JPS6365607B2 - - Google Patents

Info

Publication number
JPS6365607B2
JPS6365607B2 JP18399584A JP18399584A JPS6365607B2 JP S6365607 B2 JPS6365607 B2 JP S6365607B2 JP 18399584 A JP18399584 A JP 18399584A JP 18399584 A JP18399584 A JP 18399584A JP S6365607 B2 JPS6365607 B2 JP S6365607B2
Authority
JP
Japan
Prior art keywords
mol
lime powder
fluidity
sio
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18399584A
Other languages
Japanese (ja)
Other versions
JPS6163528A (en
Inventor
Shigeru Mori
Yutaka Harasawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP18399584A priority Critical patent/JPS6163528A/en
Publication of JPS6163528A publication Critical patent/JPS6163528A/en
Publication of JPS6365607B2 publication Critical patent/JPS6365607B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Glanulating (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は石灰粉の流動性を改善する方法に関
し、更に詳述すると操作上安全にしかも簡単かつ
確実に石灰粉の流動性を改善することができる石
灰粉流動性改善方法に関する。 従来技術及びその問題点 従来より、石灰粉、特に生石灰粉は耐火物製
造、パルプ及び紙の処理剤、脱硫剤等として有効
に使用されているが、生石灰粉は吸湿性を有する
ため、そのままでは吸湿して流動性がなくなるの
で取り扱いに不便を生じる。 このために従来、生石灰等の石灰粉の流動性を
改善する方法として、石灰粉をメチルハイドロジ
エンポリシロキサン、末端トリメチルジメチルシ
ロキサン、末端水酸基ジメチルシロキサン、末端
トリメチルシロキシメチルメトキシポリシロキサ
ン等で処理する方法が提案されている(特開昭55
−47223号、特開昭58−120519号、特公昭57−
7085号、特公昭57−7087号)。 しかしながら、メチルハイドロジエンポリシロ
キサンを石灰粉の流動性改善剤として用いる方法
は、処理が進むに従い水素ガスが発生し、爆発の
危険性が生じる。例えば、石灰粉100gを で示されるメチルハイドロジエンポリシロキサン
0.1gで処理すると、最大36mlの水素ガスが発生
する。従つて、石灰粉を容器内で処理したり処理
品を貯蔵する場合、水素ガスの爆発範囲外にする
ため、不活性ガスや不燃性溶剤(塩素化溶剤等)
で希釈したり、容器の開口部を大きくする必要が
あるが、希釈処理を行なうことは煩雑である上、
特に不燃性溶剤で希釈した場合には後工程で溶剤
を除去しなければならない面倒がある。また、容
器の開口部を大きくした場合、処理が進んで石灰
粉の流動性が増大すると粉体が飛散するおそれが
生じる。 また、末端トリメチルシリル又は末端水酸基ジ
メチルポリシロキサンを流動性改善剤とした場合
は、長時間の処理時間を要し、流動性改善効果が
発現するまでにかなりの時間を必要とする上、強
力な撹拌処理を行なわなければならず、処理性に
問題がある。 更に、末端トリメチルシリルメチルメトキシポ
リシロキサンを用いる方法は、この化合物自体を
製造するのが複雑で、コストが高価なものにな
る。 発明の概要 本発明者らは、上記事情に鑑み、安全に作業で
き、しかも作業性の良好な石灰粉の流動性改善方
法につき鋭意検討を行なつた結果、下記一般式
() (R3 3SiO1/2l(R2 2SiO2/2n(R1SiO3/2o …() (但し、R1、R2、R3はそれぞれ互に同種もしく
は異種の一価炭化水素基、l=0〜35モル%、m
=35〜95モル%、n=5〜30モル%、l+m+n
=100モル%である)で示されるオルガノポリシ
ロキサンが石灰粉流動性改善剤として優れた特性
を有し、この種の化合物を石灰粉100部(重量部、
以下同じ)に対して0.02〜1部の割合で用いて処
理を行なうことにより、上記目的を達成し得るこ
とを知見した。 即ち、上記のようなR1SiO3/2単位を5〜30モル
%含む化合物を用いて石灰粉の処理を行なつた場
合、水素ガスの発生がなく、またメチルアルコー
ルのような可燃性ガスの発生も少ないので、安全
に作業でき、しかもこのように水素ガスの発生が
なく、メチルアルコールの発生が少ないため、不
活性ガスや不燃性溶剤で希釈する必要がない上、
室温で作業でき、必ずしも強い撹拌を行なわなく
てもよく、更に石灰粉に対し微量の使用でかつ比
較的短時間で流動性改善効果を付与することがで
きるなど、作業性が良好で簡単かつ確実に石灰粉
の流動性を改善し得、また上記化合物は比較的簡
単に製造できて安価であるため、処理費を低減し
得ることを知見し、本発明をなすに至つたもので
ある。 以下、本発明につき更に詳しく説明する。 発明の構成 本発明の石灰粉流動性改善方法は、生石灰、消
石灰、炭酸カルシウム等の石灰粉、特に100メツ
シユより細かい粒度の石灰粉の流動性を改善する
のに好適に採用し得、これらの石灰粉を下記一般
式() (R3 3SiO1/2l(R2 2SiO2/2n(R1SiO3/2o …() (但し、R1、R2、R3はそれぞれ互に同種もしく
は異種の一価炭化水素基、l=0〜35モル%、m
=35〜95モル%、n=5〜30モル%、l+m+n
=100モル%である)で示されるオルガノポリシ
ロキサンの1種又は2種以上で処理することを特
徴とするものである。 ここで、()式のオルガノポリシロキサンと
しては、R1、R2及びR3がそれぞれメチル基、エ
チル基等の低級アルキル基であるものが好適に使
用される。特に、R1、R2、R3がそれぞれメチル
基であり、l=2〜35モル%、m=40〜93モル
%、n=5〜25モル%であるメチルポリシロキサ
ンが好ましく用いられる。この場合、上記()
式において、R3 3SiO1/2単位は必ずしも必要としな
いが、重合度調整のために導入され、そのモル%
は上述したように35モル%以下、特に2〜35モル
%であることが好ましい。また、R1SiO3/2単位は
石灰粉を処理する場合の流動性改善効果の発現を
早くするために必要であり、そのモル%は5〜30
モル%、特に好ましくは上述したように5〜25モ
ル%とするもので、5モル%より少ないと流動性
改善効果の発現が遅くなり、30モル%より多くな
ると安定なポリシロキサン流体を得ることが困難
となり、好ましくない。 また、上記化合物としては、25℃の粘度が1〜
500cs、特に1〜100csであるものが好ましい。 なお、上記()式のオルガノポリシロキサン
は公知の方法で製造し得、一般には、それぞれ相
当する加水分解性基(塩素等)を有するシラン類
の共加水分解法(必要に応じてトルエン等の溶媒
を使用し得る)によつて製造される。このため、
ポリシロキサン流体は一般に製造上から数%以下
