JPS636508Y2 - - Google Patents

Info

Publication number
JPS636508Y2
JPS636508Y2 JP1985076874U JP7687485U JPS636508Y2 JP S636508 Y2 JPS636508 Y2 JP S636508Y2 JP 1985076874 U JP1985076874 U JP 1985076874U JP 7687485 U JP7687485 U JP 7687485U JP S636508 Y2 JPS636508 Y2 JP S636508Y2
Authority
JP
Japan
Prior art keywords
load
outer cylinder
path
recessed
spline shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1985076874U
Other languages
Japanese (ja)
Other versions
JPS61193229U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1985076874U priority Critical patent/JPS636508Y2/ja
Publication of JPS61193229U publication Critical patent/JPS61193229U/ja
Application granted granted Critical
Publication of JPS636508Y2 publication Critical patent/JPS636508Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 産業上の利用分野 本考案は、外筒が、該外筒に内装されるボール
群を介して、回動することなく、走行自在にスプ
ライン軸に装架されてなるボールスプライン軸受
に関するものである。
[Detailed Description of the Invention] Industrial Application Field The present invention comprises an outer cylinder mounted on a spline shaft so as to be movable without rotation via a group of balls housed in the outer cylinder. This relates to ball spline bearings.

従来の技術 従来のボールスプライン軸受は、例えば第12
図(特願昭46−49508号参照)、第13図(特願昭
46−70319号参照)に示す如き形状のもので、外
筒内周面に断面U字状の幅広く深い溝が形成さ
れ、ボールの負荷部と無負荷部とが内周面の円周
方向に交互に設けられているものであつたが、こ
れらはそれぞれ後述する欠点があつた。
BACKGROUND TECHNOLOGY Conventional ball spline bearings, for example,
Figure (see Japanese Patent Application No. 46-49508), Figure 13 (Japanese Patent Application No.
46-70319), a wide and deep groove with a U-shaped cross section is formed on the inner peripheral surface of the outer cylinder, and the loaded and non-loaded parts of the ball are arranged in the circumferential direction of the inner peripheral surface. Although these were provided alternately, each of these had drawbacks that will be described later.

第12図に示す第1の従来例においては、外筒
40の内周面に断面U字状の負荷溝41と、より
深い断面U字状の無負荷溝42とが交互に凹設さ
れ、前記負荷溝41にはボール43群を介して外
筒40とスプライン軸44との間に負荷が支承さ
れる負荷路45が形成され、前記無負荷溝42に
は、外筒40の内周面に嵌着されている保持器4
6,46にそれぞれリターン路47,47が凹設
形成されている。
In a first conventional example shown in FIG. 12, load grooves 41 having a U-shaped cross section and non-load grooves 42 having a deeper U-shaped cross section are alternately recessed in the inner peripheral surface of an outer cylinder 40. A load path 45 is formed in the load groove 41 in which a load is supported between the outer cylinder 40 and the spline shaft 44 via a group of balls 43, and a load path 45 is formed in the non-load groove 42 to support the load between the outer cylinder 40 and the spline shaft 44. retainer 4 fitted into
Return passages 47 and 47 are formed in recesses in 6 and 46, respectively.

第13図に示す第2の従来例においては、外筒
48の内周面に幅の狭い断面U字状の負荷溝49
と幅の広い無負荷溝50とが交互に凹設され、前
記両溝49,50にボール51群を保持する保持
器52が嵌着されている。
In the second conventional example shown in FIG.
and wide no-load grooves 50 are alternately recessed, and a retainer 52 for holding a group of balls 51 is fitted into both the grooves 49, 50.

考案が解決しようとする問題点 前記第1の従来例においては、負荷路45の形
成されている負荷溝41よりもリターン路47の
形成されている無負荷溝42の方が深いため、外
筒40の外側面を円筒状とする場合、前記無負荷
溝42の設けられている部分の外筒40の肉厚が
薄くなるため、外筒40全体の強度を所定の値に
保持しようとすると、前記無負荷溝42の設けら
れている外筒40の肉厚を大とする必要があり、
このため外筒40全体の外径が大となり、ボール
スプライン軸受が大形化する欠点があつた。ま
た、負荷路45群が、第12図に示す如く、3ケ
所の負荷溝41内に偏在するため、負荷溝41,
41の間に設けられている無負荷溝42の部分で
外筒40の外側面から荷重が印加された場合に
は、外筒40の撓みが大となり、該外筒40の軸
方向の曲げ歪も大となり、このためボールスプラ
イン軸受としての精度上の問題が生じ、外筒40
がスプライン軸44上を進退する場合、摺動抵抗
の増大を来たす原因ともなるため、この点からも
スプライン軸受の各部材、特に外筒40の強度向
上のため大形化が避けられなかつた。
Problems to be Solved by the Invention In the first conventional example, the unloaded groove 42 in which the return path 47 is formed is deeper than the load groove 41 in which the load path 45 is formed. When the outer surface of the outer cylinder 40 is made into a cylindrical shape, the wall thickness of the outer cylinder 40 in the portion where the no-load groove 42 is provided becomes thinner, so if the strength of the entire outer cylinder 40 is to be maintained at a predetermined value, It is necessary to increase the wall thickness of the outer cylinder 40 in which the no-load groove 42 is provided,
Therefore, the outer diameter of the outer cylinder 40 as a whole becomes large, resulting in a disadvantage that the ball spline bearing becomes large. In addition, since the load path 45 groups are unevenly distributed within the load grooves 41 at three locations as shown in FIG.
When a load is applied from the outer surface of the outer cylinder 40 at the part of the no-load groove 42 provided between the outer cylinders 41 and 41, the bending of the outer cylinder 40 increases, causing bending strain in the axial direction of the outer cylinder 40. This causes problems with accuracy as a ball spline bearing, and the outer cylinder 40
When the spline bearing moves back and forth on the spline shaft 44, it also causes an increase in sliding resistance, so from this point of view as well, it was inevitable to increase the size of each member of the spline bearing, especially the outer cylinder 40, in order to improve its strength.

