JPS6365319B2 - - Google Patents

Info

Publication number
JPS6365319B2
JPS6365319B2 JP24345685A JP24345685A JPS6365319B2 JP S6365319 B2 JPS6365319 B2 JP S6365319B2 JP 24345685 A JP24345685 A JP 24345685A JP 24345685 A JP24345685 A JP 24345685A JP S6365319 B2 JPS6365319 B2 JP S6365319B2
Authority
JP
Japan
Prior art keywords
limit curve
set value
point
hardness
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP24345685A
Other languages
Japanese (ja)
Other versions
JPS62104600A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP24345685A priority Critical patent/JPS62104600A/en
Publication of JPS62104600A publication Critical patent/JPS62104600A/en
Publication of JPS6365319B2 publication Critical patent/JPS6365319B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> この発明は結晶缶内の白下の固さをプログラム
制御することにより自動育晶を行なう装置におけ
るプログラムの設定方法に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method of setting a program in an apparatus for automatic crystal growth by programmatically controlling the hardness of the white undercoat in a crystal can.

<従来技術> 真空結晶缶による育晶処理は例えば第1図に示
すように、カランドリア型の加熱部2を有する直
立型結晶缶1内に、育晶されるべき溶液(例えば
糖液)Fが溶液弁3を介して下部より供給され
る。加熱用蒸気Sは調節弁4を介して結晶缶1内
の加熱部2に与えられる。溶液を加熱蒸発させて
濃縮すると共に溶液の補充を行ない、結晶析出が
可能な起晶濃度に達した時に、その溶液に対して
種糖を投入器5から弁6を介して添加して各品種
に適した結晶核を発生させる。その後はこの結晶
核が相互に結合したり、希望しない種の結晶核
(偽晶)が新らたに発生することを避けるため、
缶内の様子を監視しながら差水あるいは溶液を供
給し、濃縮と育晶を続ける。或る程度まで結晶が
成長し、単位体積当りの白下(溶液と結晶の混合
液)内の結晶の体積が或る値以上になり、結晶が
互に可成り接近してくると、偽晶が比較的発生し
難くなり、これより更に濃縮し、結晶が成長し易
くすると共に溶液の供給を行ない缶内のその容積
が一定値まで増加し、結晶の粒度が所要の大きさ
まで成長すると、缶内の白下7が排出弁8より排
出される。排出された白下は遠心分離機により結
晶と溶液とに分離され、その溶液は再び育晶に利
用されることが繰返される。煎糖中に白下の濃度
を適当な値にするため、差水W又は溶液Fを差水
弁9又は溶液弁3を通じて缶1内に供給すること
ができ、缶1内の状態はのぞき窓10を通じて監
視することができる。缶1内の蒸気はコンデンサ
11に弁12を介して真空ポンプ13により引か
れ、このコンデンサ−11は弁14を通じる冷却
水Wにより冷却される。
<Prior art> In the crystal growth process using a vacuum crystal can, for example, as shown in FIG. It is supplied from the bottom via the solution valve 3. The heating steam S is supplied to the heating section 2 in the crystal can 1 via the control valve 4. The solution is concentrated by heating and evaporated, and at the same time, the solution is replenished, and when the crystallization concentration at which crystal precipitation is reached is reached, seed sugar is added to the solution through the valve 6 from the injector 5 to prepare each variety. generate crystal nuclei suitable for After that, in order to prevent these crystal nuclei from combining with each other and from generating new crystal nuclei of undesired species (pseudocrystals),
Concentration and crystal growth are continued by supplying differential water or solution while monitoring the inside of the can. When the crystals grow to a certain extent, the volume of the crystals per unit volume in the white (mixture of solution and crystals) exceeds a certain value, and the crystals come quite close to each other, pseudocrystals occur. It becomes relatively difficult for the crystals to occur, and when the solution is further concentrated and the crystals grow easily, the volume inside the can increases to a certain value, and when the grain size of the crystals grows to the required size, the can The white undercoat 7 inside is discharged from the discharge valve 8. The discharged white matter is separated into crystals and a solution by a centrifuge, and the solution is repeatedly used for crystal growth. In order to adjust the concentration of the white undercoat to an appropriate value in the roasted sugar, the difference water W or solution F can be supplied into the can 1 through the difference water valve 9 or the solution valve 3, and the state inside the can 1 can be monitored through the peephole. 10 can be monitored. The steam in the can 1 is drawn into a condenser 11 through a valve 12 by a vacuum pump 13, and this condenser 11 is cooled by cooling water W through a valve 14.

