JPS6365087B2 - - Google Patents

Info

Publication number
JPS6365087B2
JPS6365087B2 JP57087839A JP8783982A JPS6365087B2 JP S6365087 B2 JPS6365087 B2 JP S6365087B2 JP 57087839 A JP57087839 A JP 57087839A JP 8783982 A JP8783982 A JP 8783982A JP S6365087 B2 JPS6365087 B2 JP S6365087B2
Authority
JP
Japan
Prior art keywords
parts
unsaturated polyester
weight
acrylate
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57087839A
Other languages
Japanese (ja)
Other versions
JPS58206617A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP8783982A priority Critical patent/JPS58206617A/en
Publication of JPS58206617A publication Critical patent/JPS58206617A/en
Publication of JPS6365087B2 publication Critical patent/JPS6365087B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は耐熱性、耐蝕性および機械特性に優れ
た不飽和ポリエステル樹脂組成物に関するもので
ある。 不飽和ポリエステル樹脂は、塗料、注型品、
FRP(繊維強化プラスチツク)等として広く使用
されており、最近はその用途が拡大するにつれ要
求される性能も多岐にわたつてきている。耐熱
性、耐蝕性および機械的特性に優れた品質の要求
もこのような背景のもとに生じてきた要求のひと
つであるが、一種類の不飽和ポリエステル樹脂で
このような二律相反的な性能を同時に具現するこ
とは極めて困難である。なぜならば、耐熱性や耐
蝕性を優先させると樹脂の架橋密度を高くしたり
剛直な分子構造とせざるを得ず、機械的特性にと
ぼしい脆い樹脂となつてしまう。また、逆に機械
的特性を優先させると、耐熱性や耐蝕性が低下し
てしまう。 そこで本発明者等は、上記の如き二律相反的な
性能を兼備した不飽和ポリエステル樹脂を得るべ
く鋭意研究した結果、本発明を完成させたのであ
る。 すなわち本発明は、分子量が150以上のグリコ
ールを少なくとも10モル%含有するアルコール成
分(a)とα,β−不飽和ジカルボン酸および/また
はその酸無水物を少なくとも60モル%含有する酸
成分(b)とをエステル化して得られ且つ不飽和ポリ
エステル(A)60重量部およびスチレン40重量部より
なる樹脂液の硬化物の熱変形温度が100℃以上で
ある不飽和ポリエステル(A)100重量部、重合性不
飽和単量体(B)25〜200重量部、並びに一般式 (ただし、Rは炭素数1〜5のアルキレン基であ
る。)で表わされる2価フエノール化合物(1)1当
量当りにアルキレンオキサイド(2)を1〜5当量付
加反応して得られる反応生成物(3)の有するアルコ
ール性水酸基の少なくとも70%がアクリル酸およ
び/またはメタクリル酸のエステルとなつた(メ
タ)アクリレート(C)15〜100重量部からなる不飽
和ポリエステル樹脂組成物に関するものである。 本発明で用いられる不飽和ポリエステル(A)は、
上記の如く不飽和ポリエステル(A)60重量部および
スチレン40重量部よりなる樹脂液とした時、その
硬化物の熱変形温度が100℃以上である不飽和ポ
リエステルである。該熱変形温度が100℃未満と
なる不飽和ポリエステルでは、本発明の目的とす
る耐熱性、耐蝕性に優れ、機械的特性にも優れる
不飽和ポリエステル樹脂組成物は得られない。こ
のような不飽和ポリエステル(A)は、その原料であ
る酸成分中のα,β−不飽和ジカルボン酸の使用
比率を高くしたり、アルコール成分として分子量
が比較的大きく剛直な分子構造を有するグリコー
ルを用いる等の方法により得られる。 このような不飽和ポリエステル(A)としては、分
子量が150以上のグリコールを少なくとも10モル
%更に望ましくは少なくとも20モル%含有するア
ルコール成分(a)とα,β−不飽和ジカルボン酸お
よび/またはその酸無水物を少なくとも60モル%
含有する酸成分(b)とをエステル化して得られる不
飽和ポリエステルがあり、これを用いると、得ら
れる不飽和ポリエステル樹脂組成物の物性が良好
で、特に好ましいものである。このような不飽和
ポリエステル(A)は、従来公知の方法に従つて容易
に製造できるものであり、本発明はその製造方法
によつて左右されるものではない。 重合性不飽和単量体(B)とは、常温で液状の重合
性不飽和二重結合を有する化合物を指し、例え
ば、スチレン、ビニルトルエン、ハロゲン化スチ
レン、ジビニルトルエン、α−メチルスチレン等
の芳香族ビニル化合物、ジアリルフタレート、グ
リシジルアリルエーテル等のアリルエステル類、
メチルメタクリレート、エチルアクリレート、グ
リシジルメタアクリレート、8(9)−メタアクリロ
イルオキシ−トリシクロ〔5.2.1.02.6〕デカ−3−
エン等のアクリレートおよびメタアクリレート類
等を挙げることができる。この中でも芳香族ビニ
ル化合物、特にスチレンが反応性および溶媒効果
に優れ好ましいものである。重合性不飽和単量体
(B)の使用量は、不飽和ポリエステル(A)100重量部
当りに25〜200重量部の割合である。使用量がこ
の範囲をはずれた場合には得られる不飽和ポリエ
ステル樹脂組成物の物性が低下して好ましくな
い。 (メタ)アクリレート(C)は、2価フエノール化
合物(1)1当量当りにアルキレンオキサイドを1〜
5当量付加反応して得られる反応生成物(3)のアク
リレートおよび/またはメタアクリレートであ
る。 2価フエノール化合物(1)とは、1分子中にヒド
ロキシ置換フエノール基を2個有する化合物を指
し、例えば、2,2−ビス(4−ヒドロキシフエ
ニル)プロパン、2,2−ビス(4−ヒドロキシ
フエニル)ブタン、2,2−ビス(4−ヒドロキ
シフエニル)ペンタン、ビス(4−ヒドロキシフ
エニル)メタン、1,1′−ビス(4−ヒドロキシ
フエニル)エタン等である。 アルキレンオキサイド(2)の例としては、エチレ
ンオキサイド、プロピレンオキサイド等があり、
これらの1種又は2種以上を使用することができ
る。 (メタ)アクリレート(C)は、2価フエノール化
合物(1)1当量当りに1〜5当量のアルキレンオキ
サイドを付加して得られる1分子当りに2個のア
ルコール性水酸基を有する反応生成物(3)のアクリ
レートおよび/またはメタアクリレートで、反応
生成物(3)の有するアルコール性水酸基の少なくと
も70%、望ましくは80%以上がアクリル酸およ
び/またはメタアクリル酸のエステルとなつたも
のである。アルキレンオキサイドの使用量が上記
の範囲をはずれた場合は本発明の優れた作用効果
が得られず好ましくない。また、反応生成物(3)の
有するアルコール性水酸基のエステル化の度合が
70%より少ない場合は、得られる不飽和ポリエス
テル樹脂組成物の物性が低下し好ましくない。こ
のような(メタ)アクリレート(C)は、従来公知の
方法に従つて容易に製造することができる。その
代表例として以下に示すような2段階の工程に従
つて反応する方法を挙げることができる。 第1工程:2価フエノール化合物(1)のヒドロキシ
アルキルエーテル化工程 2価フエノール化合物(1)1当量当りに1〜5
当量のアルキレンオキサイド(2)を、必要により (1) トリエチルアミン、トリエタノールアミ
ン、トリメチルベンジルアンモニウムクロラ
イド等のアミン化合物:三弗化ほう素、四塩
化スズ等のルイス酸:ナトリウム、リチウ
ム、カリウム等のアルカリ金属の化合物:カ
ルシウム、マグネシウム等のアルカリ土類金
