JPS6365100B2 - - Google Patents

Info

Publication number
JPS6365100B2
JPS6365100B2 JP56102103A JP10210381A JPS6365100B2 JP S6365100 B2 JPS6365100 B2 JP S6365100B2 JP 56102103 A JP56102103 A JP 56102103A JP 10210381 A JP10210381 A JP 10210381A JP S6365100 B2 JPS6365100 B2 JP S6365100B2
Authority
JP
Japan
Prior art keywords
parts
weight
peroxide
polypropylene resin
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56102103A
Other languages
Japanese (ja)
Other versions
JPS582340A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP10210381A priority Critical patent/JPS582340A/en
Publication of JPS582340A publication Critical patent/JPS582340A/en
Publication of JPS6365100B2 publication Critical patent/JPS6365100B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、ポリプロピレン樹脂組成物の製造法
に関する。更に詳しくは、改善された耐衝撃性お
よび低温脆化性を有するポリプロピレン樹脂組成
物の製造法に関する。 ポリプロピレン樹脂の本質的な欠点とされてい
た耐衝撃性や低温脆化性を向上させる目的で、エ
チレン・プロピレン共重合ゴム、エチレン・プロ
ピレン・ジエン3元共重合ゴムなどのオレフイン
系共重合ゴムあるいはポリエチレン樹脂などをポ
リプロピレン樹脂にブレンドすることは従来から
良く知られている(例えば、特公昭39−18746号
公報、同41−7345号公報、同45−22626号公報な
ど)。しかしながら、これらのブレンドによる改
質では、ポリプロピレン樹脂が本来有するすぐれ
た剛性が逆に損われることが多く、その結果とし
て剛性と耐衝撃性、低温脆化性とが十分にバラン
スのとれているポリプロピレン樹脂混合物を得る
ことができなかつた。 本発明者らは、かかる現状に鑑み、ポリプロピ
レン樹脂の剛性を本質的に損うことなく、それの
耐衝撃性と低温脆化性とを改善すべく種々検討の
結果、ポリプロピレン樹脂にペルオキシド架橋型
オレフイン系共重合ゴムとポリエチレン樹脂の部
分共架橋物を特定の割合で混合することにより、
前記課題が解決し得ることを見出した。 従つて、本発明は改質されたポリプロピレン樹
脂組成物は、ペルオキシド架橋型オレフイン系共
重合ゴム10〜90重量%およびポリエチレン樹脂90
〜10重量%よりなるペルオキシド架橋型重合体
100重量部にポリプロピレン樹脂10〜200重量部お
よび有機ペルオキシドを添加し、これを動的に熱
処理して得られた被処理物に、前記ペルオキシド
架橋型重合体100重量部当り動的熱処理時に共存
させた量を含めて150〜600重量部となる量のポリ
プロピレン樹脂を混合させることにより製造され
る。 ペルオキシド架橋型オレフイン系共重合ゴムお
よびポリエチレン樹脂などのペルオキシド架橋型
ポリオレフイン系樹脂よりなるペルオキシド架橋
型重合体100重量部に、ポリプロピレン樹脂など
のペルオキシド非架橋型ポリオレフイン系樹脂10
〜100重量部を添加し、これを有機ペルオキシド
の存在下に動的に熱処理することにより熱可塑性
エラストマーを得ることは、本出願人の出願に係
る発明を記載した特開昭55−71739号公報に記載
されている。このような熱可塑性エラストマーは
また、前記ペルオキシド架橋型重合体100重量部
を、ポリプロピレンなどのペルオキシド非架橋型
ポリオレフイン系樹脂の存在下(その存在量は下
記10〜100重量部の一部の量である)または不存
在下に、有機ペルオキシドと共に動的に熱処理
し、得られた被処理物に最終的に10〜100重量部
となる量のペルオキシド非架橋型ポリオレフイン
系樹脂を混合することによつても製造することが
できる。 このような従来技術において、ペルオキシド架
橋型重合体の部分共架橋物の合計量100重量部当
りペルオキシド非架橋型ポリオレフイン系樹脂の
上限値が100重量部に限定されるのは、それ以上
の割合で用いられるとゴム的な性質が失われ、目
的とする熱可塑性エラストマーが得られなくなる
ためであり、従つてこのような熱可塑性のエラス
トマーを目的物とする限り、そこでは剛性は本質
的に重要な性質としてはとらえられていない。し
かるに、ペルオキシド架橋型重合体の部分共架橋
物の合計量100重量部当りポリプロピレン樹脂を
150〜600重量部混合することにより、それは両者
間の混合割合の比率からいつてポリプロピレン樹
脂を主体とする樹脂状の組成物がそこに形成さ
れ、そのポリプロピレン樹脂組成物は剛性と耐衝
撃性、低温脆化性とが十分にバランスがとれてい
るので、前記熱可塑性エラストマーとは本質的に
異なる改質されたポリプロピレン樹脂が得られる
ことになる。 このようにして改質されるポリプロピレン樹脂
としては、ポリプロピレン、あるいはプロピレン
単位を85モル%以上含有するプロピレンと炭素数
2〜10のα−オレフイン(ただしプロピレンを除
く)との共重合体の如きプロピレン系重合体の樹
脂が用いられ、就中メルトインデツクス(230℃)
が約0.1〜100、特に約0.5〜50のものが好ましい。 ペルオキシド架橋型オレフイン系共重合ゴムと
しては、例えばエチレン・プロピレン共重合ゴ
ム、エチレン・プロピレン・非共役ジエン3元共
重合ゴム、エチレン・1−ブテン共重合ゴム、エ
チレン・1−ブテン・非共役ジエン3元共重合ゴ
ム、エチレン・ブタジエン共重合ゴムの如きオレ
フインを主成分とする無定形の弾性共重合体であ
つて、有機ペルオキシドと混合し、加熱下に混練
することにより架橋して流動性の低下するゴムあ
るいは流動しなくなるゴムが用いられる。これら
のエチレン・α−オレフイン・(非共役ポリエチ
レン)系共重合ゴムにおいて、エチレンとα−オ
レフインとは約50/50〜85/15、好ましくは約
55/45〜80/20のモル比で共重合されていること
が望ましく、更にジシクロペンタジエン、1,4
−ヘキサジエン、シクロオクタジエン、メチレン
ノルボルネン、エチリデンノルボルネンなどの非
共役ポリエンが共重合されている場合には、ヨウ
素価表示で約50以下、好ましくは約40以下となる
ような量で存在することが望ましい。これらの共
重合ゴムは、ムーニー粘度ML1+4(100℃)が約10
〜200、好ましくは約40〜150であることが望まし
く、これ以下のムーニー粘度では耐衝撃性に劣つ
た樹脂組成物しか得られず、一方これ以上では部
分共架橋した場合樹脂組成物中での部分共架橋物
の分散性が悪くなり、また耐衝撃性の低下や成形
品外観の悪化などを生ずる。 ペルオキシド架橋型ポリエチレン樹脂として
は、低密度乃至高密度ポリエチレン、あるいはエ
チレン単位を85モル%以上含有するエチレンと炭
素数3〜8のα−オレフイン、酢酸ビニル、アク
リル酸エステル、メタクリル酸エステルなどとの
共重合体の如きエチレン系重合体の樹脂が用いら
れ、就中メルトインデツクス(190℃)が約0.01
〜200、特に約0.1〜100のものが好ましい。これ
らのポリエチレン樹脂は、有機ペルオキシドの存
在下で動的に熱処理する過程で、前記オレフイン
系共重合ゴムと部分共架橋することにより、樹脂
組成物の耐衝撃性および低温脆化性の向上に寄与
する。 いずれもペルオキシド架橋型オレフイン系共重
合ゴムとポリエチレン樹脂とは、重量比で10/90
〜90/10、好ましくは30/70〜80/20の割合で用
いられ、これ以外の範囲の割合ではいずれも耐衝
撃性および低温脆化性の改善された樹脂組成物が
得られない。このような割合でのオレフイン系共
重合ゴムとポリエチレン樹脂との部分共架橋物
100重量部当り前記ポリプロピレン樹脂が150〜
600重量部の割合で混合され、本発明に係るポリ
プロピレン樹脂組成物が製造されるが、それの製
造は好ましくは次のような方法によつて行われ
る。 ペルオキシド架橋型オレフイン系共重合ゴム10
〜90重量%およびポリエチレン樹脂90〜10重量%
よりなるペルオキシド架橋型重合体100重量部に、
ポリプロピレン樹脂10〜200重量部、好ましくは
10〜100重量部、更に好ましくは30〜80重量部と
少量の有機ペルオキシド架橋剤とが添加され、こ
れを動的に熱処理することがまず行われる。この
動的熱処理に際し、ポリプロピレン樹脂を共存さ
せる理由は、この被処理物に更にポリプロピレン
樹脂を混合させるときの相溶性を向上させるこ
と、ペルオキシド分解型のポリプロピレン樹脂の
存在により被処理物の流動性の低下を防止するこ
とにあり、この結果としてペルオキシド架橋型重
合体の部分共架橋物がポリプロピレン樹脂に均一
に混合されるようにすることにある。従つて、ポ
リプロピレン樹脂の共存割合がこれより少ないと
このような効果が得られず、一方これより多く用
いると相対的にペルオキシドで分解したポリプロ
ピレン樹脂の割合が多くなり、最終的に耐衝撃性
の改善された樹脂組成物が得られない。 有機ペルオキシドは、ペルオキシド架橋型重合
体およびポリプロピレン樹脂の合計量100重量部
当り0.05〜1重量部の割合で用いられることが好
ましく、これより使用割合が少ないと部分共架橋
が不十分で、所望の耐衝撃性を有する樹脂組成物
が得られず、一方これより多く用いると架橋密度
が高くなり、ポリプロピレン樹脂への分散性が悪
くなり、やはり耐衝撃性の改善が図れない。 有機ペルオキシドとしては、例えばジクミルペ
ルオキシド、ジ第3ブチルペルオキシド、2,5