また前記保持器46,46はプラスチツクや焼
結金属などの成形体により構成されており、外筒
40の内周面に形成された前記負荷溝41および
無負荷溝42に、3ケに分割されて嵌着されてい
るため、ボール43群の無限循環路として負荷路
45とリターン路47との間のピツチずれが実際
上生じ、このためボール43群の負荷路45とリ
ターン路47とを転動する無限循環に際しての循
環抵抗が増加するため、ボールスプライン軸受と
しての摩擦抵抗の増大を来たす結果となる。また
部品点数が多くなるため、加工工数、組立工数の
増大をもたらし、コストアツプの一因ともなり、
更に外筒40と保持器46との材質を異にする場
合には、熱膨張率の相違に基づいて、高温雰囲気
下でボールスプライン軸受が使用される場合は、
特に前述のピツチずれが大となり、ボール43の
保持器46との接触状態および転動状態が変つて
来るため、ボールスプライン軸受としての摩擦抵
抗が増大するという欠点もあつた。
The retainers 46, 46 are made of molded bodies such as plastic or sintered metal, and are divided into three parts, including the load groove 41 and the non-load groove 42 formed on the inner peripheral surface of the outer cylinder 40. Since the ball 43 group is fitted as an endless circulation path, a pitch shift between the load path 45 and the return path 47 actually occurs. Since the circulation resistance increases during the endless circulation of the ball spline bearing, the frictional resistance as a ball spline bearing increases. In addition, since the number of parts increases, the number of processing and assembly steps increases, which also contributes to increased costs.
Furthermore, when the outer cylinder 40 and the retainer 46 are made of different materials, based on the difference in coefficient of thermal expansion, when a ball spline bearing is used in a high temperature atmosphere,
In particular, the above-mentioned pitch deviation becomes large, and the contact state and rolling state of the balls 43 with the retainer 46 change, resulting in an increase in frictional resistance as a ball spline bearing.

また前記第2の従来例においては、保持器52
は鋼板のプレス成形によるものであり、前記従来
例の諸欠点に加えて、ボールスプライン軸受が振
動する場合、保持器52が共振する欠点があり、
振動により外筒48との接触個所でフレツチング
を発生し易く、軸受としての寿命の低下を招く原
因となつていた。
Further, in the second conventional example, the retainer 52
is made by press forming a steel plate, and in addition to the drawbacks of the conventional example, there is a drawback that the retainer 52 resonates when the ball spline bearing vibrates.
Vibration tends to cause fretting at the point of contact with the outer cylinder 48, causing a reduction in the life of the bearing.

前述の如く、従来のものは負荷能力が小さく負
荷能力の割に大形であり、前述の諸欠点のない、
負荷能力が大で、摩擦抵抗が小さく、形状のより
小形で、より安価な、実用性の高いボールスプラ
イン軸受の出現が望まれていた。
As mentioned above, the conventional type has a small load capacity and is large in proportion to its load capacity, and does not have the above-mentioned disadvantages.
There has been a desire for a highly practical ball spline bearing that has a large load capacity, low frictional resistance, a smaller shape, and is less expensive.