の水酸基又はアルコキシ基を含有するものとして
得られる。またこの場合粘度調整のため活性白
土、硫酸等の触媒を用いて重合する方法も採用し
得る。 本発明は上記()式のオルガノポリシロキサ
ンを用いて石灰粉を処理するものであるが、この
場合上記化合物の使用量は石灰粉100部に対し
0.02〜1部とするものであり、使用量が0.02部よ
り少ない場合及び1部より多い場合のいずれも石
灰粉流動性改善効果が十分発揮されない。なお、
上記化合物の好適な使用量範囲は石灰粉100部に
対し0.1〜0.5部である。 上記化合物で石灰粉を処理する方法としては、
通常採用されている方法を用いることができ、例
えば石灰粉に上記化合物を添加し、振盪撹拌等の
適宜な撹拌法を使用して石灰粉に上記化合物を均
一に混合する方法が採用し得る。この場合、撹拌
は必ずしも強撹拌でなくてもよい。処理温度は特
に制限されず、室温〜100℃とすることができる
が、室温で十分処理でき、本発明によれば雰囲気
温度で混合処理することにより流動性の高い石灰
粉を確実に得ることができる。また、処理時間も
限定されないが、通常10分〜1時間であり、本発
明によれば比較的短時間の処理で石灰粉の流動性
を改善し得る。なお、本発明においては、水素ガ
スは発生せず、メチルアルコール発生量も非常に
少ないため、不活性ガスや不燃性ガスで希釈する
必要はなく、空気雰囲気下で処理を行なうことが
でき、無溶剤状態で処理し得る。 発明の効果 以上述べたように、本発明の石灰粉流動性改善
方法は特定のオルガノポリシロキサンを特定量使
用したことにより、水素の発生をなくし、かつメ
チルアルコールの発生を少なくして安全に処理を
行なうことができ、かつ室温において比較的短時
間で処理し得る上、微量の処理剤を用いるだけで
十分高い流動性を有する石灰粉を確実に得ること
ができ、しかもコスト的にも安価である。 以下、実施例と比較例を示し、本発明を具体的
に説明するが、本発明は下記の実施例に制限され
るものではない。 実施例、比較例 (CH33SiCl、(CH32SiCl2、CH3SiCl3をそれ
ぞれ第1表に示す割合で使用し、常法に従つて加
水分解を行なつてメチルポリシロキサンを得た。
INDUSTRIAL APPLICATION FIELD The present invention relates to a method for improving the fluidity of lime powder, and more specifically, to a method for improving the fluidity of lime powder that is operationally safe, simple and reliable. . Prior art and its problems Lime powder, especially quicklime powder, has been effectively used in the manufacture of refractories, as a treatment agent for pulp and paper, as a desulfurizing agent, etc. However, since quicklime powder has hygroscopic properties, it cannot be used as is. It becomes inconvenient to handle because it absorbs moisture and loses fluidity. To this end, a conventional method for improving the fluidity of lime powder such as quicklime is to treat lime powder with methylhydrodiene polysiloxane, terminal trimethyldimethylsiloxane, terminal hydroxyl dimethylsiloxane, terminal trimethylsiloxymethylmethoxypolysiloxane, etc. has been proposed (Japanese Unexamined Patent Publication No. 1983)
−47223, JP-A-58-120519, JP-A-57-
7085, Special Publication No. 57-7087). However, in the method of using methylhydrodiene polysiloxane as a fluidity improver for lime powder, hydrogen gas is generated as the treatment progresses, creating a risk of explosion. For example, 100g of lime powder Methylhydrodiene polysiloxane represented by
When treated with 0.1g, up to 36ml of hydrogen gas is generated. Therefore, when processing lime powder in containers or storing processed products, use inert gas or nonflammable solvents (such as chlorinated solvents) to keep them out of the explosion range of hydrogen gas.
It is necessary to dilute it with water or make the opening of the container larger, but the dilution process is complicated and
Particularly when diluting with a non-flammable solvent, there is the trouble of having to remove the solvent in a subsequent process. Furthermore, if the opening of the container is made large, there is a risk that the powder will scatter as the treatment progresses and the fluidity of the lime powder increases. In addition, when trimethylsilyl terminal or dimethyl polysiloxane terminal hydroxyl group is used as a fluidity improver, a long processing time is required, a considerable amount of time is required for the fluidity improvement effect to appear, and strong stirring is required. Processing must be performed, and there is a problem with