結晶缶の制御方法は種々のものが提案されてい
るが、白下の固さに着目し、この値をプログラム
的には階段的に上昇させる間欠育晶方法が安定し
た操業を実現させうる制御方法として、特開昭52
−41248号に示されるごとく一般化しつつある。
Various methods have been proposed for controlling the crystal can, but the intermittent crystal growth method, which focuses on the hardness of the white bottom and increases this value stepwise in a programmatic manner, is the control method that can realize stable operation. As a method, Japanese Patent Application Publication No. 1973
- As shown in No. 41248, it is becoming common.

15はレオメータ等の固さ計で、白下の固さを
表わす測定信号enがシーケンス制御装置16の調
節部161に導かれる。162は固さの設定値es
を調節部161に供給するプログラム設定部、1
63は調節部161の出力に基づいて溶液弁3又
は差水弁9を開閉制御する弁操作動である。
Reference numeral 15 denotes a hardness meter such as a rheometer, and a measurement signal e n representing the hardness of the white underside is guided to the adjustment section 161 of the sequence control device 16 . 162 is the hardness setting value e s
a program setting section 1 that supplies the adjustment section 161 with
Reference numeral 63 indicates a valve operation operation that controls opening and closing of the solution valve 3 or the differential water valve 9 based on the output of the adjustment section 161.

その他第1図には図示されていないが、白下7
の缶内レベルを測定するレベル計、缶内の真空度
を一定に保持する圧力調節手段等が設けられてい
る。
Although not shown in Figure 1, there are other
A level meter for measuring the level inside the can, pressure regulating means for maintaining a constant degree of vacuum inside the can, etc. are provided.

<発明が解決しようとする問題点> 次に第5図により、従来のプログラム制御方法
を説明する。Aは溶液育晶を実行している育晶工
程の特定領域における固さの測定値enと設定値es
の変化を表わし、Bは溶液弁3の開閉状況を表わ
す。
<Problems to be Solved by the Invention> Next, a conventional program control method will be explained with reference to FIG. A is the measured value e n and the set value e s of hardness in a specific region of the crystal growth process during solution crystal growth.
B represents the opening/closing status of the solution valve 3.

時刻t1において測定値enが上昇し、固さ設定値
esのm1レベルに達した時点で溶液供給が行なわ
れるので、白下の固さは一旦ゆるめられる。次の
設定値esはm1よりステツプ状にΔm上昇しm2とな
る。enが再びesのレベルm2になる時刻t2で溶液共
給がなされ、以下同様の操作をt3,t4……と続行
する。enのピーク値を結ぶ点線Cで示した曲線は
固さをプログラム制御すべき理想的な限界曲線を
示し、これに沿つた固さの制御によつて良質の結
晶を維持して最短の操業時間で1バツチを終了す
ることができる。
At time t 1 , the measured value e n increases and the hardness setting value
Since the solution is supplied when the e s reaches the m 1 level, the hardness of the white bottom is temporarily loosened. The next set value e s increases by Δm in steps from m 1 and becomes m 2 . At time t 2 when e n reaches the level m 2 of e s again, solution co-feeding is performed, and the same operation is continued at t 3 , t 4 , and so on. The curve shown by the dotted line C connecting the peak values of e n shows the ideal limit curve for which the hardness should be controlled programmatically. By controlling the hardness along this line, high quality crystals can be maintained and the shortest operation One batch can be completed in one hour.

しかしながら、このような理想的な曲線Cの維
持は、缶内の蒸気、真空度及び溶液の純率等のパ
ラメータがある値に保たれている場合に実現可能
であつて、例えば蒸気Sの供給量が大幅に変動し
た場合、真空度が大幅に変動した場合等の外乱が
発生すると、この理想的なパターンを維持して育
晶することが困難となる。
However, maintenance of such an ideal curve C can be realized when parameters such as the steam in the can, the degree of vacuum, and the purity of the solution are kept at certain values. If a disturbance such as a large change in the amount or a large change in the degree of vacuum occurs, it becomes difficult to maintain this ideal pattern for crystal growth.