問題点を解決するための手段 本考案は、スプライン軸は、軸と直角断面が円
弧部分を残した略截頭正三角形で部分円筒状の截
頭頂面幅を大きな柱体とされ、該柱体の正三角柱
状の3側面の両側縁で前記部分円筒状截頭頂面と
の境界線上に中心角が略60゜の略等間隔で軸方向
にそれぞれ6本の転動軌道が凹設され、外筒の内
周面に、前記6本の転動軌道と正対して6本の負
荷軌道が凹設され、該負荷軌道と前記転動軌道と
によりそれぞれボール群を転動可能に挟持する6
本の負荷路が中心角が略60゜の等間隔に近い間隔
で形成され、また前記外筒には、前記スプライン
軸の前記正三角柱状の各側面と対峙する位置で、
前記両負荷軌道の中間の位置にボール群のリター
ン路が軸方向に2本宛隣接して平行に形成され、
前記負荷路とリターン路とは軸心から等距離か、
リターン路が負荷路より軸心に近く形成可能とさ
れている構成とすることにより、前述の問題点を
解決することができたのである。
Means for Solving the Problems The present invention provides that the spline shaft is a column whose cross section perpendicular to the axis is a substantially truncated equilateral triangle with an arcuate portion, and whose truncated top surface has a large width and is partially cylindrical. Six rolling raceways are recessed in the axial direction at approximately equal intervals with a center angle of approximately 60° on both side edges of the three side surfaces of the equilateral triangular prism shape and on the boundary line with the truncated top surface of the partially cylindrical shape. Six load tracks are recessed in the inner circumferential surface of the cylinder, directly facing the six rolling tracks, and the load tracks and the rolling tracks each rollably sandwich a group of balls.
Load paths are formed at nearly equal intervals with center angles of about 60 degrees, and the outer cylinder has load paths facing each side of the equilateral triangular prism of the spline shaft.
Two return paths for the ball group are formed adjacent to each other in the axial direction and parallel to each other at a position intermediate between the two load tracks,
Are the load path and return path equidistant from the axis?
By adopting a configuration in which the return path can be formed closer to the axis than the load path, the above-mentioned problems can be solved.

作 用 本考案は、前述の構成とすることにより負荷路
が等間隔に近く形成され、横断面が略截頭正三角
形のスプライン軸の3側面のそれぞれと対峙する
位置にリターン路が形成されているので、外筒に
印加される負荷が略均等に各負荷路のボール群に
分担され、またリターン路は負荷路より軸心に近
い位置に形成可能であるため、外筒は、肉厚を特
に厚くする必要がなく外径を小とし、かつ軽量と
することが可能となり、しかもボールスプライン
軸受としての精度が向上し、振動上の問題もな
く、摺動抵抗が減少し、また部品点数も減少し、
コストダウンもはかることが可能となつたのであ
る。
Effects The present invention has the above-mentioned configuration, so that the load paths are formed at nearly equal intervals, and the return paths are formed at positions facing each of the three sides of the spline shaft whose cross section is a substantially truncated equilateral triangle. Since the load applied to the outer cylinder is distributed almost equally to the balls in each load path, and the return path can be formed closer to the axis than the load path, the wall thickness of the outer cylinder can be reduced. There is no need to make the bearing particularly thick, the outer diameter can be made small, and it can be made lightweight.Moreover, the accuracy of the ball spline bearing is improved, there are no vibration problems, sliding resistance is reduced, and the number of parts can be reduced. Decreased,
It has also become possible to reduce costs.

実施例 第1図〜第6図に示す第1の実施例において
は、外筒1内に負荷路2とリターン路3との両直
線路および、第4図に示す如く、該両直線路2,
3の両端を連結してボール4群を無限循環せしめ
うる方向転換路5,5よりなる無限循環路が6組
形成され、前記外筒1が、内装されるボール4群
に介して、回動することなく軸方向に走行自在
に、スプライン軸6に装荷されてなるボールスプ
ライン軸であり、前記スプライン軸6は、軸と直
角な断面が、第1図〜第3図に示す如く、円弧部
分を残した略截頭正三角形で、部分円筒状の截頭
頂面7,7の幅bが大である柱体とされ、該柱体
の正三角柱状の3つの側面8,8の両側縁で前記
部分円筒状の截頭頂面7との境界線上に中心角が
略60゜の略等間隔で軸方向にそれぞれ浅い部分円
筒状の6本の転動軌道9,9が凹設されている。
尚前記截頭頂面7は、図示例の如く、円筒面の一
部であつてもよく、平面であつてもよい。
Embodiment In the first embodiment shown in FIGS. 1 to 6, both straight paths, a load path 2 and a return path 3, are provided in the outer cylinder 1, and as shown in FIG. ,
Six sets of endless circulation paths 5, 5 are formed by connecting both ends of the outer cylinder 1 to allow four groups of balls to circulate endlessly. This is a ball spline shaft loaded onto a spline shaft 6 so as to be able to run freely in the axial direction without moving. The column has a substantially truncated equilateral triangular shape with a partially cylindrical truncated top surface 7, 7 having a large width b. On the boundary line with the partially cylindrical truncated top surface 7, six shallow partially cylindrical rolling tracks 9, 9 are recessed in the axial direction at approximately equal intervals with a center angle of approximately 60 degrees.
The truncated top surface 7 may be a part of a cylindrical surface, as shown in the illustrated example, or may be a flat surface.

