JPS636581B2 - - Google Patents

Info

Publication number
JPS636581B2
JPS636581B2 JP8794083A JP8794083A JPS636581B2 JP S636581 B2 JPS636581 B2 JP S636581B2 JP 8794083 A JP8794083 A JP 8794083A JP 8794083 A JP8794083 A JP 8794083A JP S636581 B2 JPS636581 B2 JP S636581B2
Authority
JP
Japan
Prior art keywords
sheet
stretching
ptfe
sheets
stretched
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8794083A
Other languages
Japanese (ja)
Other versions
JPS59213740A (en
Inventor
Kanji Kawakami
Yasuhiro Moryama
Shoji Suzuki
Atsuo Yoshimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Electric Industrial Co Ltd filed Critical Nitto Electric Industrial Co Ltd
Priority to JP8794083A priority Critical patent/JPS59213740A/en
Publication of JPS59213740A publication Critical patent/JPS59213740A/en
Publication of JPS636581B2 publication Critical patent/JPS636581B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はポリテトラフルオロエチレン(以下
PTFEと称す)から成る焼成された多孔質シート
の製造法に関するものである。 PTFEは耐熱性、耐薬品性、機械的特性、電気
絶縁性等の種々の特性に優れ工業的に有意な材料
であり、その多孔質シートは腐食性の強い物質用
のフイルター、電池用隔膜、六フツ化ウラン等の
同位元素の分離用隔膜等に用いられている。 更に、近年、通気性と防水性を兼備する点が注
目され、スキーウエア、ウインドブレーカ、テン
ト、レインコート、おむつカバー等の素材として
急速に普及しつつある。 従来、PTFE多孔質シートは、PTFE粉末とナ
フサのような液状潤滑剤との混和物をシート状に
成形した後、PTFEの融点以下の温度で延伸し多
孔化する方法により製造されている。 ところが、この未焼成の多孔質シートは機械的
強度が弱く、わずかな外力の作用により伸びた
り、切れたり、破れたりするので実用上問題を生
じることが多い。 上記問題を解決するため通常の場合延伸後、更
に未焼成シートをその延伸状態を保持してPTFE
の融点以上の温度に加熱して焼成することにより
機械的強度の向上が計られている。この方法によ
れば確かに機械的強度の大きな多孔体を得ること
ができるが、工程が増え、製造装置も複雑とな
り、しかも製造時の熱エネルギー消費も膨大にな
るという欠点があり、これらを克服することが急
務とされていた。 本発明者達は従来技術の有する問題を解決する
ため研究を重ね、先にPTFEシートを焼成しなが
ら延伸する方法(特開昭54−156067号)を提案し
た。この方法によれば、PTFEシートに対し焼成
と延伸を同時に施すことができ、従来法に比べ、
短工程で焼成されたPTFE多孔質シートが得ら
れ、熱エネルギー消費量も少なくて済むという利
点がある。 本発明はこの同時焼成・延伸法を更に改良し、
製造能率を向上させると共に熱エネルギー消費の
一層の節約を達成したものである。 即ち、本発明に係る焼成されたPTFE多孔質シ
ートの製造法は、PTFE粉末に適量の液状潤滑剤
を加えて成る混和物をロール圧延によりシート状
に成形し、このシートの所定枚数をシリコーン樹
脂薄層を介して重ね合わせ、次いで該シート重層
物をその延伸すべき方向の両端が加熱ゾーンの外
部に存在するように配置し、該シート重層物の加
熱ゾーン内配置部分をPTFEの融点以上の温度に
加熱して焼成しながら少なくとも1軸方向に延伸
せしめ、その後シート同志を剥離することを特徴
とするものである。 本発明においては、先ずPTFE粉末と液状潤滑
剤との均一な混合物がロール圧延によりシート状
に成形される。このシート成形時には圧縮や押出
を付加的に行なうこともできる。 シート成形工程において用いられる液状潤滑剤
としては、PTFEの表面を濡らすことができ、シ
ート成形後に蒸発、抽出等によつて除去し得るも
のが使用され、その具体例としては流動パラフイ
ン、ナフサ、ホワイトオイル等の炭化水素油、ト
ルエン、キシレン等の芳香族炭化水素類、アルコ
ール類、ケトン類、エステル類、シリコーンオイ
ル、フルオロクロロカーボンオイル、これら溶剤
にポリイソブチレン、ポリイソプレン等の重合体
を溶かした溶液、これらの2つ以上の混合物、表
面活性剤を含む水または水溶液等が挙げられる。 本発明におけるシート成形工程において、
PTFE粉末と混和する液状潤滑剤の量は、他の添
加剤の有無等によつて変るが通常PTFE粉末100
重量部に対し約5〜50重量部程度用いられ、好ま
しくは10〜30重量部用いられる。 更に、本発明においてはPTFE粉末に前記液状
潤滑剤を混和する際に種々の添加剤、例えば着色
のための顔料、圧縮に対する強度の向上、耐摩耗
性の改良、低温流れの防止等のためにカーボンブ
ラツク、グラフアイト、シリカ粉、アスベスト
粉、ガラス粉、金属粉、金属酸化物粉、金属硫化
物粉等を混和することもできる。 上記成形工程によつて得られる未焼成のPTFE
シートは液状潤滑剤を含むものであるが、本発明
においてはシート成形後に加熱法、抽出法或いは
これらを組み合せた方法等により液状潤滑剤を除
去する。 かようにして液状潤滑剤の除去された未焼成の
PTFEシートは、次いでその所定枚がシリコーン
樹脂薄層を介して重ね合わされる。 シリコーン樹脂薄層を介してのシート同志の重
ね合わせは種々の態様で行なうことができ、例え
ば、各シートの表面にシリコーン樹脂液を浸漬、
スプレー塗布或いはロールコーテイング等により
塗布し、塗布面同志を向い合わせてシートを重合
する方法或いは一方のシート表面にシリコーン樹
脂液を塗布せしめ、この塗布面に未塗布シートを
重合する方法等を採用できる。いずれにしても、
重合せしめられるシート同志の接触面間にシリコ
ーン樹脂薄層を介在せしめるのである。 シリコーン樹脂液はエマルジヨン、溶液、オイ
ル、グリス、ワニス等のPTFEシート表面に塗布
し得る状態のものが用いられ、市販品としては信
越化学工業社製の商品名KM763、KM764E、
KM765、KM722、KM740、KM751、KM410、
KF410、KS700、KS701、KS751、KS785、東芝
シリコーン社製の商品名TSM630、東レシリコー
ン社製の商品名SH7024、SH7036、SH7050等が
挙げられる。 なお、シリコーン樹脂のエマルジヨン、溶液或
いはワニスを用いる場合は、シリコーン樹脂濃度
を約0.2〜30重量%にするのが、塗布作業のし易
さの点で好ましいものである。また、これらシリ
コーン樹脂液を用いた場合には、塗布後乾燥を行
ない溶媒を除去し、PTFEシート表面にシリコー
ン樹脂を薄層状に定着形成せしめる。乾燥温度は
溶媒の種類に応じて変わるが、通常約50〜300℃
程度である。 本発明において、重合せしめるPTFEシート間
に介在せしめるシリコーン樹脂薄層は、PTFEの
融点以上の温度に加熱して行なわれるシート重層
物の焼成・延伸に際し、シート同志の融着を防止
するためのものであり、その厚さは約0.1〜10μm
とするのが好適である。シリコーン樹脂薄層の厚
さが上記範囲内であれば、重合せしめられた
PTFEシート同志の融着を防止し得るのは無論の
こと、理由は明らかではないが、延伸時にシート
中に形成される微孔中にシリコーン樹脂が流入し
て該微孔を閉塞せしめ、多孔質シートの通気度を
減少せしめるような不都合や、剥離された多孔質
シート表面に残留するシリコーン樹脂が、該多孔
質シートを布等と接着せしめる際の障害になるよ
うなことが殆んどない。 本発明においては、上記のようにしてPTFEシ
ート同志がシリコーン樹脂薄層を介して重ね合わ
され、次に該シート重層物の延伸すべき方向の両
端が加熱ゾーンの外部に存在するように配置さ
れ、シート重層物の加熱ゾーン内配置部分が
PTFEの融点以上に加熱され焼成されると共に、
前記両端を基点として少なくとも1軸方向に延伸
され各シートに無数の微孔が形成される。 本発明の焼成・延伸工程において、シート重層
物の延伸すべき方向の両端を加熱ゾーンの外部に
存在するように配置するのは、重層物をPTFEの
融点以上の高温で熱延伸するに際し、最も大きな
力の作用する前記重層物の両端の温度をPTFEの
融点以下好ましくは軟化点以下に保ち該両端の軟
化乃至溶融を防止することによつて、該両端の機
械的強度を維持し、熱延伸時における重層物の破
断を生じさせないようにするためである。 なお、この際のシート重層物の加熱ゾーン内配
置部分の加熱はPTFEの融点以上で行なうが、焼
成を均一且つ短時間で行ない、且つ加熱による変
質を防止するため約340〜420℃で加熱焼成するの
が好適である。また、延伸速度は通常約100%/
秒以下好ましくは10%/秒以下である。 この工程においては、上記のようにしてシート
重層物の加熱ゾーン内配置部分が加熱焼成される
と共に少なくとも1軸方向に延伸される。延伸は
重層物を構成する各シートに無数の微孔を形成す
るためのものであつて、その延伸率は目的とする
PTFE多孔質シートの気孔率、孔径、延伸方向、
延伸軸数等に応じて決定されるが、通常約15〜
1500%程度であり、延伸による微孔形成効果、微
孔の孔径の均一さ等を考慮すると約20〜1200%と
するのが好適である。 本発明において、焼成・延伸工程で1軸延伸を
行なう場合には、延伸しない方向の両端を延伸す
べき方向の両端と同様に加熱ゾーン外に配置せし
めるか或いは加熱ゾーン内において該延伸しない
方向の両端を例えばチヤツク、クリツプ等によつ
て固定し、該両端間の距離が変化しないように寸
法規制すれば延伸時における微孔の形成が助長さ
れるので好ましい。 上記焼成・延伸工程を経たシート重層物は、そ
の後シート同志が剥離される。シート同志の剥離
作業は、シート間にシリコーン樹脂薄層が介在せ
しめられているので、容易に行なうことができ、
複数枚の焼成されたPTFE多孔質シートが得られ
る。 かような本発明の方法によつて得られる多孔体
質シートの気孔率および微孔の孔径は、延伸率、
延伸方向、延伸軸数、加熱焼成温度等によつて変
わるが、通常気孔率は約35〜95%程度、微孔の孔
径は約0.01〜50μ程度である。 上記焼成されたPTFE多孔質シートの寸法安定
性の向上のため、本発明においては剥離前或いは
剥離後に多孔質シートの延伸状態を保持して、換
言すれば延伸方向の長さを寸法規制して熱処理を
行なうことができる。 この熱処理を行なうことにより、多孔質シート
の延伸状態を固定することができ、高温使用時に
おける寸法安定性の優れたものを得ることができ
る。 この熱処理時に上記規制を行なわないと、微孔
が大幅に減少したり、消滅したりするので好まし
くない。 なお、熱処理時に多孔質シートの延伸方向以外
の方向の長さを更に寸法規制して作業すれば微孔
の減少、消滅をより効果的に防止し得る。 上記熱処理時における多孔質シートの寸法規制
手段としては、例えば多孔質シートの延伸方向の
両端をチヤツク、クリツプ等で把握し、その間隔
