JPS6365836B2 - - Google Patents

Info

Publication number
JPS6365836B2
JPS6365836B2 JP55025950A JP2595080A JPS6365836B2 JP S6365836 B2 JPS6365836 B2 JP S6365836B2 JP 55025950 A JP55025950 A JP 55025950A JP 2595080 A JP2595080 A JP 2595080A JP S6365836 B2 JPS6365836 B2 JP S6365836B2
Authority
JP
Japan
Prior art keywords
valve
air
pressure
oil separator
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55025950A
Other languages
Japanese (ja)
Other versions
JPS56121889A (en
Inventor
Masayuki Tsuchida
Toshio Inoe
Yoichi Mizutani
Shunji Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokico Ltd
Original Assignee
Tokico Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokico Ltd filed Critical Tokico Ltd
Priority to JP2595080A priority Critical patent/JPS56121889A/en
Publication of JPS56121889A publication Critical patent/JPS56121889A/en
Publication of JPS6365836B2 publication Critical patent/JPS6365836B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Description

【発明の詳細な説明】 本発明は空気タンク系の圧緒空気の圧力を検出
して圧縮機本体の空気吸込側に設けられた吸込絞
り弁を制御するようにした油冷式圧縮機に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an oil-cooled compressor that detects the pressure of compressed air in an air tank system and controls a suction throttle valve provided on the air suction side of the compressor main body.

一般に、スクリユ型圧縮機、スライドベーン型
圧縮機等の油冷式圧縮機にあつては、圧縮機本体
の潤滑と冷却を兼ねて潤滑油を該本体と油分離器
との間で環流させている。
Generally, in oil-cooled compressors such as screw type compressors and slide vane type compressors, lubricating oil is circulated between the compressor body and an oil separator to both lubricate and cool the compressor body. There is.

従来、この種の油冷式圧縮機は、潤滑油の供給
を受けつつ空気を圧縮する圧縮機本体と、該圧縮
機本体から吐出された圧縮空気中の油分を分離す
る油分離器と、該油分離器と逆止弁を介して接続
され、該油分離器から供給される圧縮空気を貯蔵
する空気タンクと、前記圧縮機本体の空気吸込側
に設けられ、無負荷運転時に吸込口を閉塞する吸
込絞り弁と、前記油分離器と吸込絞り弁との間を
接続する連通配管と、該連通配管の途中に設けら
れ、前記空気タンク系の圧縮空気を検出して無負
荷運転すべき所定の高圧に達したとき開弁し、負
荷運転を開始すべき所定の低圧になつたとき閉弁
する圧力調整弁とから構成したものが知られてい
る。
Conventionally, this type of oil-cooled compressor consists of a compressor body that compresses air while being supplied with lubricating oil, an oil separator that separates oil from the compressed air discharged from the compressor body, and an oil separator that separates oil from the compressed air discharged from the compressor body. An air tank that is connected to the oil separator via a check valve and stores the compressed air supplied from the oil separator, and an air tank that is installed on the air suction side of the compressor body and that closes the suction port during no-load operation. a suction throttle valve to be operated, a communication pipe connecting the oil separator and the suction throttle valve, and a predetermined pipe provided in the middle of the communication pipe to detect compressed air in the air tank system and perform no-load operation. A pressure regulating valve that opens when a high pressure is reached and closes when a predetermined low pressure at which load operation should be started is known.

このように構成することにより、空気タンク内
が無負荷運転すべき所定圧に達したら、圧力調整
弁が開弁して油分離器内の圧縮空気を連通配管か
ら吸込絞り弁に作用させて、該吸込絞り弁を閉塞
し、吸込空気量を絞つて動力軽減を図り、また潤
滑油が逆流して吸込ポートから噴出してしまうの
を防止している。
With this configuration, when the inside of the air tank reaches a predetermined pressure for no-load operation, the pressure regulating valve opens and the compressed air in the oil separator is caused to act on the suction throttle valve from the communication pipe, The suction throttle valve is closed to reduce the amount of suction air to reduce power, and to prevent lubricating oil from flowing backwards and spewing out from the suction port.

しかし、このように構成される従来技術のもの
は次のような問題点がある。
However, the conventional technology configured in this manner has the following problems.

第1に、無負荷運転時に吸込絞り弁を完全に閉
弁させると、圧縮器本体の吸込側が真空状態とな
つて吸込側と吐出側との間の差圧が大となつてス
クリユロータ端面に背圧が断続的に作用し、運転
中のロータに回転ムラができて該ロータが異常振
動を発生し、アンロード騒音の原因となる。この
騒音を防止するため、圧縮機本体吸込側の真空度
を検出して開弁するバイパス弁を設け、該バイパ
ス弁の開弁によりタンクまたは油分離器内の圧縮
空気を環流させる方式、または吸込側の吸込み絞
り弁が完全に閉弁しないようにした方式、さらに
吸込絞り弁と並列に常時連通の絞り通路を設ける
方式等が提案されている。
First, when the suction throttle valve is completely closed during no-load operation, the suction side of the compressor body becomes a vacuum state, and the differential pressure between the suction side and the discharge side becomes large, causing a backlash against the screw rotor end surface. The pressure acts intermittently, causing uneven rotation of the rotor during operation, causing the rotor to generate abnormal vibrations and causing unloading noise. In order to prevent this noise, a bypass valve is installed that detects the degree of vacuum on the suction side of the compressor body and opens, and when the bypass valve opens, the compressed air in the tank or oil separator is circulated, or the suction A method has been proposed in which the suction throttle valve on the side does not close completely, and a method in which a throttle passage that is always in communication is provided in parallel with the suction throttle valve.