また前記外筒1の内周面には、前記スプライン
軸6の6本の転動軌道9,9のそれぞれと正対し
て6本の負荷軌道10,10が凹設され、該負荷
軌道10と前記転動軌道9とにより、それぞれボ
ール4群を転動可能に挟持する6本の負荷路2,
2が中心角が略60゜の等間隔に近い間隔で形成さ
れ、また前記外筒1には、前記スプライン軸6の
正三角柱状の各側面8,8と対峙する位置で、前
記両負荷軌道10,10の中間の位置にボール4
群のリターン路3,3が軸方向に2本宛隣接して
平行に形成され、前記負荷路2とリターン路3は
軸心から等距離か、リターン路が負荷路より軸心
に近く形成可能とされている。
Further, six load raceways 10, 10 are recessed in the inner peripheral surface of the outer cylinder 1, directly facing each of the six rolling raceways 9, 9 of the spline shaft 6. six load paths 2 each holding four groups of balls in a rolling manner by the rolling track 9;
2 are formed at nearly equal intervals with center angles of about 60 degrees, and the outer cylinder 1 has both load tracks at positions facing each of the equilateral triangular prism-shaped side surfaces 8, 8 of the spline shaft 6. Ball 4 in the middle position between 10 and 10
Two return paths 3, 3 of the group are formed adjacent to each other in the axial direction in parallel, and the load path 2 and the return path 3 can be formed at the same distance from the axis, or the return path can be formed closer to the axis than the load path. It is said that

尚、本実施例では、第1図に示す如く、外筒1
の内周面に、3本の浅いU字状の幅の広い負荷溝
11,11がそれぞれスプライン軸6の截頭頂面
7および該頂面7の両サイドの転動軌道9,9に
わたつて対峙する幅に凹設され、前記負荷溝11
の両側縁にスプライン軸6の転動軌道9,9と正
対する負荷軌道10,10が凹設され、また外筒
1の内周面の前記3本の負荷溝11,11の間
に、前記負荷溝11より幅狭で且つより深くない
U字状の無負荷溝12,12が前記スプライン軸
6の各側面8,8に対峙して凹設され、前記外筒
1の内周面に前記各負荷溝11,11および各無
負荷溝12,12にわたり保持器13が嵌着さ
れ、第1図に示す如く、保持器内周面14はスプ
ライン軸外側面15と間隔を存して略同形孔とさ
れ、前記無負荷溝12内の保持器13にリターン
路3,3が凹設され、また、第4図に示す如く、
方向転換路5,5も該保持器13内に凹設されて
いる。尚ボール4群は、負荷路2にある間にのみ
保持器内周面14内に凸設され、方向転換路5お
よびリターン路3にある間は保持器13内を転動
する。
In this embodiment, as shown in FIG.
Three shallow U-shaped wide load grooves 11, 11 are formed on the inner peripheral surface of the spline shaft 6, extending over the truncated top surface 7 of the spline shaft 6 and the rolling raceways 9, 9 on both sides of the top surface 7, respectively. The load grooves 11 are recessed in opposing widths.
Load raceways 10, 10 that directly oppose the rolling raceways 9, 9 of the spline shaft 6 are recessed on both side edges of the spline shaft 6, and between the three load grooves 11, 11 on the inner peripheral surface of the outer cylinder 1, the load raceways 10, 10 are recessed. U-shaped non-load grooves 12, 12, which are narrower and less deep than the load groove 11, are recessed to face each side surface 8, 8 of the spline shaft 6, and are formed on the inner circumferential surface of the outer cylinder 1. A cage 13 is fitted over each load groove 11, 11 and each non-load groove 12, 12, and as shown in FIG. The return passages 3, 3 are formed as holes in the retainer 13 in the no-load groove 12, and as shown in FIG.
The direction change paths 5, 5 are also recessed in the cage 13. The 4 groups of balls are provided in a protruding manner within the cage inner circumferential surface 14 only while in the load path 2, and roll within the cage 13 while in the direction change path 5 and the return path 3.

前記保持器13は、第4図に示す如く、外筒1
内に嵌着され、第4図〜第6図に示す如く、外筒
1の内周面の両端附近に形成されているリング溝
17,17に装着される止めリング16,16に
より、前記保持器13が両端で外筒1に係止され
ている。
As shown in FIG. 4, the retainer 13 is
The retaining rings 16, 16 are fitted into the ring grooves 17, 17 formed near both ends of the inner circumferential surface of the outer cylinder 1, as shown in FIGS. 4 to 6. A container 13 is locked to the outer cylinder 1 at both ends.

第2図に示す如く、スプライン軸6の転動軌道
9,9に代え軸心周りに等間隔に転動軌道9a,
9aを形成することにより、完全に等間隔な6本
の負荷路を形成することもできる。
As shown in FIG. 2, instead of the rolling tracks 9, 9 of the spline shaft 6, rolling tracks 9a, 9 are arranged at equal intervals around the axis.
By forming 9a, it is also possible to form six completely equally spaced load paths.

第1図、第6図に示す如く、外筒1の内周面に
は負荷溝11と無負荷溝12との間に凸条18,
18が凸設され、該凸設18の負荷溝11側に負
荷軌道10に形成され、また前記凸条18によ
り、外筒1の内周面に嵌着される保持器13の回
動を防止している。
As shown in FIGS. 1 and 6, on the inner circumferential surface of the outer cylinder 1, a protrusion 18 is provided between the load groove 11 and the non-load groove 12.
18 is provided in a protruding manner, and is formed on the load track 10 on the load groove 11 side of the protruding portion 18, and the protruding strip 18 prevents rotation of the retainer 13 fitted to the inner circumferential surface of the outer cylinder 1. are doing.