processability. Moreover, the process using terminal trimethylsilylmethylmethoxypolysiloxanes makes the compound itself complicated to produce and expensive. SUMMARY OF THE INVENTION In view of the above circumstances, the present inventors have conducted intensive studies on a method for improving the fluidity of lime powder that is safe to work with and has good workability.As a result, the following general formula () (R 3 3 SiO 1/2 ) l (R 2 2 SiO 2/2 ) n (R 1 SiO 3/2 ) o … () (However, R 1 , R 2 , and R 3 are the same or different types of monovalent carbonization. Hydrogen group, l = 0 to 35 mol%, m
=35-95 mol%, n=5-30 mol%, l+m+n
= 100 mol%) has excellent properties as a lime powder fluidity improver.
It has been found that the above object can be achieved by performing the treatment using 0.02 to 1 part of the compound (the same applies hereinafter). That is, when lime powder is treated using a compound containing 5 to 30 mol% of R 1 SiO 3/2 units as described above, no hydrogen gas is generated and flammable gases such as methyl alcohol are not generated. Since there is little generation of hydrogen gas, it is safe to work, and since there is no generation of hydrogen gas and little methyl alcohol generation, there is no need to dilute with inert gas or nonflammable solvent.
It can be worked at room temperature, does not necessarily require strong stirring, and can improve the fluidity of lime powder in a relatively short amount of time, making it easy and reliable to work with. The inventors have discovered that the fluidity of lime powder can be improved, and since the above compound is relatively easy to produce and inexpensive, processing costs can be reduced, leading to the present invention. The present invention will be explained in more detail below. Structure of the Invention The method for improving the fluidity of lime powder of the present invention can be suitably employed to improve the fluidity of lime powder such as quicklime, slaked lime, calcium carbonate, etc., especially lime powder with a particle size finer than 100 mesh. Lime powder is expressed by the following general formula () (R 3 3 SiO 1/2 ) l (R 2 2 SiO 2/2 ) n (R 1 SiO 3/2 ) o … () (However, R 1 , R 2 , R 3 are the same or different monovalent hydrocarbon groups, l = 0 to 35 mol%, m
=35-95 mol%, n=5-30 mol%, l+m+n
= 100 mol%) is characterized in that it is treated with one or more organopolysiloxanes. Here, as the organopolysiloxane of formula (), one in which R 1 , R 2 and R 3 are each a lower alkyl group such as a methyl group or an ethyl group is preferably used. In particular, methylpolysiloxanes in which R 1 , R 2 , and R 3 are each methyl groups, l = 2 to 35 mol %, m = 40 to 93 mol %, and n = 5 to 25 mol % are preferably used. In this case, the above ()
In the formula, the R 3 3 SiO 1/2 unit is not necessarily required, but is introduced to adjust the degree of polymerization, and its mol%
As mentioned above, it is preferably 35 mol% or less, particularly 2 to 35 mol%. In addition, R 1 SiO 3/2 units are necessary to accelerate the expression of the fluidity improvement effect when processing lime powder, and its mol% is 5 to 30
The mole%, particularly preferably 5 to 25 mole% as mentioned above, is less than 5 mole%, the fluidity improvement effect is delayed, and more than 30 mole%, it is difficult to obtain a stable polysiloxane fluid. This makes it difficult and undesirable. In addition, the above compound has a viscosity of 1 to 25°C.