−ジメチル−2,5−ジ(第3ブチルペルオキ
シ)ヘキサン、2,5−ジメチル−2,5−ジ
(第3ブチルペルオキシ)ヘキシン−3、1,3
−ビス(第3ブチルペルオキシイソプロピル)ベ
ンゼン、1,1−ビス(第3ブチルペルオキシ)
−3,3,5−トリメチルシクロヘキサン、n−
ブチル4,4−ビス(第3ブチルペルオキシ)バ
レレート、ベンゾイルペルオキシド、p−クロル
ベンゾイルペルオキシド、2,4−ジクロルベン
ゾイルペルオキシド、第3ブチルペルオキシベン
ゾエート、第3ブチルペルオキシイソプロピルカ
ーボネート、ジアセチルペルオキシド、ラウロイ
ルペルオキシド、第3ブチルクミルペルオキシド
などが挙げられる。 これらの有機ペルオキシドの中でも、スコーチ
安定性、臭気性などの点からは、2,5−ジメチ
ル−2,5−ジ(第3ブチルペルオキシ)ヘキサ
ン、2,5−ジメチル−2,5−ジ(第3ブチル
ペルオキシ)−ヘキシン−3、1,3−ビス(第
3ブチルペルオキシイソプロピル)ベンゼン、
1,1−ビス(第3ブチルペルオキシ)−3,3,
3−トリメチルシクロヘキサン、n−ブチル−
4,4−ビス(第3ブチルペルオキシ)パレレー
トなどが好ましく、特に1,3−ビス(第3ブチ
ルペルオキシイソプロピル)ベンゼンが最も好ま
しい。 動的な熱処理は、有機ペルオキシドの共存下
に、ペルオキシド架橋型重合体、ポリプロピレン
樹脂および必要によつて配合される架橋助剤など
を溶融、混練することによつて行われる。一般に
は、ペルオキシド架橋型重合体とポリプロピレン
樹脂とを予め混合し、均一に混練された状態で、
有機ペルオキシドおよび他の任意成分を添加して
混練することによつて行われる。この溶融混練に
用いられる装置としては、開放型のミキシングロ
ール、非開放型のバンバリーミキサー、押出機、
ニーダー、連続ミキサーなど一般に用いられてい
るものが使用される。これらの中でも、非開放型
の装置を用い、窒素ガスや炭酸ガスなどの不活性
ガス雰囲気中で混練することが好ましく、十分に
混練効果のある押出機などを用いれば、上記の工
程を一度に行なうことができる。溶融混練は、一
般に約150〜280℃、好ましくは約170〜240℃の温
度で、約1〜20分間、好ましくは約3〜10分間行
われる。 熱処理過程において、架橋助剤を存在させる
と、均一かつ緩和な架橋反応が期待できる。架橋
助剤としては、イオウ、p−キノンジオキシム、
p,p′−ジベンゾイルキノンジオキシム、N−メ
チル−N,4−ジニトロソアニリン、ニトロベン
ゼン、ジフエニルグアニジン、トリメチロールプ
ロパン−N,N′−m−フエニレンジマレイミド、
ジビニルベンゼン、トリアリルシアヌレート、エ
チレングリコールジメタクリレート、ジエチレン
グリコールジメタクリレート、ポリエチレングリ
コールジメタクリレート、トリメチロールプロパ
ントリメタクリレート、アリルメタクリレート、
ビニルブチラート、ビニルステアレートなどが用
いられる。 特に、ジビニルベンゼンを用いると、それが取
扱い易く、しかも物性のバランスのとれた樹脂組
成物が得られるので、それの使用が最も望まし
い。即ち、ジビニルベンゼンは、常温で液体であ
り、かつ有機ペルオキシドを溶解させることがで
き、しかもペルオキシド架橋型重合体およびポリ
プロピレン樹脂に対して良好な親和性を有するた
め、有機ペルオキシドの分散助剤、希釈剤とし
て、有機ペルオキシドの各成分への分散性を改良
し、特にペルオキシド架橋型重合体成分に対し均
一かつ緩和な架橋をもたらす働きをなす。また、
ジビニルベンゼン自身もラジカルとなり、連鎖移
動剤および架橋剤として働くので、有機ペルオキ
シドを単独で架橋剤として使用した以上の架橋効
果が期待できる。また、有機ペルオキシドに対す
る反応性も良好であるため、調製された樹脂組成
物中にジビニルベンゼンが単量体として残存する
ことがなく、従つて臭気を発することも少ない。
なお、ジビニルベンゼンは、他の炭化水素化合物
などとの混合物の形でも使用することができる。 前記の如き各種の架橋助剤は、ペルオキシド架
橋型重合体およびポリプロピレン樹脂の合計量
100重量部当り2重量部以下、好ましくは0.3〜1
重量部の割合で用いられる。配合割合がこれより
多いと、有機ペルオキシドの配合量が多い場合に
は架橋反応が進み、その結果樹脂組成物の均一性
が失われて耐衝撃性に劣るようになり、一方有機
ペルオキシドの配合量が少ない場合には未反応の
単量体として樹脂組成物中に残存し、それを成形
加工する際の熱履歴により物性の変化を生じたり
するため、過剰の使用は避けるべきである。 このような動的熱処理により得られた被処理物
に、動的熱処理時に共存させた量を含めてペルオ
キシド架橋型重合体100重量部に対して150〜600
重量部、好ましくは200〜400重量部となる量のポ
リプロピレン樹脂が混合される。なおこの際、動
的熱処理時に添加されるポリプロピレン樹脂と同
量以上のポリプロピレン樹脂をこの段階で混合す
ることが好ましい。ポリプロピレン樹脂の混合量
がこれ以下では剛性が低く、一方これ以上の混合
物では耐衝撃性に劣る成形品を与える樹脂組成物
しか得られない。ポリプロピレン樹脂の混合は、
押出機を用いて溶融、混合してもよいし、また被
処理物のペレツトとポリプロピレン樹脂ペレツト
とを単に混合し、溶融成形時に混練させてもよ
い。そして、ポリプロピレン樹脂と混合された樹
脂組成物は、メルトインデツクス(230℃)が約
0.05〜15の値となるように調整することが好まし
い。 本発明に係るポリプロピレン樹脂組成物中に
は、強度や耐衝撃性を損わない範囲内において、
充填剤や着色剤などを配合することができる。充
填剤としては、例えば炭酸カルシウム、けい酸カ
ルシウム、クレー、カオリン、タルク、シリカ、
けいそう土、雲母粉、アスベスト、アルミナ、硫
酸バリウム、硫酸アルミニウム、硫酸カルシウ
ム、塩基性炭酸マグネシウム、二硫化モリブデ
ン、グラフアイト、ガラス繊維、ガラス球、シラ
スバルーン、カーボン繊維などが用いられ、また
着色剤としてはカーボンブラツク、酸化チタン、
亜鉛華、べんがら、群青、紺青、アゾ顔料、ニト
ロソ顔料、レーキ顔料、フタロシアニン顔料など
が用いられる。 樹脂組成物中にはまた、鉱物油、ポリイソブチ
レン、ブチルゴム、プロピレン含有量の多い無定
形プロピレン・エチレン共重合体などを、成形品
の外観改良の目的で加えることができ、この他フ
エノール系、サルフアイト系、フエニルアルカン
系、ホスフアイト系、アミン系などの耐熱安定
剤、老化防止剤、耐候安定剤、帯電防止剤、金属
石けん、ワツクスなどの滑剤などを適宜少量宛添
加することもできる。 本発明に係るポリプロピレン樹脂組成物は、そ
れの十分にバランスのとれた剛性と耐衝撃性、低
温脆化性という性質を有効に生かして、自動車部
品、バンパー、モールラジエーターグリルなどの
自動車用外装品、ハンドル、各種ピラー類などの
自動車用内装品、コンテナー、ペレツトなどの成
形に好適に使用することができる。 次に、実施例について本発明を説明する。 実施例 1 エチレン・プロピレン・5−エチリデン−2−
ノルボルネン3元共重合ゴム〔エチレンとプロピ
レンのモル比70/30、ムーニー粘度ML1+4(100
℃)70。、ヨウ素価15〕50部(重量、以下同じ)、
高圧法ポリエチレン〔密度0.925g/cm3、メルト
インデツクス(ASTM−D−1238−65T、190
℃)4;ポリエチレン−1〕20部およびポリプロ
ピレン〔密度0.91g/cm3、メルトインデツクス
(ASTM−D−1238−65T、230℃)7〕30部を、
バンバリーミキサーを用い、窒素雰囲気中180℃
で5分間混練した後ロールを通し、シートカツタ
ーによりペレツトに造粒した(第1工程)。次に、
このペレツトと1,3−ビス(第3ブチルペルオ
キシイソプロピル)ベンゼン0.3部をジビニルビ
ンゼン0.5部に溶解させた溶液とを、タンブラー
ブレンダーにより混合し、架橋剤溶液をペレツト
表面に均一に付着させた。この後、このペレツト
を、押出機を用いて窒素雰囲気中210℃で押出し
て、動的に熱処理されたペレツトに造粒した(第
2工程)。この被処理物100部に前記と同一のポリ
プロピレン150部をタンブラーブレンダーで混合
後、押出機を用いて210℃で押出し、目的とする
ポリプロピレン樹脂組成物を得た。 この樹脂組成物について、その成形性および基
本物性の評価を以下の方法によつて行なつた。 〔試験方法〕 1 射出成形性 (1) 下記の装置および条件で射出成形した 成形機:ダイナメルター(名機製作所製) 成形温度:200℃ 射出圧力:一次圧1300Kg/cm2、二次圧700
Kg/cm2 〃 :最大 成形速度:90秒/1サイクル ゲート:ダイレクトゲート(ランド10×10×
3mm) 成形品:3種類の角板(長さ300mm、幅180
mm、厚さ2、4、6mm) (2) 成形品の外観判定基準 (a) フローマークを下記3段階で評価した (評価) 〇:フローマークが全くみられない △:成形品全面にわずかにみられる ×:フローマークが著しく多い (b) ヒケを下記の3段階で評価した (評価) 〇:ヒケが全くみられない △:ゲートの反対側にのみみられる ×:全面にわたりみられる (c) 表面光沢をASTM−D−523の方法に準
じ、入射角60°で測定した (評価) 〇:グロスが25%以上 △:グロスが10〜25% ×:グロスが10%以下 2 基本物性 前記1の方法で射出成形して得られた厚さ2mm
の角板から試験片を切削し、次の項目についてそ
の値を測定した。 引張特性(引張破断点強度および破断点伸び): :JIS K−6301 スプリング強さ:ASTM−D−2240(シヨアDタ
イプ) 曲げ弾性率:ASTM−D−790(23℃) 落錘衝撃強度:ASTM−D−1709に準拠 アイゾツト衝撃強度:ASTM−D−256(−40℃、
ノツチ付) 低温脆化温度:JIS K−6301 実施例 2 実施例1において、ポリエチレンとして密度
0.954g/cm3、メルトインデツクス0.9(190℃)の
低圧法ポリエチレン(ポリエチレン−2)が用い
られた。 実施例 3 実施例1において、第3工程で混合されるポリ