例えば時刻t4以後に蒸気量が異常に低下した場
合、固さの測定値enが次の設定値m5に達するに
は長時間を要し、同様な設定方式を持続した場合
は固さの測定値はe′nに示すごとく変化し、その
ピーク値を結ぶ曲線はC′のごとく勾配が小さくな
り、Cとは大幅にずれてしまう。このような状況
で育晶を実施すれば1バツチの操業時間は大幅に
延長し、為晶も発生しやすく良質な結晶の製品を
得ることが困難となる。
For example, if the amount of steam drops abnormally after time t4 , it will take a long time for the measured hardness value e n to reach the next set value m5 , and if the same setting method is continued, the hardness will decrease. The measured value changes as shown in e' n , and the slope of the curve connecting the peak values becomes smaller like C', and it deviates significantly from C. If crystal growth is carried out under such conditions, the operating time for one batch will be significantly extended, and crystals are likely to occur, making it difficult to obtain high-quality crystal products.

逆にt4以後蒸気量が異常に上昇した場合は上記
とは逆の現象を起こし、固さの測定値はe″nのご
とくなり、ピーク値を結ぶ曲線はC″のごとく勾
配が急となり、Cとは大幅にずれ、異常に早く1
バツチの操業が終了し、為晶の多い不良製品とな
つてしまう欠点がある。
On the other hand, if the amount of steam increases abnormally after t 4 , the opposite phenomenon to the above will occur, the measured value of hardness will be like e″ n , and the curve connecting the peak values will have a steep slope like C″. , significantly different from C, and abnormally early.
There is a drawback that the batch operation ends and the product becomes defective with many crystals.

出願人は、従来のステツプ状の設定値変化によ
るプログラム制御方法の問題点を解消し、外乱に
対して限界曲線よりの大幅なずれの発生を起こさ
ない制御方法として、上限曲線と下限曲線に囲ま
れた領域内に固さを制御する、限界帯制御方式を
特願昭59−137439号(特開昭61−15700号)で提
案した。
The applicant solved the problems of the conventional program control method that uses step-like setting value changes, and proposed a control method that does not cause large deviations from the limit curve in response to disturbances. In Japanese Patent Application No. 59-137439 (Japanese Unexamined Patent Publication No. 61-15700), we proposed a limit zone control method that controls the hardness within the defined range.

本発明は、基本技術であるこの限界帯制御方式
の具体的な実現手段の一つを提供することを目的
としている。
The present invention aims to provide one of the concrete implementation means of this limit band control method which is a basic technology.

以下、本発明の説明に先立ち、この限界帯制御
方式の概要を第3図に基づいて説明する。
Hereinafter, prior to explaining the present invention, an outline of this limit band control method will be explained based on FIG. 3.

時刻t1において固さの測定値が設定値esの設定
レベルm1に達した時点を代表例として説明する。
測定値enのピーク点をP1とする。出願人は種々
の操業実積を通じた経験により、限界曲線は単一
ではなく、固さのピーク点毎に次のピーク点が到
達すべき点にある領域が存在することを確認し
た。この領域は、P1を始点とする2個の曲線即
ち上限曲線C1と下限曲線C2に囲まれた限界領域
Rで特定される。そしてこれら2個の限界曲線は
厳密には各ピーク点毎に最適な一対の曲線が存在
することが確認された。
The time point when the measured value of hardness reaches the set level m 1 of the set value e s at time t 1 will be explained as a representative example.
Let P 1 be the peak point of the measured value e n . Through experience through various actual operations, the applicant has confirmed that the limit curve is not a single limit curve, and that for each peak point of hardness, there is a region where the next peak point should be reached. This region is specified by a limit region R surrounded by two curves starting from P 1 , that is, an upper limit curve C 1 and a lower limit curve C 2 . Strictly speaking, it was confirmed that there is an optimal pair of curves for each peak point among these two limit curves.

従つて白下の固さがある設定値に達した時点
で、その点を始点とする2曲線をあらかじめプロ
グラムされたメモリにより読出し、この2曲に基
づいて次の設定値をプログラム的に変化してゆ
き、次の固さの測定値enのピーク点が領域R内に
入るように制御することにより、固さの測定値en
を限界領域内に維持して育晶を進めることが可能
となる。
Therefore, when the hardness of the white bottom reaches a certain set value, two curves starting from that point are read out from the pre-programmed memory, and the next set value is changed programmatically based on these two curves. Then, by controlling the next hardness measurement value e n so that its peak point falls within the region R, the hardness measurement value e n
It becomes possible to maintain crystal growth within the limit range and proceed with crystal growth.