を保持して加熱する方法或いはほぼ等速で回転す
る繰り出しロールと巻き取りロール間で加熱する
方法等が挙げられる。熱処理温度は多孔質シート
の使用温度以上とする。 本発明の基本態様は上述の如くであるが、本発
明には下記(a)〜(c)の態様も含まれる。 (a) ロール圧延により得られる未焼成のPTFEシ
ートをPTFEの融点以下の温度で予備延伸し、
この予備延伸せしめたシート同志或いは予備延
伸シートと予備延伸を施してないシートをシリ
コーン樹脂薄層を介して重ね合わせ、焼成・延
伸工程において該予備延伸方向および/または
該延伸方向以外の方向に延伸しながら焼成し、
その後シート同志を剥離する態様。 (b) シート同志をシリコーン樹脂薄層を介して重
ね合わせ、このシート重層物をPTFEの融点以
下の温度で予備延伸し、次いで焼成・延伸工程
において該予備延伸方向および/または該延伸
方向以外の方向に延伸しながら焼成し、その後
シート同志を剥離する態様。 (c) シート重層物を焼成・延伸せしめ、次いでこ
れをPTFEの融点以下の温度で、焼成・延伸工
程における延伸方向および/または該延伸方向
以外の方向に延伸し、次いでシート同志を剥離
する態様も含まれる。 上記(a)、(b)の態様において焼成・延伸工程の延
伸を予備延伸方向以外の方向に施す場合には、焼
成・延伸工程の実施に際し予備延伸方向の長さを
寸法規制し、(c)の態様において焼成・延伸工程後
の延伸を焼成・延伸工程における延伸方向以外の
方向に施す場合には、該延伸の実施に際し焼成・
延伸工程の延伸方向の長さを寸法規制して行な
う。上記寸法規制を施さないと、寸法規制すべき
方向の延伸状態が維持できないので好ましくな
い。 これら(a)、(b)および(c)の態様によれば、高気孔
率或いは微孔の孔径が比較的大きな多孔質シート
を得ることができる。 而して、本発明は未焼成のPTFEシート同志を
シリコーン樹脂薄層を介して重ね合わせ、このシ
ート重層物の延伸すべき方向の両端を加熱ゾーン
の外部に配置するようにしたので、複数枚のシー
トを熱融着を生ずることなく同時に焼成・延伸し
得、PTFE多孔質シートを能率よく製造でき、熱
エネルギーの消費も節約できる等の特徴がある。 以下、図面を参照しながら実施例により本発明
を更に詳細に説明するが、これらはいずれも本発
明を限定するものではない。なお、実施例中に
「部」とあるのは、「重量部」を意味する。 実施例 1 PTFE粉末(三井フロロケミカル社製商品名テ
フロン6J)100部に対し液状潤滑剤ナフサ1号20
部を均一に混合した混和物を圧力20Kg/cm2で圧縮
予備成形し、次にこれを丸棒状に押出成形し更に
この丸棒状物を1対の金属製圧延ロール間を通
し、厚さ110μm、幅115mmの長尺シート状物を得
る。シートを120℃で2分間加熱し液状潤滑剤を
除去する。 次に、この未焼成PTFEシートの片面にシリコ
ーン樹脂の水性エマルジヨン(信越化学工業社
製、商品名KM−765)を濃度5重量%に希釈し
てロールコーテイング法により塗布し、ドクター
ナイフで塗布厚さを調整し、温度150℃で1分間
加熱することにより、水を除去すると共にシート
の片面上に厚さ0.2μmのシリコーン樹脂薄層を定
着形成せしめる。 その後、シリコーン樹脂薄層を形成せしめた
PTFEシートの2枚を該薄層同志が向い合うよう
にして重ね合わせて管状芯体にロール状に巻回す
る。 その後、第1図に示すように管状芯体上に巻回
せしめたシート重層物1を延伸装置の繰り出し側
にセツトし、その長さ方向の一端を巻き取りロー
ル2に導き、加熱ゾーン3の温度を360℃に保ち、
該加熱ゾーン3の入口側に設けられた1対のピン
チロール4の回転速度よりも出口側に設けられた
1対のピンチロール5の回転速度を大にして、シ
ート重層物1の加熱ゾーン内配置部分を焼成しな
がら延伸速度2%/秒で長さ方向に30%延伸す
る。 この場合、ピンチロール4および5には温度20
℃の冷風を吹き付け、シート重層物1の加熱ゾー
ン内配置部分を延伸する際の基点6.7の軟化乃至
溶融を防止した。 なお、8および9はガイドロール、10は冷却
ロールである。 焼成・延伸後シート同志を剥離し、厚さ100μ
m、幅103mm、気孔率33%、微孔の平均孔径0.05μ
mの2枚の焼成されたPTFE多孔質シート(試料
1)を得た。なお、気孔率はASTM−D1457−
56Tに準じ、n−ブタノールを使用して真比重
(P0)を、水を使用して見掛け比重(P1)を各々
測定し、次式により算出した。 気孔率(%)=P0−P1/P0×100 また、微孔の孔径はB.E.T法により各々測定し
た。 更に、この多孔質シートの接着性および通気度
を測定した。得られたデータを下記第1表に示
す。 「接着性」はPTFE多孔質シートのシリコーン
樹脂薄層形成面にナイロン/コツトン交織布(タ
テ糸ナイロン糸70デニール、ヨコ糸コツトン80番
双糸)をポリアミド系ホルトメルト接着剤によつ
て接着面積が35%になるように点状に部分接着せ
しめ、洗い9分、すすぎ10分、脱水6分を1サイ
クルとし、多孔質シートとナイロン/コツトン交
織布の間で剥離が発生するまでのサイクル数によ
り評価した。なお、ホツトメルト接着剤としては
日本リルサン社製、商品名プラタミドH105Pを
用い、多孔質シートとナイロン/コツトン交織布
を温度140℃、圧力3Kg/cm2の条件で30秒間加熱
加圧して接着した。また、洗濯機としては日立社
製、商品名青空PF2350を用いた。 また、「通気度」はJIS−P−8117、ガーレーデ
ンソメーターA型により測定した。 一方、これとは別にシリコーン樹脂薄層の厚さ
或いは延伸条件を第1表に示すように設定する以
外は全て試料1の場合と同様に作業し、試料2〜
6の多孔質シートを得た。 なお、参考のためこれら多孔質シートを得るの
に用いたPTFEシート1枚を試料1と同条件で焼
成・延伸して得られる多孔質シート(試料7)の
データを同時に示す。 実施例 2 焼成・延伸をシート長尺方向に5回繰り返す以
外は全て試料2と同様に作業して、延伸前の長さ
に対し11.4倍の長さ(延伸率1040%)を有する多
孔質シート(試料8)を得た。 実施例 3 一方のPTFEシートにシリコーン樹脂薄層を形
成せしめ、他方のPTFEシートには該薄層を形成
せしめず、両PTFEシートをシリコーン樹脂薄層
を介して重ね合わせる以外は全て試料4の場合と
同様に作業し、多孔質シート(試料9)を得た。
なお、この場合の通気度および接着性のデータは
シリコーン樹脂薄層を形成せしめたシートから得
られる多孔質シートのものを示す。 実施例 4 実施例1で用いたと同じ未焼成PTFEシートに
厚さ5μmのシリコーン樹脂薄層を形成せしめた
後、温度120℃で長尺方向に延伸率が100%になる
ように予備延伸せしめ、この予備延伸せしめられ
た厚さ100μm、気孔率66%、微孔の平均孔径0.1μ
mのシート12枚をシリコーン樹脂薄層を介して重
ね合せる。 その後、このシート重層物を温度380℃、延伸
速度0.2%/秒の条件で長尺方向に延伸率200%に
延伸し、更にシート同志の剥離を行なつて多孔質
シート(試料10)を得た。 実施例 5 実施例1で用いたと同じシート重層物1を第2
図に示すようにピンチロール4を通し、入口側か
ら出口側にいくにつれて加熱領域の幅が広がる形
状の加熱ゾーン3に導き入れる。加熱ゾーン3は
350℃に維持されている。 そして、シート重層体1の幅方向の両端を加熱
ゾーン3の両側端よりも外部に設置されたテンタ
ー式延伸機11のチヤツクにて把握して、成形物
1の加熱ゾーン内配置部分を幅方向に200%延伸
すると共にピンチロール4とピンチロール5の速
度差により長さ方向に延伸する。 なお、延伸速度は長さ方向が0.5%/秒、幅方
向が1.5%/秒である。 焼成・延伸後シート同志を剥離し、多孔質シー
ト(試料11)を得た。 実施例 6 焼成・延伸後にシート重層物の長尺方向を規制
し、温度130℃、延伸速度3.6%/秒の条件で幅方
向に延伸する(延伸率400%)以外は全て試料5
と同様に作業し、多孔質シート(試料12)を得
た。
The present invention is based on polytetrafluoroethylene (hereinafter referred to as polytetrafluoroethylene).
PTFE). PTFE is an industrially significant material with excellent properties such as heat resistance, chemical resistance, mechanical properties, and electrical insulation, and its porous sheets can be used as filters for highly corrosive substances, diaphragms for batteries, It is used in diaphragms for separating isotopes such as uranium hexafluoride. Furthermore, in recent years, it has attracted attention for its combination of breathability and waterproofness, and it is rapidly becoming popular as a material for ski wear, windbreakers, tents, raincoats, diaper covers, etc. Conventionally, porous PTFE sheets have been produced by forming a mixture of PTFE powder and a liquid lubricant such as naphtha into a sheet, and then stretching the mixture at a temperature below the melting point of PTFE to make it porous. However, this unfired porous sheet has low mechanical strength and can stretch, break, or tear under the action of a slight external force, which often causes practical problems. To solve the above problem, after stretching, the unfired sheet is usually kept in its stretched state and PTFE is
Mechanical strength is improved by heating and firing to a temperature higher than the melting point of . Although it is possible to obtain a porous body with high mechanical strength using this method, it has the drawbacks of increasing the number of steps, complicating the manufacturing equipment, and consuming a huge amount of thermal energy during manufacturing. There was an urgent need to do so. The inventors of the present invention have conducted repeated research to solve the problems of the prior art, and first proposed a method (Japanese Patent Laid-Open No. 156067/1983) in which a PTFE sheet is stretched while being fired. According to this method, the PTFE sheet can be fired and stretched at the same time, and compared to the conventional method,