属の化合物等の反応触媒 (2) アセトン、トリクレン、ジクロルメタン、
メチルエチルケトン、メチルイソブチルケト
ン、ベンゼン、トルエン、キシレン等の有機
溶剤 等の存在下に、常温もしくは加熱下に2価フエ
ノール化合物(1)の水酸基をヒドロキシアルキル
エーテル化する工程。 第2工程:エステル化工程 第1工程で得られた反応生成物(3)1当量当り
に0.7当量より多い量のアクリル酸および/ま
たはメタクリル酸あるいはそれらの酸クロライ
ドを、必要により (1) パラトルエンスルホン酸、硫酸、ルイス酸
類、チタン酸エステル類等の反応触媒 (2) 第1工程で例示されたような有機溶剤 (3) トリエチルアミン、ピリジン等の3級アミ
ン類:炭酸ナトリウム、炭酸カリウム等のア
ルカリ金属の弱酸塩等の脱酸剤 等の存在下に、常温もしくは加熱下に第1工程
で得られた反応生成物(3)の有する水酸基をアク
リル酸および/またはメタクリル酸のエステル
とする工程。 しかしながら、このような(メタ)アクリレー
ト(C)の製造方法により本発明は左右されるもので
はない。 (メタ)アクリレート(C)の中でも、2価フエノ
ール化合物(1)1当量当りにアルキレンオキサイド
(2)を1.5〜2.5当量付加反応させて得られた反応生
成物(3)の(メタ)アクリレートを用いた場合、特
にその作用効果が大きく好ましいものである。 (メタ)アクリレート(C)の使用量は、不飽和ポ
リエステル(A)100重量部当りに15〜100重量部であ
り、この範囲をはずれた場合には本発明の物性の
優れた不飽和ポリエステル樹脂組成物は得られな
い。 不飽和ポリエステル樹脂(A)、重合性不飽和単量
体(B)および(メタ)アクリレート(C)は、どのよう
な順序で混合してもよく、また、通常用いられる
装置により混合することができる。 このようにして得られた本発明の不飽和ポリエ
ステル樹脂組成物は、従来公知の不飽和ポリエス
テル樹脂と同様にして使用することができ、優れ
た耐熱性、耐蝕性および機械特性を兼備した硬化
物を提供するものである。従つて、特に耐蝕タン
ク、耐蝕パイプ、耐蝕ライニング、バスタブ、ゲ
ルコート等の、高耐蝕性や高耐熱と高機械特性の
ように二律相反的な性能が同時に要求される分野
において、本発明の不飽和ポリエステル樹脂組成
物はその性能をいかんなく発揮するものである。 以下、例示でもつて本発明をより詳しく説明す
るが、本発明はこれらの例示に限定されるもので
はない。尚、例中に「部」とあるのは特にことわ
りのない限り「重量部」を表わすものとする。 実施例 1 フラスコにユニポールBP−2P(N)(三洋化成
(株)社製)、ビスフエノールAとプロピレンオキサ
イドの付加反応生成物、水酸価315、フエノール
性水酸基1当量当りのアルキレンオキサイド付加
率(以下、AO/BPと記す。)=1.1)370部及びフ
マル酸116部を仕込み、通常の方法に従つて酸価
32の不飽和ポリエステル(A−1)を得た。 別に、フラスコにユニオールDB−400(日本油
脂(株)社製、ビスフエノールAとプロピレンオキサ
イドの付加反応生成物、水酸価275、AO/BP=
1.6)204部、トルエン500部、メタアクリル酸130
部、ハイドロキノン0.1部およびパラトルエンス
ルホン酸4部を仕込み、分留管でトルエン−水の
共沸物を除去しながら105〜110℃でエステル化し
た後、水洗し、揮発分を除去してユニオールDB
−400のメタクリル酸エステル(以下、(メタ)ア
クリレート(C−1)という。)を得た。(メタ)
アクリレート(C−1)は水酸価13.4、エステル
価184で、ユニオールDB−400の有していた水酸
基の93.2%がエステル化されていた。 不飽和ポリエステル(A−1)100部、スチレ
ン80部および(メタ)アクリレート(C−1)50
部を相互に溶解して得た樹脂(1)100部にオクテン
酸コバルト(金属含有率8%、以下、OcCo(8
%)という。)0.3部およびメチルエチルケトンパ
ーオキサイド(パーオキサイド含有率、55%、以
下、MEKPO(55%)という。)1.5部を配合した
樹脂液を2枚のガラス板の間に流し込んで硬化さ
せて得た樹脂板の物性を第1表に示す。 比較例 1 不飽和ポリエステル(A−1)100部およびス
チレン80部を相互に溶解させて得た樹脂(比−
1)について、実施例1と同様にして硬化させ、
樹脂板を得た。その物性を第1表に示す。 比較例 2 エピコート828(シエル社製、ビスフエノールA
型エポキシ樹脂、エポキシ当量187部)、メタアク
リル酸88部、ハイドロキノン0.05部およびトリエ
チルアミン1.0部を用いて通常の方法に従つてエ
ポキシポリメタアクリレートを得た。 次に不飽和ポリエステル(A−1)100部、ス
チレン80部および該エポキシポリメタアクリレー
ト50部を相互に溶解して樹脂(比−2)を得た。
樹脂(比−2)を実施例1と同様にして硬化させ
て得た樹脂板の物性を第1表に示す。
The present invention relates to an unsaturated polyester resin composition having excellent heat resistance, corrosion resistance and mechanical properties. Unsaturated polyester resin is used in paints, cast products,
It is widely used as FRP (fiber-reinforced plastic), and as its uses have recently expanded, the required performance has also become more diverse. The demand for quality with excellent heat resistance, corrosion resistance, and mechanical properties is one of the demands that has arisen against this background. It is extremely difficult to realize both performance and performance at the same time. This is because, if heat resistance and corrosion resistance are prioritized, the crosslinking density of the resin must be increased or the molecular structure must be rigid, resulting in a brittle resin with poor mechanical properties. On the other hand, if priority is given to mechanical properties, heat resistance and corrosion resistance will decrease. Therefore, the inventors of the present invention completed the present invention as a result of intensive research in order to obtain an unsaturated polyester resin that has the above-mentioned antinomic properties. That is, the present invention provides an alcohol component (a) containing at least 10 mol% of a glycol having a molecular weight of 150 or more, and an acid component (b) containing at least 60 mol% of an α,β-unsaturated dicarboxylic