次に設定値esのプログラム制御の具体的方法に
ついて説明する。まずenが前回の育晶サイクルの
設定値es1(固さm1)にP1で達した時点で、点線
で示す2個の曲線C1,C2がP1点(時刻t1、固さ
m1)を始点として与えられると、次の育晶サイ
クルの設定値はまず曲線C1に沿う一点鎖線で示
す曲線es21に沿つて時間と共に単調増加する曲線
で設定される。P1点より一定値の固さ変化Δm変
化した時点又はP1点より一定時間Δt経過した時
点のes21上の点Q21で設定値は固さm2を維持する
水平な直線es22上に沿つて一定に保持される。こ
の直線es22が下限曲線C2と交叉する時点Q22点に
達すると、設定値は下限曲線C2に沿つて時間と
共に単調増加する曲線で設定される。Q21,Q22
点を決める要素であるΔm又はΔtは、enの次のピ
ークP2の予測点がQ21とQ22を結ぶ直線es22上に当
るように経験的に設定される。
Next, a specific method of program control of the set value e s will be explained. First, when e n reaches the set value e s1 (hardness m 1 ) of the previous crystal growth cycle at P 1 , the two curves C 1 and C 2 shown by dotted lines change to point P 1 (time t 1 , hardness
m 1 ) as the starting point, the set value for the next crystal growth cycle is first set as a curve that monotonically increases with time along a curve e s21 shown by a dashed line along the curve C 1 . Point Q on e s21 at the point when the stiffness changes by a constant value Δm from point P 1 or after a certain time Δt has passed from point P 1 On the horizontal straight line e s22 where the set value maintains the stiffness m 2 at 21 is held constant along. When this straight line es22 reaches the point Q22 where it intersects the lower limit curve C2 , the set value is set as a curve that monotonically increases with time along the lower limit curve C2 . Q 21 , Q 22
Δm or Δt, which is the element that determines the point, is empirically set so that the predicted point of the next peak P 2 of e n falls on the straight line e s22 connecting Q 21 and Q 22 .

このようなプログラム設定をenの各ピーク点毎
に実施することによつて、enの各ピーク点P1
P2……は缶内のパラメータが正常であれば常に
各ピーク点毎に決定される限界領域R内に入るの
で、従来の限界曲線上に沿つたプログラム制御と
同等の操業結果を得ることができる。第3図にお
いてピーク点P1がプログラムされた設定値esの水
平部es22に当る動作は、従来装置において、設定
値esをm1よりm2にステツプ状に変更して行つた
場合の動作と同等である。
By implementing such program settings for each peak point of e n , each peak point P 1 ,
If the parameters inside the can are normal, P2 will always fall within the limit region R determined for each peak point, so it is possible to obtain operational results equivalent to conventional program control along the limit curve. can. In Fig. 3, the operation in which the peak point P 1 corresponds to the horizontal part e s22 of the programmed set value e s is performed in the conventional device by changing the set value e s from m 1 to m 2 in a stepwise manner. The behavior is equivalent to .

次に外乱によつて固さの測定値enの次のピーク
点P2が設定値の水平部es22を外れて、Q21点より
早く上昇してきた場合を考える。固さのプログラ
ム設定は従来のごとくステツプ的ではなくm2
り小さな値で曲線C1に沿つたes21で時間と共に単
調増加で上昇する曲線となつているので、enの上
昇傾向は従来のステツプ的設定方法に比較して
m2より低い値でのC1曲線を上限とした上昇傾向
となり、次のピーク点P2は引下げられる方向に
修正動作が加わる。
Next, let us consider the case where the next peak point P2 of the measured hardness value e n deviates from the horizontal part e s22 of the set value due to a disturbance and rises faster than the Q 21 point. The hardness program setting is not stepwise as in the past, but is a curve that monotonically increases over time at e s21 along curve C 1 with values smaller than m 2 , so the rising trend of e n is different from the conventional one. Compared to the stepwise setting method
There is an upward trend with the C 1 curve at a value lower than m 2 as the upper limit, and a corrective action is added in the direction of lowering the next peak point P 2 .