It has the advantage that a fired PTFE porous sheet can be obtained in a short process and that the amount of thermal energy consumed is low. The present invention further improves this simultaneous firing and stretching method,
This improves manufacturing efficiency and achieves further savings in thermal energy consumption. That is, the method for producing a fired porous PTFE sheet according to the present invention is to form a mixture of PTFE powder and an appropriate amount of liquid lubricant into a sheet by roll rolling, and then coat a predetermined number of sheets with silicone resin. They are overlapped with a thin layer interposed therebetween, and then the sheet multilayer is arranged so that both ends of the sheet multilayer in the direction in which it is to be stretched are outside the heating zone, and the portion of the sheet multilayer that is disposed inside the heating zone is heated to a temperature higher than the melting point of PTFE. It is characterized by stretching the sheet in at least one axial direction while heating and baking the sheet, and then peeling the sheets from each other. In the present invention, a homogeneous mixture of PTFE powder and liquid lubricant is first formed into a sheet by roll rolling. Compression or extrusion may be additionally performed during sheet forming. The liquid lubricant used in the sheet forming process is one that can wet the surface of PTFE and can be removed by evaporation, extraction, etc. after sheet forming. Specific examples include liquid paraffin, naphtha, and white lubricant. Hydrocarbon oil such as oil, aromatic hydrocarbons such as toluene and xylene, alcohols, ketones, esters, silicone oil, fluorochlorocarbon oil, and polymers such as polyisobutylene and polyisoprene dissolved in these solvents. Examples include solutions, mixtures of two or more of these, water or aqueous solutions containing surfactants, and the like. In the sheet forming process of the present invention,
The amount of liquid lubricant mixed with PTFE powder varies depending on the presence or absence of other additives, but usually 100% of PTFE powder is used.
It is used in an amount of about 5 to 50 parts by weight, preferably 10 to 30 parts by weight. Furthermore, in the present invention, when mixing the liquid lubricant with the PTFE powder, various additives are added, such as pigments for coloring, improving strength against compression, improving wear resistance, and preventing low-temperature flow. Carbon black, graphite, silica powder, asbestos powder, glass powder, metal powder, metal oxide powder, metal sulfide powder, etc. can also be mixed. Unfired PTFE obtained by the above molding process
Although the sheet contains a liquid lubricant, in the present invention, after forming the sheet, the liquid lubricant is removed by a heating method, an extraction method, or a combination thereof. The liquid lubricant is thus removed from the unfired
Next, predetermined PTFE sheets are stacked together with a thin layer of silicone resin interposed therebetween. The sheets can be stacked together via a thin layer of silicone resin in various ways. For example, the surface of each sheet is soaked in a silicone resin liquid,
A method can be adopted in which the silicone resin is applied by spray coating or roll coating, and the sheets are polymerized with the coated surfaces facing each other, or a method in which a silicone resin liquid is applied to the surface of one sheet and an uncoated sheet is polymerized on the coated surface. . In any case,
A thin layer of silicone resin is interposed between the contact surfaces of the sheets to be overlapped. The silicone resin liquid used is an emulsion, solution, oil, grease, varnish, etc. in a state that can be applied to the surface of the PTFE sheet. Commercially available products include Shin-Etsu Chemical Co., Ltd. under the trade names KM763, KM764E,
KM765, KM722, KM740, KM751, KM410,
Examples include KF410, KS700, KS701, KS751, KS785, TSM630 (trade name manufactured by Toshiba Silicone Company), and SH7024 (trade name), SH7036, SH7050 (manufactured by Toray Silicone Company). In addition, when using a silicone resin emulsion, solution, or varnish, it is preferable that the silicone resin concentration is about 0.2 to 30% by weight in terms of ease of application work. In addition, when these silicone resin liquids are used, the solvent is removed by drying after application, and the silicone resin is fixed and formed in a thin layer on the surface of the PTFE sheet. Drying temperature varies depending on the type of solvent, but is usually around 50-300℃
That's about it. In the present invention, the silicone resin thin layer interposed between the superposed PTFE sheets is intended to prevent the sheets from fusing together during firing and stretching of the multilayered sheet, which is performed by heating to a temperature higher than the melting point of PTFE. and its thickness is approximately 0.1 to 10 μm