acid and/or its acid anhydride. ), and 100 parts by weight of an unsaturated polyester (A), which is obtained by esterifying 60 parts by weight of unsaturated polyester (A) and 40 parts by weight of styrene, and has a heat deformation temperature of a cured product of a resin liquid of 100 ° C. or higher, 25 to 200 parts by weight of polymerizable unsaturated monomer (B) and general formula (However, R is an alkylene group having 1 to 5 carbon atoms.) A reaction product obtained by addition reaction of 1 to 5 equivalents of alkylene oxide (2) per 1 equivalent of divalent phenol compound (1) represented by The present invention relates to an unsaturated polyester resin composition comprising 15 to 100 parts by weight of (meth)acrylate (C) in which at least 70% of the alcoholic hydroxyl groups of (3) are esters of acrylic acid and/or methacrylic acid. The unsaturated polyester (A) used in the present invention is
As mentioned above, when the resin liquid is made up of 60 parts by weight of unsaturated polyester (A) and 40 parts by weight of styrene, it is an unsaturated polyester whose cured product has a heat distortion temperature of 100°C or higher. If the unsaturated polyester has a heat distortion temperature of less than 100° C., it is impossible to obtain an unsaturated polyester resin composition that has excellent heat resistance, corrosion resistance, and mechanical properties as the object of the present invention. Such unsaturated polyester (A) is produced by increasing the ratio of α,β-unsaturated dicarboxylic acid in the acid component that is its raw material, or by increasing the ratio of α,β-unsaturated dicarboxylic acid in the acid component that is the raw material, or by using glycol with a relatively large molecular weight and a rigid molecular structure as the alcohol component. It can be obtained by a method such as using Such an unsaturated polyester (A) includes an alcohol component (a) containing at least 10 mol% of a glycol having a molecular weight of 150 or more, more preferably at least 20 mol%, and an α,β-unsaturated dicarboxylic acid and/or its At least 60 mol% acid anhydride
There is an unsaturated polyester obtained by esterifying the acid component (b) contained therein, and when this is used, the resulting unsaturated polyester resin composition has good physical properties and is particularly preferred. Such an unsaturated polyester (A) can be easily produced according to a conventionally known method, and the present invention is not dependent on the production method. The polymerizable unsaturated monomer (B) refers to a compound having a polymerizable unsaturated double bond that is liquid at room temperature, such as styrene, vinyltoluene, halogenated styrene, divinyltoluene, α-methylstyrene, etc. Aromatic vinyl compounds, allyl esters such as diallyl phthalate, glycidyl allyl ether,
Methyl methacrylate, ethyl acrylate, glycidyl methacrylate, 8(9)-methacryloyloxy-tricyclo[5.2.1.0 2.6 ]deca-3-
Acrylates and methacrylates such as en, etc. can be mentioned. Among these, aromatic vinyl compounds, particularly styrene, are preferred because of their excellent reactivity and solvent effects. Polymerizable unsaturated monomer
The amount of (B) used is 25 to 200 parts by weight per 100 parts by weight of the unsaturated polyester (A). If the amount used is outside this range, the physical properties of the resulting unsaturated polyester resin composition will deteriorate, which is undesirable. (Meth)acrylate (C) contains 1 to 1 alkylene oxide per equivalent of divalent phenol compound (1).