しかし、最初のバイパス弁を設ける方式では配
管系が複雑となる欠点があり、また後二者の吸込
絞り弁を完全に閉弁させない方式、絞り通路を設
ける方式では、動力軽減は定格値の25〜30%程度
にしか達しず、しかも運転停止時潤滑油が逆流す
る危険性があつた。
However, the first method with a bypass valve has the disadvantage of complicating the piping system, and with the method that does not completely close the latter two suction throttle valves or the method that provides a throttle passage, the power reduction is only 25% of the rated value. It only reached ~30%, and there was a risk that the lubricating oil would flow back when the operation was stopped.

第2に、吸込絞り弁を閉弁すると同時に油分離
タンク内の圧力を自動的に放気すべく、該油分離
器に放気弁を設け、無負荷運転時には該放気弁を
開弁して油分離器内圧力を低下させ、無負荷動力
を軽減させるように構成したものが知られている
(実開昭48−57704号公報)。
Second, in order to automatically release the pressure inside the oil separation tank at the same time as the suction throttle valve is closed, the oil separator is equipped with a release valve, and the release valve is opened during no-load operation. A structure is known in which the pressure inside the oil separator is lowered to reduce the no-load power (Utility Model Publication No. 57704/1983).

しかし、このように構成した場合には、別途放
気弁を設ける必要があると共に、放気の際の騒音
防止のため放気サイレンサが必要となり、部品点
数が増加するばかりでなく、構成が複雑となると
いう欠点がある。特に、上記実開昭48−57704号
公報に示されるように、油分離器で油分を除去し
ていない圧縮空気を、放気弁から大気中に直接放
出するものにあつては放出空気中に含まれている
オイルミストが大気中に放散し、圧縮機を囲む防
音箱内を汚染するという欠点がある。
However, this configuration requires a separate air release valve and an air silencer to prevent noise when air is released, which not only increases the number of parts but also complicates the configuration. There is a drawback that. In particular, as shown in the above-mentioned Japanese Utility Model Publication No. 48-57704, when compressed air from which oil has not been removed by an oil separator is directly released into the atmosphere from a release valve, the released air contains The disadvantage is that the oil mist contained therein dissipates into the atmosphere and contaminates the inside of the soundproof box surrounding the compressor.

本発明はこのような従来技術の欠点に鑑みなさ
れたもので、吸込絞り弁を本来の閉塞弁機能ばか
りでなく、無負荷運転時に圧縮機本体吸込側へ圧
縮空気の一部を環流させる環流機能、無負荷運転
時に無負荷動力を軽減させるための放気機能を兼
ね備える構成とし、該吸込絞り弁を空気タンク内
の圧縮空気を利用して制御するようにした油冷式
圧縮機を提供することを目的とするものである。
The present invention has been developed in view of the shortcomings of the prior art.The present invention has been developed to provide the suction throttle valve not only with its original blocking valve function, but also with a recirculation function that allows part of the compressed air to flow back to the suction side of the compressor body during no-load operation. To provide an oil-cooled compressor which is configured to have an air release function for reducing no-load power during no-load operation, and whose suction throttle valve is controlled using compressed air in an air tank. The purpose is to

この目的を達成するために、本発明は、潤滑油
の供給を受けつつ空気を圧縮する圧縮機本体と、
該圧縮機本体から吐出された圧縮空気中の油分を
除去する油分離器と、該油分離器と逆止弁を介し
て接続され、該油分離器から供給される正常な圧
縮空気を貯蔵する空気タンクと、前記圧縮機本体
の空気吸入側に設けられた吸込絞り弁と、前記油
分離器と吸込絞り弁との間を接続する放気配管
と、該放気配管の途中に設けられ、前記空気タン
クを含む系内の圧力を検出して所定の高圧に達し
たとき開弁し、所定の低圧に低下したとき閉弁す
る制御弁機構とを有し、前記吸込絞り弁は大気に
開口する吸気ポート、前記圧縮機本体に接続され
る吐出ポート、および前記放気配管に接続される
供給ポートを有する弁本体と、該弁本体内に吸気
ポートを閉塞するように付勢して設けられ、該吸
気ポートと吐出ポートとの間の圧力差によつて開
弁する逆止弁と、該逆止弁と同軸に、かつ閉弁方
向に付勢するようにして前記弁本体内に設けら
れ、前記制御弁機構が開弁している間に前記供給
ポートから供給される前記油分離器内の圧縮空気
により開弁すると共に、前記逆止弁を押動閉弁せ
しめて無負荷運転せしめる主弁と、前記弁本体内
に、または前記逆止弁と主弁の軸方向に形成さ
れ、該主弁が開弁したときに前記供給ポートから
供給される前記油分離器内の圧縮空気を吐出ポー
トに環流せしめるリリーフ通路と、前記弁本体内
に形成され、前記供給ポートから供給される前記
油分離器内の圧縮空気を前記吸気ポート側に放気
せしめる放出通路と、該放出通路からの放気空気
流量を調節すべく、前記弁本体に設けられた絞り
機構とから構成したことにある。
To achieve this objective, the present invention includes a compressor body that compresses air while being supplied with lubricating oil;
An oil separator that removes oil from the compressed air discharged from the compressor body; and an oil separator that is connected to the oil separator via a check valve and stores normal compressed air supplied from the oil separator. an air tank, a suction throttle valve provided on the air suction side of the compressor main body, an air discharge pipe connecting between the oil separator and the suction throttle valve, and an air discharge pipe provided in the middle of the air discharge pipe, and a control valve mechanism that detects the pressure in the system including the air tank and opens the valve when the pressure reaches a predetermined high pressure, and closes the valve when the pressure drops to a predetermined low pressure, and the suction throttle valve opens to the atmosphere. a valve body having an intake port connected to the compressor body, a discharge port connected to the compressor body, and a supply port connected to the air discharge pipe; and a valve body provided within the valve body biased to close the intake port. , a check valve that opens due to a pressure difference between the intake port and the discharge port, and a check valve that is provided within the valve body coaxially with the check valve and biased in the valve closing direction. , while the control valve mechanism is open, the valve is opened by compressed air in the oil separator supplied from the supply port, and the check valve is pushed closed to allow no-load operation. a valve, and is formed in the valve body or in the axial direction of the check valve and the main valve, and discharges compressed air in the oil separator supplied from the supply port when the main valve opens. a relief passage that allows the air to flow back to the port; a discharge passage formed within the valve body that causes the compressed air in the oil separator supplied from the supply port to be released to the intake port side; The valve body includes a throttle mechanism provided on the valve body to adjust the air flow rate.