プロピレンが250部に増量された。 実施例 4 実施例1において、3元共重合ゴムが40部、ポ
リエチレン−1が15部、そしてポリプロピレンが
45部第1工程で混練された。 実施例 5 実施例4において、第3工程で混合されるポリ
プロピレンが200部に増量された。 実施例 6 実施例1において、3元共重合ゴムが30部、ポ
リエチレン−1が40部、そしてポリプロピレンが
30部第1工程で混練された。 実施例 7 実施例1において、ポリプロピレン30部を20部
に減量すると共にポリイソブチレン10部を加えて
第1工程の混練が行われた。 実施例 8 実施例7において、更に鉱物油系軟化剤20部を
加え、第1工程の混練が行われた。 実施例 9 実施例1において、3元共重合ゴム50部を75部
に増量し、一方ポリプロピレン30部を5部に減量
して第1工程の混練が行われた。 比較例 1 実施例1において、第2工程の架橋工程が省略
された。 比較例 2 実施例1において、第3工程で混合されるポリ
プロピレンが450部に増量された。 比較例 3 実施例1において、3元共重合ゴムを用いず
に、ポリエチレン−170部とポリプロピレン30部
との混練を第1工程で行ない、第2工程では1,
3−ビス(第3ブチルペルオキシイソプロピル)
ベンゼン0.1部をジビニルベンゼン0.3部に溶解さ
せた溶液が架橋剤として用いられた。 比較例 4 比較例3において、実施例1と同量の架橋剤溶
液が用いられた。 以上の各実施例および比較例で得られた結果
は、次の表1〜2に示される。
The present invention relates to a method for producing a polypropylene resin composition. More particularly, the present invention relates to a method for producing a polypropylene resin composition having improved impact resistance and low temperature embrittlement. In order to improve impact resistance and low-temperature embrittlement, which were considered to be the essential drawbacks of polypropylene resin, olefin copolymer rubbers such as ethylene/propylene copolymer rubber, ethylene/propylene/diene ternary copolymer rubber, or Blending polyethylene resin and the like with polypropylene resin has been well known (for example, Japanese Patent Publications No. 39-18746, Japanese Patent Publication No. 41-7345, Japanese Patent Publication No. 45-22626, etc.). However, modification using these blends often impairs the excellent rigidity inherent in polypropylene resins, and as a result, polypropylene resins with a sufficient balance of rigidity, impact resistance, and low-temperature embrittlement resistance are produced. It was not possible to obtain a resin mixture. In view of the current situation, the present inventors have conducted various studies to improve the impact resistance and low-temperature embrittlement of polypropylene resin without essentially impairing its rigidity. By mixing partially co-crosslinked olefin copolymer rubber and polyethylene resin in a specific ratio,
It has been found that the above problem can be solved. Therefore, the modified polypropylene resin composition of the present invention contains 10 to 90% by weight of peroxide crosslinked olefin copolymer rubber and 90% by weight of polyethylene resin.
Peroxide crosslinked polymer consisting of ~10% by weight
10 to 200 parts by weight of a polypropylene resin and an organic peroxide are added to 100 parts by weight, and this is dynamically heat-treated to obtain a processed material, in which each 100 parts by weight of the peroxide crosslinked polymer is allowed to coexist during the dynamic heat treatment. It is manufactured by mixing polypropylene resin in an amount of 150 to 600 parts by weight, including the amount. 100 parts by weight of a peroxide crosslinked polymer consisting of a peroxide crosslinked olefin copolymer rubber and a peroxide crosslinked polyolefin resin such as a polyethylene resin, and 10 parts by weight of a peroxide non-crosslinked polyolefin resin such as a polypropylene resin.
The method of obtaining a thermoplastic elastomer by adding ~100 parts by weight and dynamically heat-treating this in the presence of an organic peroxide is disclosed in JP-A-55-71739, which describes the invention filed by the present applicant. It is described in. Such a thermoplastic elastomer can also be prepared by adding 100 parts by weight of the above peroxide crosslinked polymer in the presence of a peroxide non-crosslinked polyolefin resin such as polypropylene (the amount of which is in the range of 10 to 100 parts by weight below). (with or without the presence of organic peroxide), by dynamically heat-treating it with an organic peroxide and mixing the resulting treated material with a peroxide-non-crosslinked polyolefin resin in an amount of 10 to 100 parts by weight. can also be manufactured. In such conventional technology, the upper limit of the peroxide non-crosslinked polyolefin resin is limited to 100 parts by weight per 100 parts by weight of the total amount of partially co-crosslinked peroxide crosslinked polymers, which means that the upper limit of the peroxide non-crosslinked polyolefin resin is limited to 100 parts by weight. If used, the rubber-like properties will be lost, making it impossible to obtain the desired thermoplastic elastomer.Therefore, as long as such thermoplastic elastomers are used as the desired product, rigidity is essentially important. It is not considered a property. However, polypropylene resin per 100 parts by weight of the total amount of partially co-crosslinked peroxide crosslinked polymer.