The reaction product (3) is an acrylate and/or methacrylate obtained by a 5-equivalent addition reaction. The divalent phenol compound (1) refers to a compound having two hydroxy-substituted phenol groups in one molecule, such as 2,2-bis(4-hydroxyphenyl)propane, 2,2-bis(4- These include hydroxyphenyl)butane, 2,2-bis(4-hydroxyphenyl)pentane, bis(4-hydroxyphenyl)methane, and 1,1'-bis(4-hydroxyphenyl)ethane. Examples of alkylene oxide (2) include ethylene oxide, propylene oxide, etc.
One or more of these can be used. (Meth)acrylate (C) is a reaction product (3) having two alcoholic hydroxyl groups per molecule obtained by adding 1 to 5 equivalents of alkylene oxide to 1 equivalent of dihydric phenol compound (1). ) is an acrylate and/or methacrylate in which at least 70%, preferably 80% or more of the alcoholic hydroxyl groups of the reaction product (3) are esters of acrylic acid and/or methacrylic acid. If the amount of alkylene oxide used is outside the above range, the excellent effects of the present invention cannot be obtained, which is not preferred. In addition, the degree of esterification of the alcoholic hydroxyl group of the reaction product (3) is
If it is less than 70%, the physical properties of the resulting unsaturated polyester resin composition will deteriorate, which is not preferable. Such (meth)acrylate (C) can be easily produced according to a conventionally known method. A typical example thereof is a method in which the reaction follows a two-step process as shown below. First step: hydroxyalkyl etherification step of divalent phenol compound (1) 1 to 5 per equivalent of divalent phenol compound (1)
An equivalent amount of alkylene oxide (2) is added as necessary (1) Amine compounds such as triethylamine, triethanolamine, trimethylbenzylammonium chloride; Lewis acids such as boron trifluoride and tin tetrachloride; sodium, lithium, potassium, etc. Alkali metal compounds: Reaction catalysts such as alkaline earth metal compounds such as calcium and magnesium (2) Acetone, trichlene, dichloromethane,
A step of converting the hydroxyl group of the divalent phenol compound (1) into a hydroxyalkyl ether at room temperature or under heating in the presence of an organic solvent such as methyl ethyl ketone, methyl isobutyl ketone, benzene, toluene, xylene, etc. Second step: Esterification step If necessary, (1) para. Reaction catalysts such as toluenesulfonic acid, sulfuric acid, Lewis acids, titanate esters, etc. (2) Organic solvents as exemplified in the first step (3) Tertiary amines such as triethylamine and pyridine: sodium carbonate, potassium carbonate, etc. In the presence of a deoxidizing agent such as a weak acid salt of an alkali metal, at room temperature or under heating, the hydroxyl group of the reaction product (3) obtained in the first step is converted into an ester of acrylic acid and/or methacrylic acid. Process. However, the present invention is not dependent on such a method for producing (meth)acrylate (C). Among (meth)acrylates (C), alkylene oxide is added per equivalent of divalent phenol compound (1).