It is preferable that If the thickness of the silicone resin thin layer is within the above range, polymerization is possible.
Of course, it is possible to prevent fusion of PTFE sheets, and although the reason is not clear, the silicone resin flows into the micropores formed in the sheet during stretching and closes the micropores, resulting in a porous structure. There is almost no inconvenience such as reducing the air permeability of the sheet, or the silicone resin remaining on the surface of the peeled porous sheet becomes an obstacle when the porous sheet is bonded to cloth or the like. In the present invention, the PTFE sheets are stacked on top of each other with a silicone resin thin layer interposed therebetween as described above, and then arranged so that both ends of the sheet stack in the direction in which it is to be stretched are outside the heating zone, The part of the sheet layered material placed inside the heating zone is
As well as being heated and fired above the melting point of PTFE,
Each sheet is stretched in at least one axial direction with the two ends as starting points, and countless micropores are formed in each sheet. In the firing/stretching process of the present invention, arranging both ends of the sheet multilayer material in the direction in which it is to be stretched is outside the heating zone is most effective when the multilayer material is hot stretched at a high temperature higher than the melting point of PTFE. By keeping the temperature at both ends of the layered material, where a large force acts, below the melting point of PTFE, preferably below the softening point, to prevent softening or melting of the both ends, the mechanical strength of the both ends can be maintained, and hot stretching can be achieved. This is to prevent the multilayered material from breaking during the process. At this time, the portion of the multilayered sheet placed in the heating zone is heated to a temperature higher than the melting point of PTFE, but in order to perform the firing uniformly and in a short time, and to prevent deterioration due to heating, the heating is performed at approximately 340 to 420°C. It is preferable to do so. In addition, the stretching speed is usually about 100%/
It is preferably 10%/second or less. In this step, as described above, the portion of the layered sheet placed within the heating zone is heated and baked and stretched in at least one axis. The purpose of stretching is to form countless micropores in each sheet that makes up the multilayered material, and the stretching rate is determined according to the purpose.
Porosity, pore diameter, stretching direction of PTFE porous sheet,
It is determined depending on the number of stretching axes, etc., but usually about 15~
It is approximately 1500%, and considering the effect of forming micropores by stretching, the uniformity of the diameter of the micropores, etc., it is preferably approximately 20 to 1200%. In the present invention, when uniaxial stretching is performed in the firing/stretching process, both ends in the non-stretching direction are placed outside the heating zone in the same way as both ends in the stretching direction, or the ends in the non-stretching direction are placed within the heating zone. It is preferable to fix both ends with chucks, clips, etc., and to regulate the dimensions so that the distance between the ends does not change, since this facilitates the formation of micropores during stretching. After the sheet multilayer product has undergone the above firing and stretching process, the sheets are peeled off from each other. Peeling the sheets together is easy because a thin layer of silicone resin is interposed between the sheets.
A plurality of fired porous PTFE sheets are obtained. The porosity and the pore diameter of the porous sheet obtained by the method of the present invention are determined by the stretching ratio,
Although it varies depending on the stretching direction, the number of stretching axes, heating and firing temperature, etc., the porosity is usually about 35 to 95%, and the diameter of the micropores is about 0.01 to 50 μm. In order to improve the dimensional stability of the fired porous PTFE sheet, in the present invention, the stretched state of the porous sheet is maintained before or after peeling, in other words, the length in the stretching direction is dimensionally regulated. Heat treatment can be performed. By performing this heat treatment, the stretched state of the porous sheet can be fixed, and a sheet with excellent dimensional stability when used at high temperatures can be obtained. If the above-mentioned restrictions are not carried out during this heat treatment, the micropores will be significantly reduced or even disappear, which is not preferable. Incidentally, if the length of the porous sheet in a direction other than the stretching direction is further regulated during the heat treatment, reduction and disappearance of micropores can be more effectively prevented. Measures for controlling the dimensions of the porous sheet during the heat treatment mentioned above include, for example, grasping both ends of the porous sheet in the stretching direction with chucks, clips, etc., and heating while maintaining the gap, or using a feed roll that rotates at approximately constant speed. Examples include a method of heating between a winding roll and a winding roll. The heat treatment temperature shall be higher than the operating temperature of the porous sheet. Although the basic aspects of the present invention are as described above, the present invention also includes the following aspects (a) to (c). (a) An unfired PTFE sheet obtained by roll rolling is pre-stretched at a temperature below the melting point of PTFE,