By mixing 150 to 600 parts by weight, a resinous composition mainly composed of polypropylene resin is formed according to the mixing ratio between the two, and the polypropylene resin composition has rigidity, impact resistance, The low-temperature embrittlement properties are well balanced, resulting in a modified polypropylene resin that is essentially different from the thermoplastic elastomer. The polypropylene resin modified in this way is polypropylene, or a propylene such as a copolymer of propylene containing 85 mol% or more of propylene units and an α-olefin having 2 to 10 carbon atoms (excluding propylene). Polymer resin is used, especially melt index (230℃)
is preferably about 0.1 to 100, particularly about 0.5 to 50. Examples of peroxide crosslinked olefin copolymer rubbers include ethylene/propylene copolymer rubber, ethylene/propylene/nonconjugated diene ternary copolymer rubber, ethylene/1-butene copolymer rubber, and ethylene/1-butene/nonconjugated diene copolymer rubber. It is an amorphous elastic copolymer mainly composed of olefins such as tertiary copolymer rubber and ethylene-butadiene copolymer rubber, and is crosslinked by mixing with organic peroxide and kneading under heating, resulting in fluidity. Rubbers that degrade or become non-flowing are used. In these ethylene/α-olefin/(non-conjugated polyethylene) copolymer rubbers, the ratio of ethylene and α-olefin is about 50/50 to 85/15, preferably about
It is desirable that the copolymerization is carried out at a molar ratio of 55/45 to 80/20, and further dicyclopentadiene, 1,4
- When a non-conjugated polyene such as hexadiene, cyclooctadiene, methylene norbornene, ethylidene norbornene is copolymerized, it may be present in an amount such that the iodine value is less than about 50, preferably less than about 40. desirable. These copolymer rubbers have a Mooney viscosity ML 1+4 (100℃) of approximately 10
-200, preferably about 40-150; if the Mooney viscosity is less than this, only a resin composition with poor impact resistance will be obtained, whereas if it is more than this, when partially co-crosslinked, the The dispersibility of the partially co-crosslinked product deteriorates, and the impact resistance and appearance of the molded product deteriorate. Peroxide cross-linked polyethylene resins include low-density to high-density polyethylene, or combinations of ethylene containing 85 mol% or more of ethylene units, α-olefins having 3 to 8 carbon atoms, vinyl acetate, acrylic esters, methacrylic esters, etc. Ethylene-based polymer resins such as copolymers are used, especially those with a melt index (190℃) of about 0.01.
-200, especially about 0.1-100 are preferred. These polyethylene resins contribute to improving the impact resistance and low-temperature embrittlement of the resin composition by partially co-crosslinking with the olefin copolymer rubber during dynamic heat treatment in the presence of an organic peroxide. do. In both cases, the weight ratio of peroxide crosslinked olefin copolymer rubber and polyethylene resin is 10/90.
It is used at a ratio of ~90/10, preferably from 30/70 to 80/20; if the ratio is outside this range, a resin composition with improved impact resistance and low-temperature embrittlement cannot be obtained. Partially co-crosslinked product of olefin copolymer rubber and polyethylene resin in such proportions
The polypropylene resin is 150 to 100 parts by weight.
A polypropylene resin composition according to the present invention is produced by mixing in a proportion of 600 parts by weight, which is preferably produced by the following method. Peroxide crosslinked olefin copolymer rubber 10
~90% by weight and polyethylene resin 90-10% by weight
100 parts by weight of a peroxide crosslinked polymer consisting of
10-200 parts by weight of polypropylene resin, preferably