When (meth)acrylate of reaction product (3) obtained by addition reaction of 1.5 to 2.5 equivalents of (2) is used, it is particularly preferable because its action and effect are large. The amount of (meth)acrylate (C) used is 15 to 100 parts by weight per 100 parts by weight of unsaturated polyester (A), and if it is outside this range, the unsaturated polyester resin of the present invention with excellent physical properties No composition is obtained. The unsaturated polyester resin (A), the polymerizable unsaturated monomer (B), and the (meth)acrylate (C) may be mixed in any order, and may be mixed using commonly used equipment. can. The unsaturated polyester resin composition of the present invention thus obtained can be used in the same manner as conventionally known unsaturated polyester resins, and is a cured product that has excellent heat resistance, corrosion resistance, and mechanical properties. It provides: Therefore, the disadvantages of the present invention are particularly useful in fields where contradictory performances such as high corrosion resistance, high heat resistance, and high mechanical properties are simultaneously required, such as corrosion-resistant tanks, corrosion-resistant pipes, corrosion-resistant linings, bathtubs, and gel coats. The saturated polyester resin composition exhibits its performance to the fullest. Hereinafter, the present invention will be explained in more detail by way of examples, but the present invention is not limited to these examples. In addition, "parts" in the examples represent "parts by weight" unless otherwise specified. Example 1 Unipol BP-2P (N) (Sanyo Chemical Co., Ltd.) was added to the flask.
Co., Ltd.), addition reaction product of bisphenol A and propylene oxide, hydroxyl value 315, alkylene oxide addition rate per equivalent of phenolic hydroxyl group (hereinafter referred to as AO/BP) = 1.1) 370 parts and 116 parts of fumaric acid, and the acid value was adjusted according to the usual method.
32 unsaturated polyester (A-1) was obtained. Separately, put Uniol DB-400 (manufactured by Nippon Oil & Fats Co., Ltd., addition reaction product of bisphenol A and propylene oxide, hydroxyl value 275, AO/BP=
1.6) 204 parts, toluene 500 parts, methacrylic acid 130 parts
1 part, 0.1 part of hydroquinone, and 4 parts of para-toluenesulfonic acid were charged, and esterified at 105 to 110°C while removing the toluene-water azeotrope in a fractionating tube, and then washed with water to remove volatile components to obtain UNIONOL. D.B.
-400 methacrylic acid ester (hereinafter referred to as (meth)acrylate (C-1)) was obtained. (meta)
Acrylate (C-1) had a hydroxyl value of 13.4 and an ester value of 184, and 93.2% of the hydroxyl groups in Uniol DB-400 were esterified. 100 parts of unsaturated polyester (A-1), 80 parts of styrene and 50 parts of (meth)acrylate (C-1)
Cobalt octenoate (metal content 8%, hereinafter referred to as OcCo (8%) was added to 100 parts of resin (1) obtained by dissolving two parts
%). ) and 1.5 parts of methyl ethyl ketone peroxide (peroxide content, 55%, hereinafter referred to as MEKPO (55%)) was poured between two glass plates and cured. The physical properties are shown in Table 1. Comparative Example 1 A resin obtained by mutually dissolving 100 parts of unsaturated polyester (A-1) and 80 parts of styrene (relative to
Regarding 1), cure it in the same manner as in Example 1,
A resin plate was obtained. Its physical properties are shown in Table 1. Comparative Example 2 Epicote 828 (manufactured by Ciel, bisphenol A)
An epoxy polymethacrylate was obtained according to a conventional method using a type epoxy resin (epoxy equivalent: 187 parts), 88 parts of methacrylic acid, 0.05 part of hydroquinone, and 1.0 part of triethylamine. Next, 100 parts of unsaturated polyester (A-1), 80 parts of styrene, and 50 parts of the epoxy polymethacrylate were mutually dissolved to obtain a resin (ratio-2).
Table 1 shows the physical properties of a resin plate obtained by curing the resin (ratio -2) in the same manner as in Example 1.

