RF probe for MRI and magnetic resonance imaging apparatus
JP2883980B2 (en) Method and apparatus for generating a gradient magnetic field for nuclear magnetic resonance imaging
US20030088181A1 (en) Method of localizing an object in an MR apparatus, a catheter and an MR apparatus for carrying out the method
US5327898A (en) Signal receiving coil device for MRI apparatus
US6710598B2 (en) RF surface resonator for a magnetic resonance imaging apparatus
CA1135789A (en) Magnet coil arrangement for generating a homogeneous magnetic field for magnetic resonance arrangements
JP2007511331A (en) Phased array knee coil
JP2003180659A (en) Rf coil system for magnetic resonance imaging device
JP3411936B2 (en) NMR equipment
JPH0350542B2 (en)
EP0568225A1 (en) Dynamically detuned NMR field coil
US4626784A (en) NMR imaging device
EP0097519A2 (en) Nuclear magnetic resonance diagnostic apparatus
CN108474829B (en) Radio frequency coil array for magnetic resonance examination system
JPS6365851A (en) Nuclear magnetic resonance imaging apparatus
JPH0578336B2 (en)
US5329232A (en) Magnetic resonance methods and apparatus
JP2767311B2 (en) High frequency coil for magnetic resonance imaging equipment
JP2811352B2 (en) High frequency coil for magnetic resonance imaging equipment
JP3154002B2 (en) Receiving coil of quadrature receiving method and magnetic resonance imaging apparatus using this receiving coil
JP3170771B2 (en) Receiving coil for magnetic resonance imaging equipment
JP3213819B2 (en) High frequency receiving coil for magnetic resonance imaging equipment
JPH05161624A (en) High frequency reception coil for magnetic resonance imaging device
JPH07265279A (en) Magnetic resonance imaging system
JPH07171132A (en) High frequency coil for magnetic resonance imaging device