The pre-stretched sheets or the pre-stretched sheet and the non-pre-stretched sheet are stacked together with a silicone resin thin layer interposed therebetween, and then stretched in the pre-stretching direction and/or in a direction other than the stretching direction in the firing/stretching process. While baking,
A mode in which the sheets are then peeled off from each other. (b) The sheets are stacked together with a thin layer of silicone resin interposed therebetween, and the sheet stack is pre-stretched at a temperature below the melting point of PTFE, and then in the firing/stretching step, the sheets are stretched in the pre-stretching direction and/or in a direction other than the stretching direction. A mode in which the sheets are fired while being stretched in the same direction, and then the sheets are peeled off from each other. (c) A mode in which the sheet multilayer material is fired and stretched, then stretched at a temperature below the melting point of PTFE in the stretching direction in the firing and stretching step and/or in a direction other than the stretching direction, and then the sheets are peeled from each other. Also included. In the embodiments (a) and (b) above, when stretching in the firing/stretching process is performed in a direction other than the preliminary stretching direction, the length in the preliminary stretching direction is dimensionally regulated during the firing/stretching process, and (c ) In the case where the stretching after the firing/stretching step is performed in a direction other than the stretching direction in the firing/stretching step, the firing/stretching
The length of the stretching process in the stretching direction is regulated. If the above-mentioned size restrictions are not applied, the stretched state in the direction in which the size should be restricted cannot be maintained, which is not preferable. According to these embodiments (a), (b), and (c), a porous sheet with a high porosity or a relatively large micropore diameter can be obtained. Accordingly, in the present invention, unfired PTFE sheets are stacked on top of each other with a thin layer of silicone resin interposed therebetween, and both ends of the stacked sheet in the direction in which it is to be stretched are placed outside the heating zone. PTFE porous sheets can be fired and stretched at the same time without thermal adhesion, and porous PTFE sheets can be efficiently produced, and thermal energy consumption can be saved. Hereinafter, the present invention will be explained in more detail by way of Examples with reference to the drawings, but these are not intended to limit the present invention. In addition, "parts" in the examples means "parts by weight." Example 1 100 parts of PTFE powder (product name: Teflon 6J, manufactured by Mitsui Fluorochemical Co., Ltd.) to 100 parts of liquid lubricant Naphtha No. 1 20
The mixture was uniformly mixed and pre-compressed at a pressure of 20 kg/cm 2 , then extruded into a round bar shape, and then passed between a pair of metal rolling rolls to a thickness of 110 μm. , to obtain a long sheet with a width of 115 mm. Heat the sheet at 120°C for 2 minutes to remove the liquid lubricant. Next, a water-based emulsion of silicone resin (manufactured by Shin-Etsu Chemical Co., Ltd., trade name KM-765) was diluted to a concentration of 5% by weight and applied to one side of the unfired PTFE sheet by roll coating, and the thickness of the coating was thickened using a doctor knife. By adjusting the thickness and heating at a temperature of 150° C. for 1 minute, water is removed and a thin layer of silicone resin with a thickness of 0.2 μm is fixedly formed on one side of the sheet. After that, a thin layer of silicone resin was formed.
Two PTFE sheets are stacked one on top of the other so that the thin layers face each other, and wound into a roll around a tubular core. Thereafter, as shown in FIG. 1, the sheet multilayer material 1 wound on a tubular core is set on the feeding side of the stretching device, and one end of the sheet in the longitudinal direction is guided to the winding roll 2, and the heating zone 3 is heated. Keep the temperature at 360℃,
The rotation speed of the pair of pinch rolls 5 provided on the exit side of the heating zone 3 is set higher than the rotation speed of the pair of pinch rolls 4 provided on the entrance side of the heating zone 3, and the sheet multilayer material 1 is heated in the heating zone. While firing the placement part, it is stretched by 30% in the length direction at a stretching rate of 2%/sec. In this case, pinch rolls 4 and 5 have a temperature of 20