【表】【table】

【表】 第1表から明らかなように、樹脂(比−1)は
耐熱性と耐蝕性には優れるものの、引張り伸び率
が低く脆いことが判る。また、機械的強度が低
い。樹脂(比−2)は、引張り伸び率が大きく機
械的強度も高く、強靭な機械的特性を有しており
耐熱性も優れているが、耐蝕性に劣つている。一
方、樹脂(1)は耐熱性及び機械的特性については樹
脂(比−2)と同等以上の性能を有し、かつ耐蝕
性については樹脂(比−1)と同等の優れた性能
を有しており、樹脂(比−1)、樹脂(比−2)
では具現し得なかつた耐熱性、耐蝕性および機械
的特性の全てを兼備した優れた性能を有している
ことがわかる。 実施例 2 不飽和ポリエステル(A−1)100部、スチレ
ン120部、およびビスフエノールAとプロピレン
オキサイドとの反応生成物(AO/BP=2.4、水
酸価222)のメタアクリレート(水酸価13.3、エ
ステル価155、以下、(メタ)アクリレート(C−
2)という。)40部を相互に溶解して得た樹脂(2)
について、実施例1と同様にして物性の評価を行
つた。その結果を第2表に示す。 実施例 3 水素化ビスフエノールA120部、ネオペンチル
グリコール57部、イソフタル酸33部および無水マ
レイン酸78部を用いて、通常の方法に従つて酸価
21の不飽和ポリエステル(A−2)を得た。 不飽和ポリエステル(A−2)100部、スチレ
ン100部およびメタアクリレート(C−1)80部
を相互に溶解して得た樹脂(3)について、実施例1
と同様にしてその硬化物の物性を評価した。その
結果を第2表に示す。 比較例 3 不飽和ポリエステル(A−2)100部、スチレ
ン100部および(メタ)アクリレート(C−1)
8部を相互に溶解して得た樹脂(比−3)につい
て、実施例1と同様にしてその硬化物の物性を評
価した。その結果を第2表に示す。 実施例 4 3(4)、8(9)−ビス−ヒドロキシメチル−トリシ
クロ〔5.2.1.02.6〕デカン39部、プロピレングリコ
ール65部、イソフタル酸25部および無水マレイン
酸83部を用いて通常の方法に従つて酸価23の不飽
和ポリエステル(A−4)を得た。 不飽和ポリエステル(A−4)100部、スチレ
ン80部および(メタ)アクリレート(C−2)60
部を相互に溶解して得た樹脂(4)について、実施例
1と同様にしてその硬化物の物性を評価した。そ
の結果を第2表に示す。 実施例 5 不飽和ポリエステル(A−1)100部、スチレ
ン70部、および2,2−ビス(4−ヒドロキシフ
エニル)ブタンとエチレンオキサイドとの反応生
成物(AO/BP=1.3、水酸価315)のアクリレー
ト(水酸価13.7、エステル価214、以下、(メタ)
アクリレート(C−3)という。)70部を相互に
溶解して得た樹脂(5)について、実施例1と同様に
してその硬化物の物性を評価した。その結果を第
2表に示す。 実施例 6 不飽和ポリエステル(A−2)100部、スチレ
ン150部、およびビスフエノールAとプロピレン
オキサイドとの反応生成物に更にエチレンオキサ
イドを付加反応させた反応生成物(AO/BP=
3.2、エチレンオキサイドとプロピレンオキサイ
ドの付加比率(EO/PO)=0.7、水酸価199)の
アクリレート(水酸価16.2、エステル価146)80
部を相互に溶解して得た樹脂(6)について実施例1
と同様にしてその硬化物の物性を評価した。その
結果を第2表に示す。
[Table] As is clear from Table 1, although the resin (ratio -1) has excellent heat resistance and corrosion resistance, it has a low tensile elongation rate and is brittle. Also, mechanical strength is low. The resin (ratio -2) has a large tensile elongation rate, high mechanical strength, strong mechanical properties, and excellent heat resistance, but is inferior in corrosion resistance. On the other hand, resin (1) has the same or better performance as resin (ratio -2) in terms of heat resistance and mechanical properties, and has excellent corrosion resistance equivalent to resin (ratio -1). Resin (ratio -1), resin (ratio -2)
It can be seen that it has excellent performance, combining heat resistance, corrosion resistance, and mechanical properties that could not be achieved with other materials. Example 2 100 parts of unsaturated polyester (A-1), 120 parts of styrene, and methacrylate of the reaction product of bisphenol A and propylene oxide (AO/BP = 2.4, hydroxyl value 222) (hydroxyl value 13.3) , ester value 155, hereinafter referred to as (meth)acrylate (C-