500 cs, especially 1 to 100 cs is preferred. The organopolysiloxane of the above formula () can be produced by a known method, and is generally a co-hydrolysis method of silanes having corresponding hydrolyzable groups (chlorine, etc.) (if necessary, using toluene, etc.). solvents may be used). For this reason,
Polysiloxane fluids are generally obtained containing several percent or less of hydroxyl groups or alkoxy groups due to manufacturing considerations. In this case, a method of polymerization using a catalyst such as activated clay or sulfuric acid may also be adopted to adjust the viscosity. In the present invention, lime powder is treated using the organopolysiloxane of the above formula (), but in this case, the amount of the above compound used is per 100 parts of lime powder.
The amount used is 0.02 to 1 part, and neither the amount used is less than 0.02 part nor more than 1 part, the lime powder fluidity improving effect is not sufficiently exhibited. In addition,
The preferred amount range of the above compound is 0.1 to 0.5 parts per 100 parts of lime powder. The method for treating lime powder with the above compounds is as follows:
A commonly used method can be used, such as adding the above-mentioned compound to lime powder and uniformly mixing the above-mentioned compound into the lime powder using an appropriate stirring method such as shaking and stirring. In this case, stirring does not necessarily have to be strong stirring. The treatment temperature is not particularly limited and can be from room temperature to 100°C, but the treatment is sufficient at room temperature, and according to the present invention, lime powder with high fluidity can be reliably obtained by mixing at ambient temperature. can. Further, the treatment time is not limited, but is usually 10 minutes to 1 hour, and according to the present invention, the fluidity of lime powder can be improved with a relatively short treatment time. In addition, in the present invention, since hydrogen gas is not generated and the amount of methyl alcohol generated is very small, there is no need to dilute with inert gas or nonflammable gas, and the treatment can be carried out in an air atmosphere. Can be processed in solvent. Effects of the Invention As described above, the method for improving lime powder fluidity of the present invention uses a specific amount of a specific organopolysiloxane, thereby eliminating the generation of hydrogen and reducing the generation of methyl alcohol, resulting in safe processing. It can be processed at room temperature in a relatively short time, and lime powder with sufficiently high fluidity can be reliably obtained by using only a small amount of processing agent, and it is also inexpensive. be. EXAMPLES Hereinafter, the present invention will be specifically explained by showing examples and comparative examples, but the present invention is not limited to the following examples. Examples and Comparative Examples Methylpolysiloxane was obtained by using (CH 3 ) 3 SiCl, (CH 3 ) 2 SiCl 2 and CH 3 SiCl 3 in the proportions shown in Table 1 and hydrolyzing them according to a conventional method. I got it.