第7図に、前述の第1の実施例の応用例を示
す。第1図と比較して明らかな通り、本応用例に
おいては、第1の実施例における外筒1の負荷溝
11の1つと該負荷溝11の両側に位置する2組
の無限循環路とを含む外筒1および保持器13の
1/3を欠除した外筒体19と、第1の実施例にお
けるスプライン軸6の截頭頂面7の1つを含むス
プライン軸6の1/3を台座20としたレール体2
1とよりなり長大なレール体21上を4組のボー
ル4群を介して外筒体19に支承係合されている
支持体22が直線走行可能な、無限直線運動軸受
を形成することができる。
FIG. 7 shows an example of application of the first embodiment described above. As is clear from comparison with FIG. 1, in this application example, one of the load grooves 11 of the outer cylinder 1 in the first embodiment and two sets of endless circulation paths located on both sides of the load groove 11 are used. The outer cylinder 19 including the outer cylinder 1 and 1/3 of the retainer 13 are removed, and 1/3 of the spline shaft 6 including one of the truncated top surfaces 7 of the spline shaft 6 in the first embodiment is mounted on a pedestal. 20 rail body 2
1, an infinite linear motion bearing can be formed in which the support body 22, which is supported and engaged with the outer cylinder body 19 through four groups of balls, can travel in a straight line on a long rail body 21. .

次に第8図〜第11図に示す第2の実施例につ
いて説明する。本実施例も、外筒23内に負荷路
24とリターン路25との両直線路および該両直
線路24,25の両端を連結してボール4群を無
限循環せしめうる方向転換路26,26よりなる
無限循環路が6組形成され、前記外筒23が、内
装されるボール4群を介して、回動することなく
軸方向に走行自在に、スプライン軸6に装架され
てなるボールスプライン軸受であり、前記スプラ
イン軸6は、軸と直角断面が円弧部分を残した略
截頭正三角形で部分円筒状の截頭頂面7の幅の大
きな柱体とされ、該柱体の正三角柱状の3つの側
面8,8の両側縁で前記部分円筒状の截頭頂面7
との境界線上に中心角が略60゜の略等間隔で軸方
向にそれぞれ6本の転動軌道9,9が凹設され、
外筒23の内周面には、前記6本の転動軌道9,
9に正対して6本の負荷軌道28,28が凹設さ
れ、該負荷軌道28と前記転動軌道9とにより、
それぞれボール4群を転動可能に挟持する6本の
負荷路24,24が中心角が略60゜の等間隔に近
い間隔で形成され、また前記外筒23には、前記
スプライン軸6の前記正三角柱状の各側面8,8
と対峙する位置で、前記両負荷軌道28,28の
中間の位置にボール4群のリターン路25が軸方
向に2本宛隣接して平行に形成され、本実施例に
おいても負荷路24とリターン路25とは軸心か
ら等距離か、リターン路25が負荷路24より軸
心に近く形成可能とされている。
Next, a second embodiment shown in FIGS. 8 to 11 will be described. This embodiment also has two straight paths, a load path 24 and a return path 25, inside the outer cylinder 23, and direction change paths 26, 26 that connect both ends of the straight paths 24, 25 to allow the four groups of balls to circulate endlessly. A ball spline in which six sets of endless circulation paths are formed, and the outer cylinder 23 is mounted on a spline shaft 6 so as to be freely movable in the axial direction without rotation via four groups of internally installed balls. The spline shaft 6 is a bearing, and the spline shaft 6 has a substantially truncated equilateral triangular shape with a circular arc portion in cross section perpendicular to the shaft, and a partially cylindrical truncated top surface 7 with a large width. The partially cylindrical truncated top surface 7 is formed at both side edges of the three side surfaces 8, 8.
Six rolling raceways 9, 9 are recessed in the axial direction at approximately equal intervals with a center angle of approximately 60° on the boundary line,
The six rolling tracks 9,
Six load raceways 28, 28 are recessed directly facing the load raceway 9, and the load raceway 28 and the rolling raceway 9,
Six load paths 24, 24 each holding four groups of balls in a rollable manner are formed at nearly equal intervals with center angles of approximately 60 degrees, and the outer cylinder 23 is provided with the Each side of an equilateral triangular prism 8,8
Two return paths 25 for four groups of balls are formed adjacent to each other in the axial direction and parallel to each other in the intermediate position between the load paths 28 and 28, and in this embodiment also, the return paths 25 for the four groups of balls are formed in parallel to each other in the axial direction. The return path 25 can be formed at the same distance from the axis or closer to the axis than the load path 24.