10 to 100 parts by weight, more preferably 30 to 80 parts by weight, and a small amount of organic peroxide crosslinking agent are added, which is first subjected to a dynamic heat treatment. The reason for coexisting polypropylene resin during this dynamic heat treatment is to improve the compatibility when the polypropylene resin is further mixed into the processed material, and to improve the fluidity of the processed material due to the presence of peroxide-decomposed polypropylene resin. The objective is to prevent this from occurring, and as a result, the partially co-crosslinked product of the peroxide crosslinked polymer is uniformly mixed with the polypropylene resin. Therefore, if the coexistence ratio of polypropylene resin is less than this, such an effect cannot be obtained, whereas if it is used in a larger amount than this, the ratio of polypropylene resin decomposed by peroxide will be relatively large, and the impact resistance will ultimately decrease. An improved resin composition cannot be obtained. The organic peroxide is preferably used in a proportion of 0.05 to 1 part by weight per 100 parts by weight of the peroxide crosslinked polymer and polypropylene resin; if the proportion is less than this, partial co-crosslinking will be insufficient and the desired result will not be achieved. A resin composition having impact resistance cannot be obtained, and on the other hand, if more than this amount is used, the crosslinking density becomes high and the dispersibility in the polypropylene resin deteriorates, so that the impact resistance cannot be improved. Examples of organic peroxides include dicumyl peroxide, ditertiary butyl peroxide, 2,5
-dimethyl-2,5-di(tert-butylperoxy)hexane, 2,5-dimethyl-2,5-di(tert-butylperoxy)hexane-3,1,3
-Bis(tert-butylperoxyisopropyl)benzene, 1,1-bis(tert-butylperoxy)
-3,3,5-trimethylcyclohexane, n-
Butyl 4,4-bis(tert-butylperoxy)valerate, benzoyl peroxide, p-chlorobenzoyl peroxide, 2,4-dichlorobenzoyl peroxide, tert-butyl peroxybenzoate, tert-butyl peroxyisopropyl carbonate, diacetyl peroxide, lauroyl peroxide , tert-butylcumyl peroxide, and the like. Among these organic peroxides, 2,5-dimethyl-2,5-di(tert-butylperoxy)hexane and 2,5-dimethyl-2,5-di( tert-butylperoxy)-hexyne-3,1,3-bis(tert-butylperoxyisopropyl)benzene,
1,1-bis(tert-butylperoxy)-3,3,
3-trimethylcyclohexane, n-butyl-
4,4-bis(tert-butylperoxy)parelate and the like are preferred, and 1,3-bis(tert-butylperoxyisopropyl)benzene is particularly preferred. The dynamic heat treatment is carried out by melting and kneading a peroxide crosslinked polymer, a polypropylene resin, a crosslinking aid blended as necessary, and the like in the presence of an organic peroxide. Generally, a peroxide crosslinked polymer and a polypropylene resin are mixed in advance, and in a uniformly kneaded state,
This is done by adding and kneading the organic peroxide and other optional ingredients. The equipment used for this melt kneading includes an open type mixing roll, a closed type Banbury mixer, an extruder,
Commonly used devices such as kneaders and continuous mixers are used. Among these, it is preferable to use a closed-type device and knead in an inert gas atmosphere such as nitrogen gas or carbon dioxide gas.If you use an extruder etc. that has a sufficient kneading effect, the above steps can be completed all at once. can be done. Melt kneading is generally carried out at a temperature of about 150-280°C, preferably about 170-240°C, for about 1-20 minutes, preferably about 3-10 minutes. When a crosslinking aid is present in the heat treatment process, a uniform and mild crosslinking reaction can be expected. As a crosslinking aid, sulfur, p-quinonedioxime,
p,p'-dibenzoylquinone dioxime, N-methyl-N,4-dinitrosoaniline, nitrobenzene, diphenylguanidine, trimethylolpropane-N,N'-m-phenylene dimaleimide,
Divinylbenzene, triallyl cyanurate, ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, polyethylene glycol dimethacrylate, trimethylolpropane trimethacrylate, allyl methacrylate,
Vinyl butyrate, vinyl stearate, etc. are used. In particular, it is most desirable to use divinylbenzene because it is easy to handle and a resin composition with well-balanced physical properties can be obtained. That is, divinylbenzene is liquid at room temperature, can dissolve organic peroxides, and has good affinity for peroxide crosslinked polymers and polypropylene resins, so it is used as a dispersion aid and diluent for organic peroxides. As an agent, it functions to improve the dispersibility of organic peroxides in each component, and particularly to bring about uniform and gentle crosslinking of peroxide crosslinked polymer components. Also,