このように構成することにより、空気タンク内
が無負荷運転すべき所定の高圧に達すると、制御
弁機構が開弁して清浄な空気が放気配管、制御弁
機構を介して吸込絞り弁の供給ポートに供給され
る。これにより、主弁が開弁し、逆止弁を押動し
て吸気ポートを閉塞し、閉塞弁機能を発揮する。
また、前記主弁が開弁すると、供給ポートから供
給される圧縮空気はリリーフ通路を介して吐出ポ
ートから圧縮機本体吸込側に環流せしめられ、環
流機能を発揮する。さらに、供給ポートから供給
される油分離器内の圧縮空気は放出通路を介して
吸気ポートに放気され、無負荷動力の軽減を図る
放気機能を発揮する。
With this configuration, when the inside of the air tank reaches a predetermined high pressure required for no-load operation, the control valve mechanism opens and clean air flows through the exhaust pipe and control valve mechanism to the suction throttle valve. supplied to the supply port. This opens the main valve, pushes the check valve, closes the intake port, and performs a blockage valve function.
Furthermore, when the main valve opens, the compressed air supplied from the supply port is circulated from the discharge port to the suction side of the compressor main body via the relief passage, thereby exerting a recirculation function. Further, the compressed air in the oil separator supplied from the supply port is released to the intake port via the release passage, and exhibits an air release function that reduces no-load power.

以下、これを図面に示す実施例と共に説明す
る。第1図は本発明の第1の実施例を示す系統図
で、図中1は圧縮機本体を示し、該本体1は例え
ば互いに噛合する雄、雌ロータを備えたスクリユ
型ロータまたはスライドベーン型ロータが用いら
れ、該圧縮機本体1はモータ2により駆動され
る。圧縮機本体1に設けられた吸気側配管3の途
中には第2図に示す吸込絞り弁4が設けられ、該
吸込絞り弁4の吸込側には吸込フイルタ5が設け
られている。圧縮機本体1に設けられた吐出側配
管6には油分離器7が接続され、該油分離器7に
は後述の潤滑油と共に圧送された圧縮空気の中か
ら油分を分離するためのミストセパレータ8が設
けられ、該セパレータ8で清浄にされた圧縮空気
は空気配管9に設けられた保圧弁10で所定圧以
上に保持された圧縮空気を逆止弁11を介して空
気タンク12に供給する。該空気タンク12には
供給用の空気配管13が設けられ、その途中に設
けられた止め弁14を介して空気タンク12内に
貯溜された圧縮空気を使用機器に供給する。
This will be explained below along with embodiments shown in the drawings. FIG. 1 is a system diagram showing a first embodiment of the present invention. In the figure, 1 indicates a compressor main body, and the main body 1 is, for example, a screw type rotor or a slide vane type equipped with mutually meshing male and female rotors. A rotor is used, and the compressor body 1 is driven by a motor 2. A suction throttle valve 4 shown in FIG. 2 is provided in the middle of an intake side pipe 3 provided in the compressor body 1, and a suction filter 5 is provided on the suction side of the suction throttle valve 4. An oil separator 7 is connected to the discharge side pipe 6 provided in the compressor main body 1, and the oil separator 7 includes a mist separator for separating oil from the compressed air pumped together with lubricating oil, which will be described later. 8 is provided, and the compressed air purified by the separator 8 is maintained at a predetermined pressure or higher by a pressure holding valve 10 provided in the air pipe 9 and is supplied to the air tank 12 via the check valve 11. . The air tank 12 is provided with a supply air pipe 13, and the compressed air stored in the air tank 12 is supplied to the equipment in use via a stop valve 14 provided in the middle thereof.

15は空気配管9と吸込絞り弁4との間に設け
られた放気配管で、該放気配管15の途中には電
磁弁16が設けられ、該電磁弁16は放気配管1
3から分岐したバイパス配管17に接続された圧
力スイツチ18により作動するように構成されて
いる。ここで、圧力スイツチ18はバイパス配管
17内の空気圧力が所定の設定圧力となつたとき
接点が閉成し、当該設定圧力よりも低い復帰圧力
で開成し、接点が閉成している間電磁弁16を開
弁するもので、電磁弁16と圧力スイツチ18と
により制御弁機構が構成される。また、電磁弁1
6はモータ2の回転停止、即ち圧縮機本体1の運
転停止と共に開弁するように構成され、圧縮機本
体1の停止後に加圧空気、潤滑油が冷却し、油分
離器7内にドレンが発生しないようになされてい
る。なお、第1図の実施例においては圧力スイツ
チ18はバイパス管17を介して放気配管17内
の圧力を検出するように構成されているが、空気
タンク12内の空気圧力を検出して作動するもの
でもよく、要は空気タンク12を含む系内の圧力
であればよい。
Reference numeral 15 denotes a discharge pipe provided between the air pipe 9 and the suction throttle valve 4; a solenoid valve 16 is provided in the middle of the discharge pipe 15;
It is configured to be operated by a pressure switch 18 connected to a bypass pipe 17 branched from 3. Here, the pressure switch 18 has a contact that closes when the air pressure in the bypass pipe 17 reaches a predetermined set pressure, and opens at a return pressure lower than the set pressure, and while the contact is closed, an electromagnetic It opens the valve 16, and the solenoid valve 16 and pressure switch 18 constitute a control valve mechanism. In addition, solenoid valve 1
The valve 6 is configured to open when the rotation of the motor 2 stops, that is, when the compressor main body 1 stops operating. After the compressor main body 1 stops, the pressurized air and lubricating oil are cooled, and a drain is formed in the oil separator 7. Efforts are being made to prevent this from occurring. In the embodiment shown in FIG. 1, the pressure switch 18 is configured to detect the pressure in the air discharge pipe 17 via the bypass pipe 17, but it is activated by detecting the air pressure in the air tank 12. In short, the pressure within the system including the air tank 12 may be used.