逆に次のピーク点P2が設定値の水平部を外れ
てQ22点より遅れて上昇してきた場合は、固さの
プログラム設定はQ22点のレベルm2よりも大きな
値で曲線C2に沿つたes23で時間と共に単調増加で
上昇する曲線となつているので、enの上昇傾向は
従来のステツプ的設定方法に比較してm2より高
い値でのC2曲線を上限とした上昇傾向となり次
のピーク点P2は引き上げられる方向に修正動作
が加わる。
Conversely, if the next peak point P 2 deviates from the horizontal part of the set value and rises later than the Q 22 point, the stiffness program setting is set to a value greater than the level m 2 of the Q 22 point and curve C 2 Since the curve rises monotonically over time with e s23 along There is an upward trend, and at the next peak point P2 , a corrective action is added in the direction of raising it.

このように、缶内のパラメータが異常の場合で
は設定値esは単調増加する曲線部es21,es23の作用
によつて固さの測定値enのピーク点は設定曲線の
水平部es22に入るように修正が加わると共に、各
ピーク点は少く共上限曲線又は下限曲線上に維持
されるので、固さの測定値enが限界領域Rを外れ
ることなく育晶を進行させることができ、従来の
ごとく、操業時間の大幅な変動や製品不良発生が
大幅に軽減される。
In this way, when the parameters inside the can are abnormal, the set value e s monotonically increases due to the action of the curve parts e s21 and e s23 , so that the peak point of the measured hardness value e n is located at the horizontal part e of the setting curve. s22 , and each peak point is maintained slightly on the upper limit curve or lower limit curve, so crystal growth can proceed without the measured hardness value e n falling outside the limit region R. This greatly reduces the large fluctuations in operating time and the occurrence of product defects, unlike in the past.

上記制御方法は、固さの測定値enの各ピーク点
毎に2個の限界曲線を決定する必要があるので、
ピーク点の位置によつてその曲線を決定するアル
ゴリズムはやや複雑なものとなるので、上限曲線
及び下限曲線を近似的に設定する方が現実的であ
り、メンテナンスもしやすい。
Since the above control method requires determining two limit curves for each peak point of the measured value e n of hardness,
Since the algorithm for determining the curve based on the position of the peak point is somewhat complicated, it is more practical to set the upper limit curve and the lower limit curve approximately, and maintenance is easier.

一般に上限曲線は第4図に示すように、理想曲
線C1,C2に対して、起晶から排出までの時間を
複数の区間T1,T2,……で区分し、各区分での
曲線の勾配を代表的な直線D11,D12,……で近
似し、この直線群を上限曲線として各区間で切換
えて使用する方法が現実的である。
Generally, as shown in Figure 4, the upper limit curve is created by dividing the time from crystallization to discharge into multiple sections T 1 , T 2 , etc. with respect to the ideal curves C 1 and C 2 . A practical method is to approximate the slope of the curve with representative straight lines D 11 , D 12 , . . . and use these straight lines as the upper limit curves by switching in each section.

本発明は、このように設定される上限曲線に対
して、下限曲線を同様に直線群で近似決定する現
実的な手法の提供を目的とする。
An object of the present invention is to provide a practical method for similarly determining a lower limit curve by approximating the upper limit curve set in this way using a group of straight lines.

<問題を解決するための手段> 本発明方法の特徴は、白下の固さをプログラム
制御する結晶缶の自動育晶において、白下の固さ
が設定値に達した時点で差水又は溶液の供給を行
なつて上記白下の固さを一旦下げると共に、上記
時点を始点とする固さの制御限界領域の上限曲線
と、この上限曲線より一定偏差値を有して下限曲
線とを決定し、上記時点以後の次の設定値を、上
記上限曲線に沿つて上昇せしめ、一定値の設定値
変化は一定時間経過の時点でその時点の設定値を
保持させ、その設定値を表わす直線が上記下限曲
線と交叉する時点以後は上記下限曲線に沿つて設
定値を上昇せしめるごとく設定値をプログラム的
に変化させることを特徴とする結晶缶プログラム
制御方法にある。
<Means for solving the problem> The feature of the method of the present invention is that in the automatic crystal growth of a crystal can in which the hardness of the white bottom is controlled by a program, when the hardness of the white bottom reaches a set value, the difference water or solution is is supplied to lower the hardness of the white bottom, and at the same time, determine the upper limit curve of the hardness control limit region starting from the above point and the lower limit curve with a constant deviation value from this upper limit curve. Then, the next set value after the above point is increased along the above upper limit curve, and when the set value changes by a constant value, the set value at that point is maintained after a certain period of time has passed, and the straight line representing the set value is The crystal can program control method is characterized in that the set value is changed in a programmatic manner so as to increase the set value along the lower limit curve after the point where the set value intersects the lower limit curve.