2). ) Resin obtained by mutually dissolving 40 parts (2)
The physical properties were evaluated in the same manner as in Example 1. The results are shown in Table 2. Example 3 Using 120 parts of hydrogenated bisphenol A, 57 parts of neopentyl glycol, 33 parts of isophthalic acid and 78 parts of maleic anhydride, the acid value was determined according to a conventional method.
21 unsaturated polyester (A-2) was obtained. Example 1 Regarding the resin (3) obtained by mutually dissolving 100 parts of unsaturated polyester (A-2), 100 parts of styrene, and 80 parts of methacrylate (C-1).
The physical properties of the cured product were evaluated in the same manner as above. The results are shown in Table 2. Comparative Example 3 100 parts of unsaturated polyester (A-2), 100 parts of styrene and (meth)acrylate (C-1)
Regarding the resin obtained by mutually dissolving 8 parts (ratio-3), the physical properties of the cured product were evaluated in the same manner as in Example 1. The results are shown in Table 2. Example 4 3(4),8(9)-bis-hydroxymethyl-tricyclo[5.2.1.0 2.6 ] Conventional method using 39 parts of decane, 65 parts of propylene glycol, 25 parts of isophthalic acid and 83 parts of maleic anhydride. An unsaturated polyester (A-4) having an acid value of 23 was obtained in accordance with the following. 100 parts of unsaturated polyester (A-4), 80 parts of styrene and 60 parts of (meth)acrylate (C-2)
Regarding the resin (4) obtained by mutually dissolving the parts, the physical properties of the cured product were evaluated in the same manner as in Example 1. The results are shown in Table 2. Example 5 100 parts of unsaturated polyester (A-1), 70 parts of styrene, and a reaction product of 2,2-bis(4-hydroxyphenyl)butane and ethylene oxide (AO/BP=1.3, hydroxyl value 315) acrylate (hydroxyl value 13.7, ester value 214, hereinafter referred to as (meth)
It is called acrylate (C-3). ), and the physical properties of the cured product were evaluated in the same manner as in Example 1. The results are shown in Table 2. Example 6 A reaction product (AO/BP=
3.2, ethylene oxide to propylene oxide addition ratio (EO/PO) = 0.7, hydroxyl value 199) acrylate (hydroxyl value 16.2, ester value 146) 80
Example 1 Regarding the resin (6) obtained by mutually dissolving the
The physical properties of the cured product were evaluated in the same manner as above. The results are shown in Table 2.