Since divinylbenzene itself becomes a radical and acts as a chain transfer agent and a crosslinking agent, it can be expected to have a greater crosslinking effect than when organic peroxide is used alone as a crosslinking agent. In addition, since the reactivity with organic peroxides is good, divinylbenzene does not remain as a monomer in the prepared resin composition, and therefore little odor is emitted.
Note that divinylbenzene can also be used in the form of a mixture with other hydrocarbon compounds. The various crosslinking auxiliaries mentioned above are based on the total amount of peroxide crosslinked polymer and polypropylene resin.
2 parts by weight or less per 100 parts by weight, preferably 0.3 to 1
Used in parts by weight. If the blending ratio is higher than this, the crosslinking reaction will proceed if the blending amount of the organic peroxide is large, and as a result, the uniformity of the resin composition will be lost and the impact resistance will be inferior; If the amount is too low, it will remain in the resin composition as an unreacted monomer, and its physical properties may change due to the thermal history during molding, so excessive use should be avoided. The processed material obtained by such dynamic heat treatment contains 150 to 600 parts by weight of peroxide crosslinked polymer, including the amount coexisting during dynamic heat treatment, per 100 parts by weight of the peroxide crosslinked polymer.
Polypropylene resin is mixed in an amount of 200 to 400 parts by weight, preferably 200 to 400 parts by weight. At this time, it is preferable to mix at this stage at least the same amount of polypropylene resin as the polypropylene resin added during the dynamic heat treatment. If the amount of polypropylene resin mixed is less than this, the rigidity will be low, while if the amount of the polypropylene resin mixed is more than this, only a resin composition that gives a molded article with poor impact resistance will be obtained. Mixing of polypropylene resin is
They may be melted and mixed using an extruder, or the pellets of the object to be treated and the polypropylene resin pellets may be simply mixed and kneaded during melt molding. The resin composition mixed with polypropylene resin has a melt index (230℃) of approximately
It is preferable to adjust the value to a value of 0.05 to 15. In the polypropylene resin composition according to the present invention, within a range that does not impair strength or impact resistance,
Fillers, colorants, etc. can be added. Examples of fillers include calcium carbonate, calcium silicate, clay, kaolin, talc, silica,
Diatomaceous earth, mica powder, asbestos, alumina, barium sulfate, aluminum sulfate, calcium sulfate, basic magnesium carbonate, molybdenum disulfide, graphite, glass fiber, glass bulbs, shirasu balloons, carbon fiber, etc. are used, and colored As agents, carbon black, titanium oxide,
Zinc white, red iron, ultramarine blue, navy blue, azo pigments, nitroso pigments, lake pigments, phthalocyanine pigments, etc. are used. In addition, mineral oil, polyisobutylene, butyl rubber, amorphous propylene/ethylene copolymer with a high propylene content, etc. can be added to the resin composition for the purpose of improving the appearance of molded products. Heat-resistant stabilizers such as sulfite-based, phenylalkane-based, phosphite-based, and amine-based stabilizers, anti-aging agents, weather-resistant stabilizers, antistatic agents, and lubricants such as metal soaps and waxes may also be added in small amounts as appropriate. The polypropylene resin composition according to the present invention makes effective use of its well-balanced properties of rigidity, impact resistance, and low-temperature embrittlement, and can be used for automobile exterior parts such as automobile parts, bumpers, and molding radiator grills. It can be suitably used for molding automobile interior parts such as handles, various pillars, containers, pellets, etc. Next, the present invention will be explained with reference to examples. Example 1 Ethylene/propylene/5-ethylidene-2-
Norbornene ternary copolymer rubber [ethylene and propylene molar ratio 70/30, Mooney viscosity ML 1+4 (100
℃) 70. , iodine value 15] 50 parts (weight, same below),
High-pressure polyethylene [density 0.925 g/cm 3 , melt index (ASTM-D-1238-65T, 190
℃) 4; 20 parts of polyethylene-1] and 30 parts of polypropylene [density 0.91 g/cm 3 , melt index (ASTM-D-1238-65T, 230°C) 7],
180℃ in nitrogen atmosphere using Banbury mixer