更に具体的には、上記上限曲線及び下限曲線を
直線で近似した点にある。
More specifically, the upper limit curve and the lower limit curve are approximated by straight lines.

<作用> 本発明方法によれば、下限曲線は上限曲線が決
定された場合は、常に上限曲線に対して一定偏差
を有して決定される。従つて上限曲線が直線群で
近似された場合は、下限曲線も直線群で決定され
る。
<Operation> According to the method of the present invention, when the upper limit curve is determined, the lower limit curve is always determined with a constant deviation from the upper limit curve. Therefore, if the upper limit curve is approximated by a group of straight lines, the lower limit curve is also determined by a group of straight lines.

<実施例> 第2図に基づき本発明方法の一実施例につき説
明する。
<Example> An example of the method of the present invention will be described based on FIG.

第4図に示すように、育晶すべき領域を適当に
区分し、特定領域における白下の初期値をm1
白下の最終値をmoとする。固さの測定値がm1
達する時点をt1とし、t1とm1で決定されるピーク
点P1を始点とし、まず上限曲線又は上限直線D1
を決める。時刻t1以後の次の設定値は、設定値が
Δm化してm2に達するまではこの上限曲線又は直
線D1に沿つた一点鎖線で示すes21で与えられる。
Q21点でes21がm2に達すると、設定値はm2のレベ
ルを維持する水平設定es22となる。P1よりQ21
に達するまでの時間をΔtで表わす。
As shown in Fig. 4, the area to be grown is appropriately divided, and the initial value of the white undertone in the specific area is m 1 ,
Let the final value of the white lower part be m o . The time when the measured value of hardness reaches m 1 is defined as t 1 , the peak point P 1 determined by t 1 and m 1 is the starting point, and first the upper limit curve or upper limit straight line D 1
decide. The next set value after time t 1 is given by e s21 shown by a dashed dotted line along this upper limit curve or straight line D 1 until the set value changes to Δm and reaches m 2 .
When e s21 reaches m 2 at point Q 21 , the set value becomes horizontal setting e s22 that maintains the level of m 2 . The time required to reach the Q21 point from P1 is expressed as Δt.

この実施例の特徴は、上限直線D1の決定方法
は第4図の場合と同様であるが、下限直線を、
D1よりは一定偏差m0だけ低い方にシフトした直
線D2で定義した点にある。即ち、P1を始点とす
る設定es21,es22,es23及びP2を始点とする設定
es31,es32,es33は、第3図の手法と全く同様であ
るが、ピーク点に達するごとに上限直線のみが決
定され、下限直線D2は変化しない。
The feature of this embodiment is that the method for determining the upper limit straight line D 1 is the same as in the case of FIG. 4, but the lower limit straight line is
It is located at a point defined by a straight line D 2 shifted lower than D 1 by a constant deviation m 0 . That is, settings with P 1 as the starting point e s21 , e s22 , e s23 and settings with P 2 as the starting point
e s31 , e s32 , and e s33 are completely similar to the method shown in FIG. 3, but each time a peak point is reached, only the upper limit straight line is determined, and the lower limit straight line D 2 does not change.

この実施例では、Q31点の決定を、P2点の固さ
m2よりΔmだけ高い値m3をとる上限曲線又は上
限直線D1上の点としたが、P2点より一定時間Δt
経過後のD1上の点に決める方法でもよく、その
場合の固さの上昇(m3−m2)をΔm′とすれば、
Δm′>Δmとなり、上限直線D1′はよりD1に近づ
くため、第4図で説明した起晶から排出までの区
分領域数を削減することができる。尚この場合の
水平設定と下限直線は第2図の場合と同様であ
る。
In this example, the determination of Q 31 points is determined by the hardness of P 2 points.
A point on the upper limit curve or upper limit straight line D 1 that takes a value m 3 higher than m 2 by Δm, but for a certain time Δt from point P 2
It is also possible to determine the point on D 1 after the elapsed time, and if the increase in hardness (m 3 − m 2 ) in that case is Δm′, then
Since Δm'>Δm, and the upper limit straight line D 1 ' approaches D 1 more, the number of divided regions from crystallization to discharge explained in FIG. 4 can be reduced. The horizontal setting and lower limit straight line in this case are the same as in the case of FIG.