本実施例においては、前実施例と異なり、負荷
軌道28およびリターン路25が外筒23の内周
面に直接凹設され、第9図に示す如く、前記負荷
軌道28も、リターン路25も、それぞれ、ボー
ル4が半ば近く露出されて転動可能とされ、しか
も脱出しないように、ボール4の径より狭い幅の
路縁29,29が突出形成されている。
In this embodiment, unlike the previous embodiment, the load track 28 and the return path 25 are directly recessed in the inner peripheral surface of the outer cylinder 23, and as shown in FIG. , each of which has protruding road edges 29, 29 whose width is narrower than the diameter of the ball 4, so that the ball 4 is exposed nearly halfway and can roll, and does not escape.

本実施例においては方向転換路26は外筒23
に、前記負荷軌道28とリターン路と共に形成工
作することは困難であり、第10図、第11図に
示す如く外筒23の進行方向の両端に側筒30,
30が別設され、該側筒30はボルト31により
外筒23に螺着されており、該側筒30に方向転
換路26,26が形成されている。
In this embodiment, the direction change path 26 is the outer cylinder 23.
However, it is difficult to form the load track 28 and the return path together, and as shown in FIGS. 10 and 11, side tubes 30,
30 is provided separately, and the side tube 30 is screwed onto the outer tube 23 with a bolt 31, and direction change paths 26, 26 are formed in the side tube 30.

本実施例では、外筒23の内周面に直接負荷軌
道28とリターン路25の両直線路が形成されて
いる構成であるため、前記各直線路28,25は
軸心から等距離に近く形成可能であり、負荷軌道
28よりリターン路25を軸心に近く形成するこ
とも可能で、この場合スプライン軸6の側面8,
8は、第8図、第9図に示す如く、リターン路2
5中のボール4群に当接しない限度において、凸
出した内筒状側面8aとすることが可能であり、
スプライン軸6の曲げ強度がより大となる。
In this embodiment, since both straight paths, the load track 28 and the return path 25, are formed directly on the inner circumferential surface of the outer cylinder 23, the straight paths 28 and 25 are located close to each other at equal distances from the axis. It is also possible to form the return path 25 closer to the axis than the load track 28. In this case, the side surface 8 of the spline shaft 6,
8 is the return path 2 as shown in FIGS. 8 and 9.
It is possible to make the inner cylindrical side surface 8a projecting as long as it does not come into contact with the 4 groups of balls in 5,
The bending strength of the spline shaft 6 is increased.

本実施例のものは前実施例と異なり、保持器を
使用しないため、部品数が更に少く、組立作業が
容易となり、保持器と外筒との直線路のピツチず
れを生することが全くなく、ボールと保持器部分
との間に生じうる摩擦抵抗因子を減少することが
できる。前記負荷軌道28とリターン路25との
両直線路は、外筒のブローチ加工により同時加工
できるため、両直線路が高精度に加工され、ボー
ルスプライン軸受としての保持される精度を一段
と向上させることができ、また保持器がないた
め、従来のボールスプライン軸受に往々発生する
外筒と保持器との間のフレツチング発生といつた
軸受部品間の接触面の摩耗が少くなるため摩耗に
よるボールスプライン軸受の寿命低下が生じな
い。
Unlike the previous example, this example does not use a cage, so the number of parts is smaller, the assembly work is easier, and there is no pitch deviation in the straight path between the cage and the outer cylinder. , the frictional resistance factor that may occur between the balls and the retainer part can be reduced. Since both the straight paths of the load track 28 and the return path 25 can be processed simultaneously by broaching the outer cylinder, both straight paths can be processed with high precision, further improving the accuracy with which the ball spline bearing is maintained. In addition, since there is no cage, there is less wear on the contact surfaces between the bearing parts, which can reduce the fretting between the outer cylinder and the cage that often occurs with conventional ball spline bearings. No reduction in service life occurs.