また、油分離器7の油液中からのびる油配管1
9は圧縮機本体1の吸込側に接続され、該油配管
19の途中には油冷却器20が設けられ、該油冷
却器20はモータ2により回転する多翼フアン2
1によつて冷却されるように構成されている。ま
た、ミストセパレータ8と圧縮機本体1との間に
は分離油回収用油配管22が設けられている。2
3はドレンおよび油抜き用の止め弁である。
In addition, the oil pipe 1 extending from the oil liquid of the oil separator 7
9 is connected to the suction side of the compressor main body 1, and an oil cooler 20 is provided in the middle of the oil pipe 19, and the oil cooler 20 is connected to a multi-blade fan 2 rotated by a motor 2.
1. Further, an oil pipe 22 for recovering separated oil is provided between the mist separator 8 and the compressor main body 1. 2
3 is a stop valve for drain and oil removal.

次に、第2図は第1図の吸込絞り弁4の縦断面
図を示すもので、図中24は弁本体を示し、該弁
本体24は本体部と該本体部を挾む左右の蓋部材
の3部材からなり、その中心にはばね受部24A
が形成されている。該弁本体24は吸込フイルタ
5に接続される吸気ポート25、吸込側配管3を
介して圧縮機本体1の吸込側に接続される吐出ポ
ート26、放気配管15を介して油分離器7に接
続される供給ポート27を有する。また、弁本体
24の吸気ポート25と吐出ポート26との間に
は逆止弁28が設けられ、該逆止弁28と同軸に
主弁29が設けられ、逆止弁28、主弁29はい
ずれもばね受部24Aにガイドされている。逆止
弁28はばね受部24Aと逆止弁28との間に張
設されたばね30により本体28Aは常時弁座3
1に当接し、通路内を吸気ポート側の室Aと吐出
ポート側の室Bとに区画している(なお、第2図
は圧縮機本体1が回転し、室A側の大気圧と室B
側の真空圧との圧力差により逆止弁28は開弁し
ている状態を示している)。一方、主弁29はば
ね受部24Aと主弁29との間に張設されたばね
32により弁体29Aは常時弁座33に当接し、
室CとDとに区画している。主弁29とばね受部
24Aとの間には室Eが形成され、該室Eは通路
34を介して室Bと常時連通している。
Next, FIG. 2 shows a vertical cross-sectional view of the suction throttle valve 4 shown in FIG. Consists of three members, with a spring receiver 24A in the center.
is formed. The valve body 24 is connected to an intake port 25 connected to the suction filter 5, a discharge port 26 connected to the suction side of the compressor body 1 via the suction side piping 3, and an oil separator 7 via the discharge piping 15. It has a supply port 27 to which it is connected. Further, a check valve 28 is provided between the intake port 25 and the discharge port 26 of the valve body 24, and a main valve 29 is provided coaxially with the check valve 28. Both are guided by the spring receiving portion 24A. The check valve 28 has a spring 30 stretched between the spring receiving portion 24A and the check valve 28, so that the main body 28A is always held against the valve seat 3.
1, and divides the passage into chamber A on the intake port side and chamber B on the discharge port side. B
(The check valve 28 is shown in an open state due to the pressure difference with the vacuum pressure on the side.) On the other hand, in the main valve 29, the valve body 29A is always in contact with the valve seat 33 due to the spring 32 stretched between the spring receiving part 24A and the main valve 29.
It is divided into rooms C and D. A chamber E is formed between the main valve 29 and the spring receiving portion 24A, and the chamber E is constantly in communication with the chamber B via the passage 34.

また、弁本体24には放出通路35が形成さ
れ、該放出通路35の一端側は供給ポート27に
開口し、他端側は吸気ポート25に開口してい
る。従つて、逆止弁28が閉弁し弁座31に着座
しているときは放出通路35から放気された圧縮
空気はすべて吸込フイルタ5から排出される。そ
して、弁本体24の途中には螺出入可能な絞り機
構36が設けられ、該絞り機構36の弁部36A
は放出通路35内に突出し、該放出通路35の通
路面積は調整可能に構成され、後述の作用により
油分離器7内の油抜きを行なうような場合には絞
り機構36の弁部36Aを弁座37に当接させ放
出通路35を全閉としうるように構成されてい
る。
Further, a discharge passage 35 is formed in the valve body 24 , one end of the discharge passage 35 opens to the supply port 27 , and the other end opens to the intake port 25 . Therefore, when the check valve 28 is closed and seated on the valve seat 31, all the compressed air released from the discharge passage 35 is discharged from the suction filter 5. A throttle mechanism 36 that can be screwed in and out is provided in the middle of the valve body 24, and a valve portion 36A of the throttle mechanism 36 is provided.
protrudes into the discharge passage 35, and the passage area of the discharge passage 35 is configured to be adjustable. When removing oil from the oil separator 7 by the action described later, the valve portion 36A of the throttling mechanism 36 is closed. It is configured so that it can be brought into contact with the seat 37 and the discharge passage 35 can be completely closed.