以上第2図に示した実施例は、育晶すべき領域
の特定領域における固さのプログラム設定手法を
示したが、第4図に示すように、育晶の全領域を
複数区間T1,T2,……Toで区分したとき、各区
間における上限曲線又は直線D11,D12,……D1o
は、徐々に勾配が大となる曲線又は直線群の結合
の形をとり、全領域における固さがプログラム制
御されることになる。
The embodiment shown in FIG. 2 has shown a method of programming the hardness in a specific area of the crystal growth area, but as shown in FIG . When divided by T 2 , ...T o , the upper limit curve or straight line D 11 , D 12 , ...D 1o in each section
takes the form of a combination of curves or groups of straight lines with gradually increasing slopes, and the stiffness in the entire region is program-controlled.

<効果> 以上説明したように、本発明方法を用いること
により、次のような効果を期待できる。
<Effects> As explained above, by using the method of the present invention, the following effects can be expected.

(1) 結晶缶内の蒸気、圧力及び溶液の純率等のパ
ラメータ変動に基づいて、白下の固さ測定値の
ピークを結ぶ曲線が限界曲線を大幅に逸脱して
生ずる操業時間の異常終了や不良製品の発生を
大幅に軽減させることが可能となる。
(1) Abnormal termination of the operating time, which occurs when the curve connecting the peaks of the hardness measurements in the white lower part deviates significantly from the limit curve based on parameter fluctuations such as steam, pressure, and purity of the solution in the crystallizer. This makes it possible to significantly reduce the occurrence of defective products.

缶内のパラメータ異常に対して設定値を自動
より手動に切換え、正常な限界曲線に修正する
操業は、極めて経験をつんだオペレータでも困
難な場合が多く、その操業バツチの製品を不良
品としてしまうケースが多いが、本発明方法に
よれば缶内のパラメータの変動が致命的レベル
に到らない限り、自動的な限界領域への修正動
作により不良製品の発生を未然に防止すること
ができる。従つて経験の浅いオペレータでも運
転が可能であり、従来職人的オペレータを必要
とした結晶缶の監視作業の精神的負担を大幅に
軽減することができる。
It is often difficult even for extremely experienced operators to switch the set values from automatic to manual in response to parameter abnormalities in the can and correct the normal limit curve, resulting in products from that batch being rejected. Although there are many cases, according to the method of the present invention, as long as the variation in parameters within the can does not reach a fatal level, the occurrence of defective products can be prevented by automatic corrective action to the limit range. Therefore, even an inexperienced operator can operate the system, and the mental burden of monitoring the crystal cans, which conventionally required a skilled operator, can be significantly reduced.

(2) 本発明方法は、第2図のごとき現実的な簡略
方式を用いることにより、プログラム設定は、
特定領域毎に2本の直線を設定するのみで安定
な操業が可能であり、複雑なプログラム設定は
一切必要とせず、装置を経済的に実現すること
ができる。
(2) The method of the present invention uses a practical and simple method as shown in Fig. 2 to set the program.
Stable operation is possible by simply setting two straight lines for each specific area, and no complicated program settings are required, making it possible to realize the device economically.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は結晶缶による育晶装置の一般的構成
図、第2図は本発明方法による育晶の説明図、第
3図は先願に係る基本技術の説明図、第4図は上
限曲線の決定方法に関する説明図、第5図は従来
方法による間欠育晶の説明図である。 1……結晶缶、2……加熱部、3……溶液弁、
7……白下、9……差水弁、S……蒸気、F……
溶液、W……差水、冷却水、15……固さ計、1
6……シーケンス制御装置、161……調節部、
162……プログラム設定部、163……弁操作
部、en……固さ測定値、es……設定値、D1
D1′……上限曲線、D2……下限曲線、R……限界
領域。
Fig. 1 is a general configuration diagram of a crystal growth device using a crystal can, Fig. 2 is an explanatory diagram of crystal growth by the method of the present invention, Fig. 3 is an explanatory diagram of the basic technology related to the prior application, and Fig. 4 is an upper limit curve. FIG. 5 is an explanatory diagram of an intermittent crystal growth method according to a conventional method. 1... Crystal can, 2... Heating section, 3... Solution valve,
7...White bottom, 9...Different water valve, S...Steam, F...
Solution, W... difference water, cooling water, 15... hardness meter, 1
6... Sequence control device, 161... Adjustment section,
162...Program setting section, 163...Valve operation section, en ...Hardness measurement value, e s ...Setting value, D1 ,
D 1 ′...Upper limit curve, D2 ...Lower limit curve, R...Limit area.