After kneading for 5 minutes, the mixture was passed through a roll and granulated into pellets using a sheet cutter (first step). next,
These pellets and a solution prepared by dissolving 0.3 parts of 1,3-bis(tert-butylperoxyisopropyl)benzene in 0.5 parts of divinylbinzene were mixed using a tumble blender to uniformly adhere the crosslinking agent solution to the pellet surface. . Thereafter, the pellets were extruded using an extruder at 210° C. in a nitrogen atmosphere to form dynamically heat-treated pellets (second step). 100 parts of this treated material was mixed with 150 parts of the same polypropylene as described above using a tumbler blender, and then extruded using an extruder at 210°C to obtain the intended polypropylene resin composition. The moldability and basic physical properties of this resin composition were evaluated by the following methods. [Test method] 1. Injection moldability (1) Molding machine used for injection molding using the following equipment and conditions: Dynamelter (manufactured by Meiki Seisakusho) Molding temperature: 200℃ Injection pressure: Primary pressure 1300Kg/cm 2 , secondary pressure 700
Kg/cm 2 〃: Maximum molding speed: 90 seconds/1 cycle Gate: Direct gate (land 10 x 10 x
3mm) Molded product: 3 types of square plates (length 300mm, width 180mm)
mm, thickness 2, 4, 6 mm) (2) Appearance criteria for molded products (a) Flow marks were evaluated on the following three levels (evaluation) 〇: No flow marks observed at all △: Slightly visible on the entire surface of the molded product ×: Significantly many flow marks (b) Sink marks were evaluated on the following three levels (evaluation) 〇: No sink marks were seen at all △: Only seen on the opposite side of the gate ×: Seen over the entire surface ( c) Surface gloss was measured according to the ASTM-D-523 method at an incident angle of 60° (Evaluation) 〇: Gloss 25% or more △: Gloss 10-25% ×: Gloss 10% or less 2 Basic physical properties Thickness 2 mm obtained by injection molding using method 1 above
A test piece was cut from a square plate, and the values of the following items were measured. Tensile properties (tensile strength at break and elongation at break): : JIS K-6301 Spring strength: ASTM-D-2240 (Shore D type) Flexural modulus: ASTM-D-790 (23℃) Falling weight impact strength: Conforms to ASTM-D-1709 Izot impact strength: ASTM-D-256 (-40℃,
(notched) Low temperature embrittlement temperature: JIS K-6301 Example 2 In Example 1, the density as polyethylene
Low-pressure polyethylene (polyethylene-2) having a weight of 0.954 g/cm 3 and a melt index of 0.9 (190° C.) was used. Example 3 In Example 1, the amount of polypropylene mixed in the third step was increased to 250 parts. Example 4 In Example 1, 40 parts of ternary copolymer rubber, 15 parts of polyethylene-1, and 15 parts of polypropylene were used.
45 parts were kneaded in the first step. Example 5 In Example 4, the amount of polypropylene mixed in the third step was increased to 200 parts. Example 6 In Example 1, 30 parts of ternary copolymer rubber, 40 parts of polyethylene-1, and 40 parts of polypropylene were used.
30 parts were kneaded in the first step. Example 7 In Example 1, the first step of kneading was carried out by reducing the amount of polypropylene from 30 parts to 20 parts and adding 10 parts of polyisobutylene. Example 8 In Example 7, 20 parts of a mineral oil softener was further added and the first step of kneading was carried out. Example 9 In Example 1, the first step of kneading was carried out by increasing the amount of terpolymer rubber from 50 parts to 75 parts, and reducing the amount of polypropylene from 30 parts to 5 parts. Comparative Example 1 In Example 1, the second crosslinking step was omitted. Comparative Example 2 In Example 1, the amount of polypropylene mixed in the third step was increased to 450 parts. Comparative Example 3 In Example 1, 170 parts of polyethylene and 30 parts of polypropylene were kneaded in the first step, without using the ternary copolymer rubber, and in the second step, 1,
3-bis(tert-butylperoxyisopropyl)
A solution of 0.1 part of benzene dissolved in 0.3 part of divinylbenzene was used as the crosslinking agent. Comparative Example 4 In Comparative Example 3, the same amount of crosslinking agent solution as in Example 1 was used. The results obtained in each of the above Examples and Comparative Examples are shown in Tables 1 and 2 below.