また、供給ポート27と室Cとの間には主弁流
入側通路38が形成され、弁本体24には螺出入
可能な他の絞り機構39が設けられ、該絞り機構
39の弁部39Aは主弁流入側通路38内に突出
し、該通路38の通路面積は調整可能になされて
おり、後述の作用により油分離器7内の圧縮空気
をすべて放気する場合には弁部369を弁座40
に当接させうるように構成されている。
Further, a main valve inflow side passage 38 is formed between the supply port 27 and the chamber C, and another throttle mechanism 39 that can be screwed in and out is provided in the valve body 24, and the valve portion 39A of the throttle mechanism 39 is It protrudes into the main valve inlet side passage 38, and the passage area of the passage 38 can be adjusted, and when all the compressed air in the oil separator 7 is released by the action described later, the valve portion 369 is moved to the valve seat. 40
It is configured so that it can be brought into contact with the

さらに、逆止弁28の軸線に沿つてリリーフ通
路41Aが形成されると共に主弁29の軸線に沿
つてリリーフ通路41Aと同軸にリリーフ通路4
1Bが形成されている(リリーフ通路41A,4
1Bを全体としてはリリーフ通路41という)。
そして、リリーフ通路41の一端側は室Bに開口
し、その他端側は室Dに開口している。従つて、
主弁29が開弁している状態においては、供給ポ
ート27からの放出空気は通路38、室C,D、
リリーフ通路41、室B、吐出ポート26を介し
て圧縮機本体1の吸気側に環流することができ
る。
Further, a relief passage 41A is formed along the axis of the check valve 28, and a relief passage 4 is formed coaxially with the relief passage 41A along the axis of the main valve 29.
1B is formed (relief passages 41A, 4
1B as a whole is referred to as a relief passage 41).
One end of the relief passage 41 opens into the chamber B, and the other end opens into the chamber D. Therefore,
When the main valve 29 is open, the air released from the supply port 27 flows through the passage 38, the chambers C, D,
It can be circulated to the intake side of the compressor main body 1 via the relief passage 41, the chamber B, and the discharge port 26.

本発明の第1の実施例はこのように構成される
が、圧縮機の作動に先立つて吸込絞り弁4の絞り
機構36を開弁し、無負荷運転時に油分離器7内
の吸込フイルタ5側に放気し、最低の動力条件で
無負荷運転できる程度に開度を設定しておく。ま
た、他の絞り機構39を開弁し、無負荷運転時に
圧縮機本体1吸気側が真空となつてアンロード騒
音を発生しないよう、吸気側に放出空気を環流さ
せるべき最低条件に開度を設定しておく。さら
に、圧力スイツチ18は止め弁14に接続される
使用機器の圧力条件に応じて無負荷運転すべき空
気タンク12内圧力を設定しておく。
The first embodiment of the present invention is configured as described above, but the throttle mechanism 36 of the suction throttle valve 4 is opened prior to the operation of the compressor, and the suction filter 5 in the oil separator 7 is opened during no-load operation. Set the opening to the extent that air can be released to the side and no-load operation can be performed under the lowest power conditions. In addition, the other throttle mechanism 39 is opened and the opening degree is set to the minimum condition that allows the discharged air to circulate to the intake side so that the intake side of the compressor body 1 does not become a vacuum during no-load operation and generate unloading noise. I'll keep it. Further, the pressure switch 18 sets the internal pressure of the air tank 12 for no-load operation according to the pressure conditions of the equipment connected to the stop valve 14.

ここで、モータ2を起動すると圧縮機本体1は
回転し、吸気側配管3を含む該本体1の吸気側が
真空圧力となると逆止弁28前後の差圧によりば
ね30に抗して該逆止弁28が開弁し、圧縮機本
体1内に供給する吸込空気量を自動的に調節す
る。圧縮機本体1で加圧された空気は吐出側配管
6を介して潤滑油と共に油分離器7内に吐出され
る。油分離器7内の圧縮空気はミストセパレータ
8でミストを除去された後、保圧弁10、逆止弁
11を介して空気タンク12に供給され、同時に
分離された潤滑油は油配管19、油冷却器20を
介して圧縮機本体1に供給され、ロータの潤滑と
冷却を行なう。
Here, when the motor 2 is started, the compressor body 1 rotates, and when the suction side of the main body 1 including the suction side piping 3 reaches a vacuum pressure, the pressure difference between the front and rear of the check valve 28 resists the spring 30 and prevents the non-return valve. The valve 28 opens and automatically adjusts the amount of suction air supplied into the compressor main body 1. The air pressurized by the compressor main body 1 is discharged into the oil separator 7 together with lubricating oil via the discharge side piping 6. After the mist is removed from the compressed air in the oil separator 7 by the mist separator 8, it is supplied to the air tank 12 via the pressure retaining valve 10 and the check valve 11. At the same time, the separated lubricating oil is sent to the oil pipe 19, It is supplied to the compressor main body 1 via the cooler 20 to lubricate and cool the rotor.

然るに、バイパス配管17内圧力、即ち空気タ
ンク12内圧力が無負荷運転すべき圧力に達する
と圧力スイツチ18が閉成し、電磁弁16を開弁
する。この結果、供給ポート27に達した放出空
気は放出通路35、絞り機構36を介して吸気ポ
ート25に至り、吸込フイルタ5より大気中に放
気され、油分離器7内の圧力低下により圧縮機本
体1の負荷を軽減し、モータ2の動力を軽減す
る。なお、放気は圧力スイツチ18の下限設定圧
力、即ち電磁弁16の閉弁圧力まで続行される。
However, when the internal pressure of the bypass pipe 17, that is, the internal pressure of the air tank 12 reaches a pressure for no-load operation, the pressure switch 18 closes and the solenoid valve 16 opens. As a result, the discharged air that has reached the supply port 27 reaches the intake port 25 via the discharge passage 35 and the throttle mechanism 36, and is released into the atmosphere from the suction filter 5. The load on the main body 1 is reduced and the power of the motor 2 is reduced. Note that the air release continues until the lower limit set pressure of the pressure switch 18, that is, the closing pressure of the solenoid valve 16.