Claims (1)

【特許請求の範囲】 1 白下の固さをプログラム制御する結晶缶の自
動育晶において、白下の固さが設定値に達した時
点で差水又は溶液の供給を行なつて上記白下の固
さを一旦下げると共に、上記時点を始点とする固
さの制御限界領域の上限曲線と、この上限曲線よ
り一定偏差値を有して下限曲線とを決定し、上記
時点以後の次の設定値を、上記上限曲線に沿つて
上昇せしめ、一定値の設定値変化又は一定時間経
過の時点でその時点の設定値を保持させ、その設
定値を表わす直線が上記下限曲線と交叉する時点
以後は上記下限曲線に沿つて設定値を上昇せしめ
るごとく設定値をプログラム的に変化させること
を特徴とする結晶缶プログラム制御方法。 2 上記上限曲線及び下限曲線を直線で近似した
ことを特徴とする特許請求の範囲1記載の結晶缶
プログラム制御方法。
[Claims] 1. In automatic crystal growth of a crystal can in which the hardness of the white bottom is controlled by a program, when the hardness of the white bottom reaches a set value, differential water or a solution is supplied to the white bottom. Once lower the stiffness, determine the upper limit curve of the stiffness control limit region starting from the above point and the lower limit curve with a constant deviation value from this upper limit curve, and set the next setting after the above point. The value is increased along the above upper limit curve, and when the set value changes by a certain value or a certain period of time has passed, the set value at that point is maintained, and after the point when the straight line representing the set value intersects the above lower limit curve. A crystal can program control method characterized in that the set value is changed programmatically so as to increase the set value along the lower limit curve. 2. The crystal can program control method according to claim 1, wherein the upper limit curve and the lower limit curve are approximated by straight lines.
JP24345685A 1985-10-30 1985-10-30 Program control of crystallizing boiler Granted JPS62104600A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24345685A JPS62104600A (en) 1985-10-30 1985-10-30 Program control of crystallizing boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24345685A JPS62104600A (en) 1985-10-30 1985-10-30 Program control of crystallizing boiler

Publications (2)

Publication Number Publication Date
JPS62104600A JPS62104600A (en) 1987-05-15
JPS6365319B2 true JPS6365319B2 (en) 1988-12-15

Family

ID=17104155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24345685A Granted JPS62104600A (en) 1985-10-30 1985-10-30 Program control of crystallizing boiler

Country Status (1)

Country Link
JP (1) JPS62104600A (en)

Also Published As

Publication number Publication date
JPS62104600A (en) 1987-05-15

Similar Documents

Publication Publication Date Title
EP1171652B1 (en) Method and apparatus for controlling diameter of a silicon crystal in a growth process
US5288363A (en) Automatic control method for growing single-crystal neck portions
US4973377A (en) Crystal diameter controlling method
JPH04149092A (en) Method and device for controlling growth of cone part
EP2778238A2 (en) Sugar crystallization control system and method
EP2071060B1 (en) Single crystal manufacturing method
EP0134680B1 (en) Apparatus for manufacturing a single crystal
US5164039A (en) Apparatus for controlling the diameter of silicon single crystal
JPS6365317B2 (en)
JPS6365319B2 (en)
JPS6365318B2 (en)
JPH04219388A (en) Control of diameter of silicon single crystal and apparatus therefor
JPS6364198B2 (en)
US4866230A (en) Method of and apparatus for controlling floating zone of semiconductor rod
US5246535A (en) Method and apparatus for controlling the diameter of a silicon single crystal
JPS6337080B2 (en)
JPH0134040B2 (en)
JPH0365588A (en) Method for controlling growth of single crystal and production of single crystal using the controlling method
SU1084038A1 (en) Apparatus for automatic controlling the process of crystallization
JP6988461B2 (en) Single crystal manufacturing method and manufacturing equipment
JP2024081376A (en) Method and apparatus for producing single crystals
SU1013479A1 (en) Method for automatically controlling continuous concentration of massecuites
JPS5912279B2 (en) Program setting method for automatic crystallizing sugar
CN116623277A (en) Crystal growth control method and computer-readable storage medium
CN116145240A (en) Crystal growth control method, device and system and computer storage medium