C. cold air was blown to prevent the base point 6.7 from softening or melting during stretching of the portion of the sheet multilayer material 1 disposed in the heating zone. Note that 8 and 9 are guide rolls, and 10 is a cooling roll. After firing and stretching, the sheets are peeled off to a thickness of 100μ.
m, width 103mm, porosity 33%, average pore diameter 0.05μ
Two fired PTFE porous sheets (sample 1) of m were obtained. In addition, the porosity is ASTM-D1457-
56T, the true specific gravity (P 0 ) was measured using n-butanol, and the apparent specific gravity (P 1 ) was measured using water, and calculated using the following formula. Porosity (%)=P 0 −P 1 /P 0 ×100 In addition, the pore diameters of the micropores were each measured by the BET method. Furthermore, the adhesiveness and air permeability of this porous sheet were measured. The data obtained are shown in Table 1 below. "Adhesion" is a PTFE porous sheet with a thin silicone resin layer formed on the nylon/cotton mixed woven fabric (warp nylon thread 70 denier, weft thread 80 denier double thread) with a polyamide-based hot-melt adhesive. 35%, one cycle is 9 minutes of washing, 10 minutes of rinsing, and 6 minutes of dehydration, depending on the number of cycles until peeling occurs between the porous sheet and the nylon/cotton fabric. evaluated. The porous sheet and the nylon/cotton mixed woven fabric were bonded together by heating and pressing for 30 seconds at a temperature of 140° C. and a pressure of 3 kg/cm 2 using a hot melt adhesive manufactured by Nippon Rilsan Co., Ltd. under the trade name Platamide H105P. In addition, the washing machine manufactured by Hitachi, trade name Aozora PF2350 was used. Moreover, "air permeability" was measured by JIS-P-8117, Gurley densometer type A. On the other hand, except for setting the thickness of the silicone resin thin layer or the stretching conditions as shown in Table 1, all operations were carried out in the same manner as in the case of Sample 1, and Samples 2 to 2 were
A porous sheet of No. 6 was obtained. For reference, data for a porous sheet (sample 7) obtained by firing and stretching one PTFE sheet used to obtain these porous sheets under the same conditions as sample 1 is also shown. Example 2 A porous sheet having a length 11.4 times the length before stretching (stretching ratio 1040%) was produced by performing all operations in the same manner as Sample 2 except that firing and stretching were repeated five times in the longitudinal direction of the sheet. (Sample 8) was obtained. Example 3 All cases are Sample 4 except that a thin silicone resin layer is formed on one PTFE sheet, the thin layer is not formed on the other PTFE sheet, and both PTFE sheets are overlapped with a thin silicone resin layer interposed therebetween. A porous sheet (sample 9) was obtained in the same manner as above.
Note that the air permeability and adhesiveness data in this case are those of a porous sheet obtained from a sheet on which a thin layer of silicone resin is formed. Example 4 A thin layer of silicone resin with a thickness of 5 μm was formed on the same unfired PTFE sheet used in Example 1, and then pre-stretched at a temperature of 120° C. to a stretching ratio of 100% in the longitudinal direction. This pre-stretched product has a thickness of 100 μm, a porosity of 66%, and an average pore diameter of 0.1 μm.
Twelve m sheets are stacked together with a thin layer of silicone resin interposed therebetween. Thereafter, this multi-layered sheet was stretched in the longitudinal direction at a stretching rate of 200% at a temperature of 380°C and a stretching rate of 0.2%/sec, and the sheets were peeled off from each other to obtain a porous sheet (sample 10). Ta. Example 5 The same sheet multilayer material 1 used in Example 1 was
As shown in the figure, the material is passed through a pinch roll 4 and introduced into a heating zone 3 in which the width of the heating region increases from the inlet side to the outlet side. Heating zone 3
The temperature is maintained at 350℃. Then, both ends of the sheet stack 1 in the width direction are grasped by the chucks of the tenter-type stretching machine 11 installed outside both ends of the heating zone 3, and the portion of the molded product 1 disposed inside the heating zone is stretched in the width direction. At the same time, the film is stretched by 200% and stretched in the length direction by the speed difference between the pinch rolls 4 and 5. Note that the stretching speed was 0.5%/sec in the length direction and 1.5%/sec in the width direction. After firing and stretching, the sheets were peeled off from each other to obtain a porous sheet (Sample 11). Example 6 All samples were the same as Sample 5 except that after firing and stretching, the longitudinal direction of the sheet layered product was restricted and the sheet was stretched in the width direction at a temperature of 130°C and a stretching rate of 3.6%/sec (stretching rate of 400%).
A porous sheet (sample 12) was obtained in the same manner as above.