これと同時に他の絞り機構39、主弁流入側通
路38を介して室Cに供給された放出空気により
主弁29はばね32に抗して開弁し、該主弁29
が逆止弁28を押動して弁座31に当接させる。
この結果、室Cからの放出空気は室D、リリーフ
通路41、室Bを介して吐出ポート26に至り吸
気先配管3より圧縮機本体1に環流し、圧縮機本
体1からアンロード騒音を発生することを防止し
ている。
At the same time, the main valve 29 is opened against the spring 32 by the released air supplied to the chamber C via the other throttle mechanism 39 and the main valve inflow side passage 38, and the main valve 29 opens against the spring 32.
pushes the check valve 28 into contact with the valve seat 31.
As a result, the air discharged from the chamber C passes through the chamber D, the relief passage 41, and the chamber B, reaches the discharge port 26, and flows back into the compressor body 1 through the intake pipe 3, causing unloading noise from the compressor body 1. It prevents you from doing so.

一方、圧縮機本体1の運転を停止すると、油分
離器7内の残圧によりロータが逆転し、該本体1
内の潤滑油と共に圧縮空気が吐出ポート26から
逆流する。しかし通路34を介して室B,E間は
連通されているから、逆流圧力により主弁29は
弁座33に当接して直ちに閉弁し、潤滑油はリリ
ーフ通路41を介して室Dに至るも室Cには流出
しない。従つて、圧縮機本体1の運転停止と共に
開弁する電磁弁16を介して油分離器7内の残留
空気は前記同様放出通路35を介して大気に放気
される。
On the other hand, when the operation of the compressor main body 1 is stopped, the rotor is reversed due to the residual pressure in the oil separator 7, and the main body 1
Compressed air flows back from the discharge port 26 along with the lubricating oil inside. However, since the chambers B and E are communicated through the passage 34, the main valve 29 contacts the valve seat 33 due to the backflow pressure and immediately closes, and the lubricating oil reaches the chamber D through the relief passage 41. It does not flow into chamber C either. Therefore, the residual air in the oil separator 7 is released to the atmosphere via the discharge passage 35 as described above via the electromagnetic valve 16 which opens when the compressor main body 1 stops operating.

さらに、圧縮機本体1の運転停止の際、油分離
器7内の潤滑油を抜き取る場合には、前述した放
気の途中で絞り機構36を操作し、その弁部36
Aを弁座37に当接させて閉弁し、ついで止め弁
23を開弁させれば油分離器7内の圧残で油の抜
き取りを迅速に行なうことができる。なお、絞り
機構36にロツク機構を付加し、いわゆるノツク
式またはラビツト式といわれるスライド式のもの
とすればさらに油抜き作業が容易となる。
Furthermore, when the lubricating oil in the oil separator 7 is to be drained when the compressor main body 1 is stopped, the throttle mechanism 36 is operated during the air release described above, and the valve portion 36 is operated.
By bringing A into contact with the valve seat 37 to close the valve, and then opening the stop valve 23, the residual pressure in the oil separator 7 can quickly remove the oil. Incidentally, if a locking mechanism is added to the throttle mechanism 36 and a slide type so-called knock type or rabbit type is used, the oil removal work will be further facilitated.

第3図は第2図に示した吸込絞り弁4の他の実
施例を示すもので、第2図と同一構成要素には同
一符号を付すものとする。第2図の実施例ではリ
リーフ通路41をそれぞれ主弁、逆止弁に形成し
たのに対し、本実施例では弁本体24にリリーフ
通路42を形成したことを特徴とするもので、該
リリーフ通路42の一端は室Bに開口し、その他
端は室Dに開口している。従つて、リリーフ通路
42の機能は第2図のそれと変るところはない
が、主弁、逆止弁に加工を施こす必要がないとい
う点で吸込絞り弁の製造が容易である。
FIG. 3 shows another embodiment of the suction throttle valve 4 shown in FIG. 2, and the same components as in FIG. 2 are given the same reference numerals. In the embodiment shown in FIG. 2, the relief passage 41 is formed in the main valve and the check valve, respectively, whereas in this embodiment, a relief passage 42 is formed in the valve body 24. One end of 42 opens into chamber B, and the other end opens into chamber D. Therefore, although the function of the relief passage 42 is the same as that shown in FIG. 2, the suction throttle valve is easy to manufacture in that there is no need to process the main valve and check valve.