【表】【table】

Claims (1)

【特許請求の範囲】 1 ペルオキシド架橋型オレフイン系共重合ゴム
10〜90重量%およびポリエチレン樹脂90〜10重量
%よりなるペルオキシド架橋型重合体100重量部
にポリプロピレン樹脂10〜200重量部およびこれ
ら重合体成分100重量部当り0.05〜1重量部の有
機ペルオキシドを添加し、これを動的に熱処理し
て得られた被処理物に、前記ペルオキシド架橋型
重合体100重量部当り動的熱処理時に共存させた
量を含めて150〜600重量部となる量のポリプロピ
レン樹脂を混合することを特徴とするポリプロピ
レン樹脂組成物の製造法。 2 ペルオキシド架橋型オレフイン系共重合ゴム
10〜90重量%およびポリエチレン樹脂90〜10重量
%よりなるペルオキシド架橋型重合体100重量部
にポリプロピレン樹脂10〜200重量部およびいず
れもこれら重合体成分100重量部当り0.05〜1重
量部の有機ペルオキシドならびに2重量部以下の
架橋助剤を添加し、これを動的に熱処理して得ら
れた被処理物に、前記ペルオキシド架橋型重合体
100重量部当り動的熱処理時に共存させた量を含
めて150〜600重量部となる量のポリプロピレン樹
脂を混合することを特徴とするポリプロピレン樹
脂組成物の製造法。
[Claims] 1. Peroxide crosslinked olefin copolymer rubber
10 to 200 parts by weight of polypropylene resin and 0.05 to 1 part by weight of organic peroxide per 100 parts by weight of these polymer components are added to 100 parts by weight of a peroxide crosslinked polymer consisting of 10 to 90 parts by weight and 90 to 10 parts by weight of polyethylene resin. Then, a polypropylene resin in an amount of 150 to 600 parts by weight, including the amount coexisting during the dynamic heat treatment, per 100 parts by weight of the above-mentioned peroxide crosslinked polymer is added to the processed material obtained by dynamic heat treatment. A method for producing a polypropylene resin composition, which comprises mixing. 2 Peroxide crosslinked olefin copolymer rubber
10 to 200 parts by weight of a peroxide crosslinked polymer consisting of 10 to 90 parts by weight and 90 to 10 parts by weight of polyethylene resin, 10 to 200 parts by weight of polypropylene resin, and 0.05 to 1 part by weight of organic peroxide per 100 parts by weight of these polymer components. In addition, 2 parts by weight or less of a crosslinking agent is added, and the resultant product is subjected to dynamic heat treatment, and the peroxide crosslinked polymer is added to the processed material.
1. A method for producing a polypropylene resin composition, which comprises mixing 150 to 600 parts by weight of polypropylene resin per 100 parts by weight, including the amount coexisting during dynamic heat treatment.
JP10210381A 1981-06-30 1981-06-30 Propylene resin composition and its preparation Granted JPS582340A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10210381A JPS582340A (en) 1981-06-30 1981-06-30 Propylene resin composition and its preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10210381A JPS582340A (en) 1981-06-30 1981-06-30 Propylene resin composition and its preparation

Publications (2)

Publication Number Publication Date
JPS582340A JPS582340A (en) 1983-01-07
JPS6365100B2 true JPS6365100B2 (en) 1988-12-14

Family

ID=14318452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10210381A Granted JPS582340A (en) 1981-06-30 1981-06-30 Propylene resin composition and its preparation

Country Status (1)

Country Link
JP (1) JPS582340A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59223740A (en) * 1983-06-02 1984-12-15 Mitsui Petrochem Ind Ltd Production of polypropylene composition
JPH06871B2 (en) * 1984-05-02 1994-01-05 三井石油化学工業株式会社 Waterproof sheet
JPS6121145A (en) * 1984-07-09 1986-01-29 Mitsubishi Petrochem Co Ltd Thermoplastic resin composition
JPS6245638A (en) * 1985-08-23 1987-02-27 Idemitsu Petrochem Co Ltd Polyolefin resin composition
JP2005314522A (en) * 2004-04-28 2005-11-10 Sumitomo Chemical Co Ltd Thermoplastic elastomer composition
DE102008033290A1 (en) * 2008-07-11 2010-01-14 Takata-Petri Ag Process for compounding a plastic material, plastic material and plastic product

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5051146A (en) * 1973-09-06 1975-05-07
JPS52138539A (en) * 1976-04-09 1977-11-18 Mitsui Toatsu Chem Inc Polyolefin compositions for extrusion coating
US4087485A (en) * 1976-08-16 1978-05-02 Exxon Research & Engineering Co. Polypropylene blends having high impact strength and improved optical properties
JPS5441950A (en) * 1977-09-08 1979-04-03 Mitsubishi Chem Ind Ltd Preparation of modified polyolefin composition
JPS5573738A (en) * 1978-11-28 1980-06-03 Asahi Chem Ind Co Ltd Improved composition
JPS5573740A (en) * 1978-11-28 1980-06-03 Asahi Chem Ind Co Ltd Improved composition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5051146A (en) * 1973-09-06 1975-05-07
JPS52138539A (en) * 1976-04-09 1977-11-18 Mitsui Toatsu Chem Inc Polyolefin compositions for extrusion coating
US4087485A (en) * 1976-08-16 1978-05-02 Exxon Research & Engineering Co. Polypropylene blends having high impact strength and improved optical properties
JPS5441950A (en) * 1977-09-08 1979-04-03 Mitsubishi Chem Ind Ltd Preparation of modified polyolefin composition
JPS5573738A (en) * 1978-11-28 1980-06-03 Asahi Chem Ind Co Ltd Improved composition
JPS5573740A (en) * 1978-11-28 1980-06-03 Asahi Chem Ind Co Ltd Improved composition

Also Published As

Publication number Publication date
JPS582340A (en) 1983-01-07

Similar Documents

Publication Publication Date Title
US8076416B2 (en) Thermoplastic vulcanizates and their use
US5118753A (en) Olefinic thermoplastic elastomer composition
US5523356A (en) Vulcanized polyolefinic plastoelastomer composition and a process for its preparation
JPH0252648B2 (en)
EP0382849B1 (en) Polymer composition
KR940003261B1 (en) Method of producing themoplastic elastomer composition and thermoplastic elastomer composition produced thereby
CN110461933B (en) Thermoplastic elastomer composition having excellent molded appearance and molded article thereof
US6710129B2 (en) Injection molding soft resin composition and users thereof
JPH0233062B2 (en) NETSUKASOSEIERASUTOMAASOSEIBUTSUNOSEIZOHO
US5310800A (en) Thermoplastic elastomer
JPS6365100B2 (en)
JPS6259139B2 (en)
JPH066656B2 (en) Polymer composition
JPS62938B2 (en)
EP0603580B1 (en) Olefinic resin composition
JPS5930736B2 (en) Method for producing thermoplastic elastomer composition
US5602203A (en) Olefin resin composition
JPS5856575B2 (en) Method for producing thermoplastic elastomer composition
JPS6228977B2 (en)
JPH07103274B2 (en) Olefin-based thermoplastic elastomer composition
JP2691172B2 (en) Thermoplastic elastomer composition with excellent weather resistance
JPH0557297B2 (en)
JPH06136205A (en) Thermoplastic elastomer surface sheet
JPH01247440A (en) Thermoplastic elastomer composition
JPS6148537B2 (en)