【表】 上記実施例および参考例から明らかなように、
本発明の方法によれば、焼成・延伸時にシリコー
ン樹脂が微孔を閉塞せしめるようなことがなく、
また残留シリコーン樹脂による接着性の低下も生
じないことが判る。
[Table] As is clear from the above examples and reference examples,
According to the method of the present invention, the silicone resin does not block the micropores during firing and stretching.
It is also seen that there is no decrease in adhesiveness due to residual silicone resin.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に用いられる多孔質シート製造
装置の概略を示す側面図、第2図は他の装置の要
部を示す平面図である。 1……シート重層物、3……加熱ゾーン、4,
5……ピンチロール。
FIG. 1 is a side view schematically showing a porous sheet manufacturing apparatus used in the present invention, and FIG. 2 is a plan view showing the main parts of another apparatus. 1...Sheet multilayer material, 3...Heating zone, 4,
5...Pinch roll.

Claims (1)

【特許請求の範囲】[Claims] 1 ポリテトラフルオロエチレン粉末に適量の液
状潤滑剤を加えて成る混和物をロール圧延により
シート状に成形し、このシートの所定枚数をシリ
コーン樹脂薄層を介して重ね合わせ、次いで該シ
ート重層物をその延伸すべき方向の両端が加熱ゾ
ーンの外部に存在するように配置し、該シート重
層物の加熱ゾーン内配置部分をポリテトラフルオ
ロエチレンの融点以上の温度に加熱して焼成しな
がら少なくとも1軸方向に延伸せしめ、その後シ
ート同志を剥離することを特徴とする焼成された
ポリテトラフルオロエチレン多孔質シートの製造
法。
1 A mixture of polytetrafluoroethylene powder and an appropriate amount of liquid lubricant is formed into a sheet by roll rolling, a predetermined number of these sheets are stacked together with a thin layer of silicone resin interposed therebetween, and then the sheet stack is The sheet is arranged so that both ends in the direction in which it is to be stretched are outside the heating zone, and at least one axis of the multilayer sheet is heated and fired at a temperature higher than the melting point of polytetrafluoroethylene. 1. A method for producing a fired porous polytetrafluoroethylene sheet, which comprises stretching the porous sheet in a direction and then peeling the sheets together.
JP8794083A 1983-05-18 1983-05-18 Production of calcined porous polytetrafluoroethylene sheet Granted JPS59213740A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8794083A JPS59213740A (en) 1983-05-18 1983-05-18 Production of calcined porous polytetrafluoroethylene sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8794083A JPS59213740A (en) 1983-05-18 1983-05-18 Production of calcined porous polytetrafluoroethylene sheet