次に、第4図は本発明の第2の実施例を示すも
ので第1図と同一構成要素には同一符号を付すも
のとする。第1図の実施例では空気タンク12の
系内の圧縮空気の圧力を電気的に検出して電磁弁
16を開弁させる制御弁機構であるのに対し、本
実施例では空気タンク12の系内の圧縮空気の圧
力を機械的に検出して圧力調整弁50を開弁させ
るようにしたものである。即ち、第4図に示す圧
力調整弁50は第5図に詳述するように、弁本体
51内に設けられ放気配管15を開閉するピスト
ン52と、弁軸53を介して連結された隔壁部5
4と、弁本体51とピストン52との間に張設さ
れたばね55と、該ばね55により隔壁部54を
係止するストツパ56とから構成される。従つて
バイパス配管17内圧力が所定圧力以上となる
と、隔壁部54がこれを受圧し、ばね55に抗し
てピストン52を図中右方に動かし開弁する。こ
の結果第1の実施例と同様に放出空気は吸込絞り
弁4の供給ポート27に供給され、圧縮機本体1
は無負荷運転を行なうことができる。なお、第5
図で圧力調整弁50はピストン式の弁としたが、
ピストン52に代えて弁栓とし、隔壁部54は可
撓性の部材、例えばダイアフラムとしてもよい。
また、別途放気弁を設けてもよいが第4図中で仮
想線で示すように圧力調整弁50と並列に圧縮機
本体1の停止と共に開弁する電磁弁57を設けて
おけば、自動的に放気されるから油分離器7内に
ドレンが発生することはない。
Next, FIG. 4 shows a second embodiment of the present invention, and the same components as in FIG. 1 are given the same reference numerals. In the embodiment shown in FIG. 1, a control valve mechanism is used that electrically detects the pressure of compressed air in the system of the air tank 12 and opens the solenoid valve 16, whereas in this embodiment, the system of the air tank 12 is The pressure regulating valve 50 is opened by mechanically detecting the pressure of the compressed air inside. That is, as detailed in FIG. 5, the pressure regulating valve 50 shown in FIG. Part 5
4, a spring 55 stretched between the valve body 51 and the piston 52, and a stopper 56 that locks the partition wall 54 by the spring 55. Therefore, when the internal pressure of the bypass pipe 17 exceeds a predetermined pressure, the partition 54 receives this pressure and moves the piston 52 to the right in the figure against the force of the spring 55 to open the valve. As a result, similarly to the first embodiment, the discharged air is supplied to the supply port 27 of the suction throttle valve 4, and the compressor main body 1
can perform no-load operation. In addition, the fifth
In the figure, the pressure regulating valve 50 is a piston type valve, but
The piston 52 may be replaced with a valve plug, and the partition wall portion 54 may be a flexible member, such as a diaphragm.
Although a separate air release valve may be provided, if a solenoid valve 57 is provided in parallel with the pressure regulating valve 50, which opens when the compressor main body 1 stops, as shown by the imaginary line in FIG. Since the air is released directly, no condensate is generated in the oil separator 7.

本発明に係る油冷式圧縮機は以上詳細に述べた
如くであつて、制御弁機構が空気タンク系内の圧
縮空気の圧力を検出して開弁すると、該油分離器
内の圧縮空気は放気配管を介して吸込絞り弁の供
給ポートに供給され、主弁を開弁させると共に、
逆止弁を閉弁し、リリーフ通路を介して圧縮機本
体吸込側に圧縮空気を環流させ、さらに放出通路
を介して大気中に圧縮空気を放出する構成とした
から、吸込絞り弁は単一の弁構成によつて、閉塞
弁機能の他に、環流機能、放気弁機能の3機能を
同時に発揮することができ、個々にバイパス弁や
絞り通路を設けたり、放気弁や放気サイレンサを
設けるものと比較し、配管相互の接続が簡単とな
るばかりでなく、弁装置を最小の1個とでき、部
品点数を著るしく削減し、低廉に製造することが
できる。
The oil-fed compressor according to the present invention is as described in detail above, and when the control valve mechanism detects the pressure of compressed air in the air tank system and opens the valve, the compressed air in the oil separator is It is supplied to the supply port of the suction throttle valve through the air discharge pipe, and opens the main valve.
The check valve is closed, the compressed air is circulated to the suction side of the compressor body through the relief passage, and the compressed air is released into the atmosphere through the discharge passage, so there is only one suction throttle valve. Due to the valve configuration, it is possible to perform three functions at the same time: a reflux function and an air release valve function in addition to a blockage valve function, and it is possible to provide individual bypass valves and throttle passages, and use air release valves and air silencers. Compared to the case where pipes are provided, not only is it easier to connect the pipes to each other, but the number of valve devices can be reduced to a minimum of one, the number of parts can be significantly reduced, and manufacturing can be done at low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例を示す系統図、
第2図は本発明に用いられる吸込絞り弁の縦断面
図、第3図は第2図に示す吸込絞り弁の他の実施
例を示す縦断面図、第4図は本発明の第2の実施
例を示す系統図、第5図は第4図に用いられる圧
力調節弁の縦断面図である。 1……圧縮機本体、4……吸込絞り弁、7……
油分離器、10……保圧弁、12……空気タン
ク、16……電磁弁、18……圧力スイツチ、2
5……吸気ポート、26……吐出ポート、27…
…供給ポート、28……逆止弁、29……主弁、
35……放出通路、36,39……絞り機構、4
1,42……リリーフ通路、50……圧力調整
弁。
FIG. 1 is a system diagram showing a first embodiment of the present invention;
FIG. 2 is a longitudinal sectional view of the suction throttle valve used in the present invention, FIG. 3 is a longitudinal sectional view showing another embodiment of the suction throttle valve shown in FIG. A system diagram showing an embodiment, FIG. 5 is a longitudinal sectional view of the pressure regulating valve used in FIG. 4. 1... Compressor main body, 4... Suction throttle valve, 7...
Oil separator, 10... Pressure holding valve, 12... Air tank, 16... Solenoid valve, 18... Pressure switch, 2
5...Intake port, 26...Discharge port, 27...
... Supply port, 28 ... Check valve, 29 ... Main valve,
35...Discharge passage, 36, 39...Aperture mechanism, 4
1, 42... Relief passage, 50... Pressure regulating valve.