考案の効果 本考案は、実用新案登録請求の範囲に記載され
た構成とすることにより、負荷路がより等間隔
(等ピツチ)に形成され、ピツチずれを生ずるこ
とがなく、ボールの循環抵抗を増加することがな
く、従つてボールスプライン軸受としての摩耗抵
抗が少く、スプライン軸へのどの方向からの荷重
に対してもより均一な負荷能力を保持することが
可能となり、外筒の強度を害しない位置にリター
ン路が形成されているため、どの方向からの荷重
に対しても、特に外筒の撓みがより均一とされる
ため、軸受外筒の肉厚をより薄くすることがで
き、部品点数も少く、組立工数、加工工数を減少
することが可能となり、コスト低下を実現するこ
とができ、軸受の振動と共振する部分がないた
め、部材間のフレツチングの発生もなく、軸受と
しての寿命増大を実現することができるという従
来のものにない効果を奏しうるものである。
Effects of the invention By adopting the configuration described in the claims for utility model registration, the present invention allows the load paths to be formed at more equal intervals (equal pitch), preventing pitch deviation, and reducing the circulation resistance of the balls. Therefore, the wear resistance as a ball spline bearing is low, and it is possible to maintain a more uniform load capacity against loads applied to the spline shaft from any direction, thereby reducing the strength of the outer cylinder. Since the return path is formed in a position where the outer cylinder is not exposed to a load, the deflection of the outer cylinder is made more uniform, especially against loads from any direction, so the wall thickness of the bearing outer cylinder can be made thinner, and parts Since there are fewer parts, it is possible to reduce assembly and processing man-hours, which reduces costs.Since there are no parts that resonate with the vibration of the bearing, there is no fretting between parts, and the life of the bearing can be extended. It is possible to achieve an effect that is not available in the conventional methods in that it is possible to realize an increase in the amount of water.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は第1の実施例の横断面図、第2図はス
プライン軸の実施例の端面図、第3図は同上斜視
図、第4図は第1の実施例でスプライン軸を取外
した軸心縦断面図、第5図は同上負荷路部分縦断
面図、第6図は同上外筒のみの軸心縦断面図、第
7図は応用例の横断面図、第8図は第2の実施例
の横断面図、第9図は同上部分拡大横断面図、第
10図は第8図中外筒のみの−線断面図、第
11図は同上外筒内周面側無限循環路部分立面
図、第12図、第13図はそれぞれ従来例の横断
面図である。 1,23:外筒、2,24:負荷路、3,2
5:リターン路、4:ボール、5,26:方向転
換路、6:スプライン軸、7:截頭頂面、8:側
面、9:転動軌道、10,28:負荷軌道、1
1:負荷溝、12:無負荷溝、13:保持器、1
4:保持器内周面、15:スプライン軸外側面、
30:側筒。
Figure 1 is a cross-sectional view of the first embodiment, Figure 2 is an end view of the spline shaft embodiment, Figure 3 is a perspective view of the same as above, and Figure 4 is the first embodiment with the spline shaft removed. 5 is a partial vertical sectional view of the load path, FIG. 6 is a longitudinal sectional view of the axial center of the outer cylinder only, FIG. 7 is a cross-sectional view of an application example, and FIG. FIG. 9 is an enlarged cross-sectional view of the same part, FIG. 10 is a cross-sectional view of only the outer cylinder in FIG. The elevation view, FIGS. 12 and 13 are cross-sectional views of the conventional example. 1, 23: Outer cylinder, 2, 24: Load path, 3, 2
5: return path, 4: ball, 5, 26: direction change path, 6: spline shaft, 7: truncated top surface, 8: side surface, 9: rolling raceway, 10, 28: load raceway, 1
1: Load groove, 12: No-load groove, 13: Cage, 1
4: Inner peripheral surface of cage, 15: Outer surface of spline shaft,
30: Side tube.

Claims (1)

【実用新案登録請求の範囲】 1 外筒内に、負荷路とリターン路との両直線路
および該両直線路の両端を連結してボール群を
無限循環せしめうる方向転換路よりなる無限循
環路が6組形成され、前記外筒が、内装される
ボール群を介して、回動することなく軸方向に
走行自在に、スプライン軸に装架されてなるボ
ールスプライン軸受において、スプライン軸
は、軸と直角断面が円弧部分を残した略截頭正
三角形で部分円筒状の截頭頂面幅の大きな柱体
とされ、該柱体の正三角柱状の3側面の両側縁
で前記部分円筒状截頭頂面との境界線上に中心
角が略60゜の略等間隔で軸方向にそれぞれ6本
の転動軌道が凹設され、外筒の内周面に、前記
略等間隔の6本の転動軌道と正対して同様に略
等間隔の6本の負荷軌道が凹設され、該負荷軌
道と前記転動軌道とによりそれぞれボール群を
転動可能に挟持する6本の負荷路が中心角が略
60゜の等間隔に近い間隔で形成され、また前記
外筒には、前記スプライン軸の前記正三角柱状
の各側面と対峙する位置で、前記両負荷軌道の
中間の位置にボール群のリターン路が軸方向に
2本宛隣接して平行に形成され、前記負荷路と
リターン路とは軸心から等距離かリターン路が
負荷路より軸心に近く形成可能とされているこ
とを特徴とするボールスプライン軸受。 2 外筒の内周面に3本の浅いU字状の幅の広い
負荷溝がそれぞれスプライン軸の截頭頂面およ
び該頂面の両サイドの転動軌道にわたつて対峙
する幅に凹設され、前記負荷溝の両側縁に前記
スプライン軸の転動軌道と正対する負荷軌道が
凹設され、また外筒の内周面の前記3本の負荷
溝の間に、前記負荷溝より幅狭で且つより深く
ないU字状の無負荷溝が前記スプライン軸の各
側面に対峙して凹設され、前記外筒の内周面に
前記各負荷溝および各無負荷溝にわたり保持器
が嵌着され、該保持器の内周面はスプライン軸
の全外側面と間隔を存して略同形孔とされ、前
記無負荷溝内の保持器にはリターン路が凹設さ
れ、また方向転換路も該保持器に凹設されてい
る実用新案登録請求の範囲第1項記載のボール
スプライン軸受。 3 負荷軌道およびリターン路の両直線路が外筒
内周面に直接凹設され、外筒の進行方向の両端
に各方向転換路が穿設されている側筒が取付け
られている実用新案登録請求の範囲第1項記載
のボールスプライン軸受。
[Scope of Claim for Utility Model Registration] 1. An endless circulation path in the outer cylinder, consisting of both straight paths, a load path and a return path, and a direction change path that connects both ends of the straight paths to allow a group of balls to circulate endlessly. In the ball spline bearing, the outer cylinder is mounted on a spline shaft so as to be freely movable in the axial direction without rotating through a group of balls contained therein. The right-angled cross section is a substantially truncated equilateral triangle with a circular arc portion remaining, and the truncated crest is partially cylindrical and has a large width on the truncated crest. Six rolling tracks are recessed in the axial direction at approximately equal intervals with a center angle of approximately 60° on the boundary line with the surface, and the six rolling tracks at approximately equal intervals are formed on the inner circumferential surface of the outer cylinder. Directly facing the track, six load tracks are similarly spaced at approximately equal intervals, and the six load tracks that rollably sandwich a group of balls are formed by the load tracks and the rolling track. omitted
They are formed at nearly equal intervals of 60 degrees, and the outer cylinder has a return path for a group of balls at a position midway between the two load tracks, at a position facing each side of the equilateral triangular prism of the spline shaft. are formed adjacent to each other in parallel in the axial direction, and the load path and the return path can be formed equidistant from the axis, or the return path can be formed closer to the axis than the load path. Ball spline bearing. 2. Three shallow U-shaped wide load grooves are recessed in the inner circumferential surface of the outer cylinder, each extending across the truncated top surface of the spline shaft and the rolling raceway on both sides of the top surface, and having a width that faces each other. , a load raceway that directly faces the rolling raceway of the spline shaft is recessed on both side edges of the load groove, and a load raceway narrower than the load groove is provided between the three load grooves on the inner circumferential surface of the outer cylinder. Further, U-shaped no-load grooves that are not deeper are recessed to face each side of the spline shaft, and a retainer is fitted to the inner circumferential surface of the outer cylinder over each of the load grooves and each no-load groove. , the inner peripheral surface of the retainer is formed into a hole of approximately the same shape as the entire outer surface of the spline shaft, and a return path is recessed in the retainer in the no-load groove, and a direction change path is also provided. A ball spline bearing according to claim 1, wherein the cage is recessed. 3 Utility model registration in which both the load track and the return path are directly recessed into the inner circumferential surface of the outer cylinder, and a side cylinder is installed with direction change paths bored at both ends of the outer cylinder in the direction of travel. A ball spline bearing according to claim 1.
JP1985076874U 1985-05-23 1985-05-23 Expired JPS636508Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1985076874U JPS636508Y2 (en) 1985-05-23 1985-05-23