Publications (2)

Publication Number Publication Date
JPS59213740A JPS59213740A (en) 1984-12-03
JPS636581B2 true JPS636581B2 (en) 1988-02-10

Family

ID=13928894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8794083A Granted JPS59213740A (en) 1983-05-18 1983-05-18 Production of calcined porous polytetrafluoroethylene sheet

Country Status (1)

Country Link
JP (1) JPS59213740A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH035287U (en) * 1989-06-08 1991-01-18

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0689165B2 (en) * 1990-01-29 1994-11-09 ダイキン工業株式会社 Polytetrafluoroethylene porous membrane and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH035287U (en) * 1989-06-08 1991-01-18

Also Published As

Publication number Publication date
JPS59213740A (en) 1984-12-03

Similar Documents

Publication Publication Date Title
US5102921A (en) Polytetrafluoroethylene porous material and process for producing the same
JP3580790B2 (en) Asymmetric porous polytetrafluoroethylene membrane and method for producing the same
US4049589A (en) Porous films of polytetrafluoroethylene and process for producing said films
JP3795027B2 (en) Asymmetric porous polytetrafluoroethylene membrane for filters
RU2124391C1 (en) Method of manufacturing multilayer polytetrafluoroethylene porous membrane and half-sintered polytetrafluoroethylene multilayer film
CA1099464A (en) Asymmetric porous film materials and process for producing same
US20180111158A1 (en) Method of manufacturing composite film
KR102352507B1 (en) A method for manufacturing a composite membrane and an apparatus for manufacturing a composite membrane
KR102624962B1 (en) Method for manufacturing composite membrane
NO340467B1 (en) Tissue reinforced separator and continuous method to produce the same.
PL117817B1 (en) Inorganic monolithic fibre provided with channel and method of making the sameizgotovlenija neorganicheskikh monolitnykh volokon s kanalikom
GB2081604A (en) Hydrophilic polymer coated microporous membranes capable of use as a battery separator
TW200405603A (en) Electrical separator, production thereof and use in lithium high power batteries
US5807633A (en) Polytetrafluoroethylene composite fiber, cotton-like materials obtained therefrom and processes for production thereof
CN111344054A (en) Base film for impregnation, improved impregnated product and related method
CN114243218B (en) Diaphragm with smooth diaphragm surface and preparation method and application thereof
EP0092210B1 (en) Wholly aromatic polyamide fiber non-woven sheet and processes for producing the same
JPS636581B2 (en)
JPH1180397A (en) Polytetrafluoroethylene porous film and its production
TW476660B (en) Hollow fiber porous membrane made of a perfluorinated thermoplastic polymer, method of producing the same and a hollow fiber contactor membrane made of a prefluorinated thermoplastic polymer
JP4101100B2 (en) Asymmetric porous polytetrafluoroethylene membrane for clothing
JPS636580B2 (en)
CN112295420B (en) Asymmetric pore structure water filtration membrane and preparation process thereof
JPS5825368B2 (en) Method for manufacturing porous polytetrafluoroethylene film
JP4953939B2 (en) Nonwoven manufacturing method