【表】 次に、200メツシユパス(250メツシユパス8
%、325メツシユパス40%)の生石灰100部に上記
メチルポリシロキサンをそれぞれ0.1部及び0.3部
添加し、これを撹拌器付き300c.c.丸底フラスコに
入れ、室温で1時間混合撹拌処理を行なつた。 比較のため、25℃における粘度が20csの末端ト
リメチルシリル基ジメチルシロキサン(比較例
1)及び25℃の粘度が20csの末端水酸基含有ジメ
チルシロキサン(比較例2)を用いて同様の処理
を行なつた。 以上の方法で処理された生石灰の安息角を測定
し、流動性を評価した。結果を第2表に示す。な
お、未処理の生石灰の安息角は53゜であつた。
[Table] Next, 200 mesh passes (250 mesh passes 8
%, 325 mesh pass 40%) was added with 0.1 part and 0.3 parts of the above methylpolysiloxane, respectively, and placed in a 300 c.c. round bottom flask with a stirrer, and mixed and stirred at room temperature for 1 hour. Summer. For comparison, the same treatment was carried out using a dimethylsiloxane with a terminal trimethylsilyl group (Comparative Example 1) having a viscosity of 20 cs at 25°C and a dimethylsiloxane containing a terminal hydroxyl group (Comparative Example 2) with a viscosity of 20 cs at 25°C. The angle of repose of the quicklime treated using the above method was measured to evaluate its fluidity. The results are shown in Table 2. The angle of repose of untreated quicklime was 53°.