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1985076874U JPS636508Y2 (en) 1985-05-23 1985-05-23

Publications (2)

Publication Number Publication Date
JPS61193229U JPS61193229U (en) 1986-12-01
JPS636508Y2 true JPS636508Y2 (en) 1988-02-24

Family

ID=30619415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1985076874U Expired JPS636508Y2 (en) 1985-05-23 1985-05-23

Country Status (1)

Country Link
JP (1) JPS636508Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH063211B2 (en) * 1989-03-01 1994-01-12 テイエチケー株式会社 Linear sliding bearing and method of assembling linear sliding bearing
JP4619226B2 (en) * 2005-07-27 2011-01-26 Thk株式会社 Rolling guide device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4720618U (en) * 1971-02-27 1972-11-08
JPS58142021A (en) * 1982-02-16 1983-08-23 Hiroshi Teramachi Ball spline with support bearing

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4720618U (en) * 1971-02-27 1972-11-08
JPS58142021A (en) * 1982-02-16 1983-08-23 Hiroshi Teramachi Ball spline with support bearing

Also Published As

Publication number Publication date
JPS61193229U (en) 1986-12-01

Similar Documents

Publication Publication Date Title
JPS6343607B2 (en)
KR20110100201A (en) Radial roller bearing, in particular single track ball roller bearing
CA2038660C (en) Linear motion bearing
US4896974A (en) Spherical spacer of a crossed roller bearing assembly
KR101340265B1 (en) Radial anti friction bearing, in particular a single-row spherical roller bearing
JPS628427Y2 (en)
JPS61266822A (en) Ball spline bearing
JPH02163510A (en) Direct operated rolling guide unit
JPS6224654B2 (en)
JPS636508Y2 (en)
JP2880329B2 (en) Roller bearing device
JPH0629554Y2 (en) Ball screw
US6132097A (en) Roller bearing with means for giving the rollers a positive skew angle
JPH0578693B2 (en)
EP0926369A2 (en) Roller bearing
US4209210A (en) Self-aligning two row thrust roller bearing
US3884537A (en) Ball bearing assembly
US5207510A (en) Linear ball bearing assembly
US6398417B1 (en) Rolling member
JPS62141308A (en) Bearing for rectilinear motion
JPS5923120A (en) Direct-acting ball bearing
JPS6233158Y2 (en)
US20020025087A1 (en) Linear guide device
JPH02150508A (en) Straight rolling guide unit
US4541674A (en) Linear motion roller bearing