【表】【table】

Claims (1)

【特許請求の範囲】 1 分子量が150以上のグリコールを少なくとも
10モル%含有するアルコール成分(a)とα,β−不
飽和ジカルボン酸および/またはその酸無水物を
少なくとも60モル%含有する酸成分(b)とをエステ
ル化して得られ且つ不飽和ポリエステル(A)60重量
部およびスチレン40重量部よりなる樹脂液の硬化
物の熱変形温度が100℃以上である不飽和ポリエ
ステル(A)100重量部、重合性不飽和単量体(B)25〜
200重量部、並びに一般式 (ただし、Rは炭素数1〜5のアルキレン基であ
る。)で表わされる2価フエノール化合物(1)1当
量当りにアルキレンオキサイド(2)を1〜5当量付
加反応して得られる反応生成物(3)の有するアルコ
ール性水酸基の少なくとも70%がアクリル酸およ
び/またはメタクリル酸のエステルとなつた(メ
タ)アクリレート(C)15〜100重量部からなる不飽
和ポリエステル樹脂組成物。 2 (メタ)アクリレート(C)が、2価フエノール
化合物(1)1当量当りにアルキレンオキサイド(2)を
1.5〜2.5当量付加反応して得られる反応生成物(3)
の(メタ)アクリレートである特許請求の範囲第
1項記載の不飽和ポリエステル樹脂組成物。
[Claims] 1. At least a glycol with a molecular weight of 150 or more
An unsaturated polyester obtained by esterifying an alcohol component (a) containing 10 mol% and an acid component (b) containing at least 60 mol% of an α,β-unsaturated dicarboxylic acid and/or its acid anhydride. A) 100 parts by weight of an unsaturated polyester (A) having a heat distortion temperature of 100°C or more of a cured resin liquid consisting of 60 parts by weight and 40 parts by weight of styrene, 25 to 25 parts by weight of a polymerizable unsaturated monomer (B)
200 parts by weight and general formula (However, R is an alkylene group having 1 to 5 carbon atoms.) A reaction product obtained by addition reaction of 1 to 5 equivalents of alkylene oxide (2) per 1 equivalent of divalent phenol compound (1) represented by An unsaturated polyester resin composition comprising 15 to 100 parts by weight of (meth)acrylate (C) in which at least 70% of the alcoholic hydroxyl groups of (3) are esters of acrylic acid and/or methacrylic acid. 2 (Meth)acrylate (C) contains alkylene oxide (2) per equivalent of divalent phenol compound (1).
Reaction product obtained by 1.5-2.5 equivalent addition reaction (3)
The unsaturated polyester resin composition according to claim 1, which is a (meth)acrylate of.
JP8783982A 1982-05-26 1982-05-26 Unsaturated polyester resin composition Granted JPS58206617A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8783982A JPS58206617A (en) 1982-05-26 1982-05-26 Unsaturated polyester resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8783982A JPS58206617A (en) 1982-05-26 1982-05-26 Unsaturated polyester resin composition

Publications (2)

Publication Number Publication Date
JPS58206617A JPS58206617A (en) 1983-12-01
JPS6365087B2 true JPS6365087B2 (en) 1988-12-14

Family

ID=13926080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8783982A Granted JPS58206617A (en) 1982-05-26 1982-05-26 Unsaturated polyester resin composition

Country Status (1)

Country Link
JP (1) JPS58206617A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61166850A (en) * 1985-01-18 1986-07-28 Inax Corp Unsaturated polyester resin composition

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50154390A (en) * 1974-06-03 1975-12-12

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50154390A (en) * 1974-06-03 1975-12-12

Also Published As

Publication number Publication date
JPS58206617A (en) 1983-12-01

Similar Documents

Publication Publication Date Title
US5696225A (en) Process for making high-performance polyetherester resins and thermosets
US4076765A (en) Unsaturated epoxy ester resin
JP2943148B2 (en) Thermosetting resin composition
JP3653513B2 (en) Vinyl ester resin, vinyl ester resin composition and cured product thereof
EP0150624B1 (en) Low shrinkable unsaturated polyester resin composition
JPS6365087B2 (en)
US4684695A (en) Flame-retardant, unsaturated polyester resin and composition therefor
US3957906A (en) Chemically resistant polyester resins compositions
Jaswal et al. Curing and decomposition behaviour of cresol novolac based vinyl ester resin
JPH0959499A (en) Corrosion preventive lining composition
JPS5936118A (en) Thermosetting epoxy acrylate resin composition
JPS58217514A (en) Thermosetting resin composition
JP2740527B2 (en) Epoxy acrylate resin composition
JPH0212181B2 (en)
JP3388642B2 (en) Curable resin composition
JPH0618907B2 (en) Fiber reinforced composite material
JPS6289719A (en) Novel vinyl ester resin and production thereof
JPH0339316A (en) Curable resin composition
JPS60161414A (en) Preparation of unsaturated epoxy resin composition having improved shelf stability
JPH09194550A (en) Resin composition for casting
JPH072995A (en) Unsaturated bisphenol polyester resin
JPH0618906B2 (en) Fiber reinforced composite material
JPH07324123A (en) Thermosetting allylic resin composition excellent in curability
JPH045661B2 (en)
JPH10147721A (en) Resin composition for molding material and molding material obtained therefrom