【表】【table】

【表】 第2表の結果より、本発明のオルガノポリシロ
キサンを用いることによつて短時間で生石灰粉の
流動性を改善し得ることが知見された。
[Table] From the results in Table 2, it was found that the fluidity of quicklime powder could be improved in a short time by using the organopolysiloxane of the present invention.

Claims (1)

【特許請求の範囲】 1 下記一般式() (R3 3SiO1/2l(R2 2SiO2/2n(R1SiO3/2o …() (但し、R1、R2、R3はそれぞれ互に同種もしく
は異種の一価炭化水素基、l=0〜35モル%、m
=35〜95モル%、n=5〜30モル%、l+m+n
=100モル%である)で示されるオルガノポリシ
ロキサン0.02〜1重量部を用いて石灰粉100重量
部を処理することを特徴とする石灰粉の流動性改
善方法。 2 一般式()の化合物としてR1、R2、R3
それぞれメチル基であり、l=2〜35モル%、m
=40〜93モル%、n=5〜25モル%であるメチル
ポリシロキサン流体を用いた特許請求の範囲第1
項記載の方法。 3 100メツシユより細かい石灰粉に一般式()
の化合物を無溶剤状態で添加し、室温〜100℃で
混合撹拌することにより処理を行なうようにした
特許請求の範囲第1項又は第2項記載の方法。
[Claims] 1 The following general formula () (R 3 3 SiO 1/2 ) l (R 2 2 SiO 2/2 ) n (R 1 SiO 3/2 ) o … () (However, R 1 , R 2 and R 3 are the same or different monovalent hydrocarbon groups, l = 0 to 35 mol%, m
=35-95 mol%, n=5-30 mol%, l+m+n
1. A method for improving the fluidity of lime powder, which comprises treating 100 parts by weight of lime powder with 0.02 to 1 part by weight of an organopolysiloxane represented by the formula (=100 mol%). 2 As a compound of general formula (), R 1 , R 2 , and R 3 are each a methyl group, l = 2 to 35 mol%, m
Claim 1 using a methylpolysiloxane fluid in which n = 40 to 93 mol% and n = 5 to 25 mol%.
The method described in section. 3 General formula () for lime powder finer than 100 mesh
The method according to claim 1 or 2, wherein the treatment is carried out by adding the compound in a solvent-free state and mixing and stirring at room temperature to 100°C.
JP18399584A 1984-09-03 1984-09-03 Method for improving fluidity of lime powder Granted JPS6163528A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18399584A JPS6163528A (en) 1984-09-03 1984-09-03 Method for improving fluidity of lime powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18399584A JPS6163528A (en) 1984-09-03 1984-09-03 Method for improving fluidity of lime powder

Publications (2)

Publication Number Publication Date
JPS6163528A JPS6163528A (en) 1986-04-01
JPS6365607B2 true JPS6365607B2 (en) 1988-12-16

Family

ID=16145476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18399584A Granted JPS6163528A (en) 1984-09-03 1984-09-03 Method for improving fluidity of lime powder

Country Status (1)

Country Link
JP (1) JPS6163528A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8321174B1 (en) 2008-09-26 2012-11-27 Cypress Semiconductor Corporation System and method to measure capacitance of capacitive sensor array
CN104994934B (en) * 2013-01-10 2017-08-22 宇部材料工业株式会社 Moisture adsorbent and its manufacture method

Also Published As

Publication number Publication date
JPS6163528A (en) 1986-04-01

Similar Documents

Publication Publication Date Title
US4639489A (en) Method of producing a silicone defoamer composition
US4111890A (en) Curable organopolysiloxane compositions containing titanium esters
EP0251176B1 (en) Method for modifying the surface of finely divided silica
US5010159A (en) Process for the synthesis of soluble, condensed hydridosilicon resins containing low levels of silanol
US4221693A (en) Composition free of surface cure inhibition and method for preparing the same
US4940743A (en) Silicone resin emulsion
US3992355A (en) Heat-curable organopolysiloxane compositions
JPH11323136A (en) Stable composition of water-soluble organosiloxane, its production, and its use
CA2782247A1 (en) Method for producing halogenated polysilanes
NO177428B (en) Use of salts of metals with carboxylic acids for stabilization of organopolysiloxane masses
JPH05286983A (en) Preparation of crystalline dimethylsilanediol
JP3090278B2 (en) Method for reducing residual chloride content of polysiloxane fluid
US4101443A (en) Transient antifoam compositions
JPH0355501B2 (en)
JPS6365607B2 (en)
US3679721A (en) Titanium compounds
US3939195A (en) Preparation of silanol containing organopolysiloxanes
US3998865A (en) Process for the stabilization of hexamethyl-cyclotrisiloxane and the stabilized compositions resulting therefrom
KR100312662B1 (en) Process for the continuous preparation of moisture-curing or ganopolysiloxane compositions
JP2001527110A (en) Organopolysiloxane materials crosslinkable to elastomers under alcohol decomposition
RU2089499C1 (en) Method of preparing hydrophobic disperse material
JPH0121097B2 (en)
JPH08196811A (en) Production of oil compound for antifoaming agent and antifoaming agent composition containing the same
EP0882729A2 (en) Process for reducing the residual chloride concentration in copper containing solids
JPH04222835A (en) Production of polyorganosilane