Claims (1)

【特許請求の範囲】[Claims] 1 潤滑油の供給を受けつつ空気を圧縮する圧縮
機本体と、該圧縮機本体から吐出された該圧縮空
気中の油分を除去する油分離器と、該油分離器と
逆止弁を介して接続され、該油分離器から供給さ
れる清浄な圧縮空気を貯蔵する空気タンクと、前
記圧縮機本体の空気吸込側に設けられた吸込絞り
弁と、前記油分離器と吸込絞り弁との間を接続す
る放気配管と、該放気配管の途中に設けられ、前
記空気タンクを含む系内の圧力を検出して所定の
高圧に達したとき開弁し、所定の低圧に低下した
とき閉弁する制御弁機構とを有し、前記吸込絞り
弁は大気に開口する吸気ポート、前記圧縮機本体
に接続される吐出ポート、および前記放気配管に
接続される供給ポートを有する弁本体と、該弁本
体内に吸気ポートを閉塞するように付勢して設け
られ、該吸気ポートと吐出ポートとの間の圧力差
によつて開弁する逆止弁と、該逆止弁と同軸に、
かつ閉弁方向に付勢するようにして前記弁本体内
に設けられ、前記制御弁機構が開弁している間に
前記供給ポートから供給される前記油分離器内の
圧縮空気により開弁すると共に、前記逆止弁を押
動閉弁せしめて、無負荷運転せしめる主弁と、前
記弁本体内に、または前記逆止弁と主弁の軸方向
に形成され、該主弁が開弁したときに前記供給ポ
ートから供給される前記油分離器内の圧縮空気を
吐出ポートに環流せしめるリリーフ通路と、前記
弁本体内に形成され、前記供給ポートから供給さ
れる前記油分離器内の圧縮空気を前記吸気ポート
側に放気せしめる放出通路と、該放出通路からの
放気空気流量を調節すべく、前記弁本体に設けら
れた絞り機構とから構成してなる油冷式圧縮機。
1. A compressor body that compresses air while being supplied with lubricating oil, an oil separator that removes oil from the compressed air discharged from the compressor body, and a An air tank connected to store clean compressed air supplied from the oil separator, a suction throttle valve provided on the air suction side of the compressor main body, and between the oil separator and the suction throttle valve. A valve is installed in the middle of the air piping to connect the air tank, and the valve opens when the pressure within the system including the air tank is detected and reaches a predetermined high pressure, and closes when the pressure drops to a predetermined low pressure. a control valve mechanism for valving, the suction throttle valve having an intake port opening to the atmosphere, a discharge port connected to the compressor main body, and a valve body having a supply port connected to the discharge piping; a check valve that is biased to close the intake port in the valve body and opens due to a pressure difference between the intake port and the discharge port; coaxially with the check valve;
and is provided in the valve body so as to be biased in the valve closing direction, and is opened by compressed air in the oil separator supplied from the supply port while the control valve mechanism is open. and a main valve for pushing the check valve closed to allow no-load operation; a relief passage that allows compressed air in the oil separator supplied from the supply port to flow back to a discharge port; and a relief passage formed in the valve body and compressed air in the oil separator supplied from the supply port. An oil-cooled compressor comprising: a discharge passage for discharging air to the intake port side; and a throttle mechanism provided on the valve body to adjust the flow rate of discharged air from the discharge passage.
JP2595080A 1980-02-29 1980-02-29 Oil-cooled compressor Granted JPS56121889A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2595080A JPS56121889A (en) 1980-02-29 1980-02-29 Oil-cooled compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2595080A JPS56121889A (en) 1980-02-29 1980-02-29 Oil-cooled compressor

Publications (2)

Publication Number Publication Date
JPS56121889A JPS56121889A (en) 1981-09-24
JPS6365836B2 true JPS6365836B2 (en) 1988-12-16

Family

ID=12180029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2595080A Granted JPS56121889A (en) 1980-02-29 1980-02-29 Oil-cooled compressor

Country Status (1)

Country Link
JP (1) JPS56121889A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57137783U (en) * 1981-02-25 1982-08-28
JP4603129B2 (en) * 2000-06-15 2010-12-22 北越工業株式会社 Compressor capacity control method and capacity control apparatus
DE102016011432A1 (en) 2016-09-21 2018-03-22 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Screw compressor for a commercial vehicle

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52112825A (en) * 1976-03-19 1977-09-21 Tokico Ltd Flow control valve
JPS5515330B2 (en) * 1975-05-29 1980-04-23

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4857704U (en) * 1971-10-30 1973-07-23
JPS5515330U (en) * 1978-07-19 1980-01-31

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5515330B2 (en) * 1975-05-29 1980-04-23
JPS52112825A (en) * 1976-03-19 1977-09-21 Tokico Ltd Flow control valve

Also Published As

Publication number Publication date
JPS56121889A (en) 1981-09-24

Similar Documents

Publication Publication Date Title
JPS6365835B2 (en)
EP0142926B1 (en) Positive displacement rotary compressors
JP3766725B2 (en) Oil-cooled screw compressor
JP3328793B2 (en) Pressure limiting device
JPS6365836B2 (en)
BE1014779A3 (en) External pressure regulator for high low pressure compressor scroll.
US3486303A (en) Moisture removal apparatus for compressed air supply system
JP2004500509A (en) Condensed water discharging method and condensed water discharging device
JPH07174073A (en) Package type air compressor
WO2019047764A1 (en) Exhaust assembly and compressor
JP3009255B2 (en) Suction throttle valve for oiled screw compressor
CN220706507U (en) Combined integrated dryer with built-in safety valve
JP2599728B2 (en) Oil-cooled screw compressor lubrication system
JP2584173B2 (en) Operating method of oil-cooled compressor
JP3487737B2 (en) Oil-cooled compressor
US2889106A (en) Compressor unloading system
JPH10339288A (en) Eccentric vane pump
JPH05113191A (en) Compressor
JP2779035B2 (en) Oiling device for oiled screw compressor
CN2268131Y (en) Improved Roots vaccum pump
JPH08189489A (en) Oil separation device of oil cooling type compressor
CN212225523U (en) Variable-frequency medium-pressure double-screw air compressor
JPH06307371A (en) Oil cooling type compressor
CN211343351U (en) Cylinder, compressor and air conditioner
JPH062677A (en) Multistage type oil-free compressor