JPS6365082B2 - - Google Patents

Info

Publication number
JPS6365082B2
JPS6365082B2 JP15280581A JP15280581A JPS6365082B2 JP S6365082 B2 JPS6365082 B2 JP S6365082B2 JP 15280581 A JP15280581 A JP 15280581A JP 15280581 A JP15280581 A JP 15280581A JP S6365082 B2 JPS6365082 B2 JP S6365082B2
Authority
JP
Japan
Prior art keywords
stirring
polymerization
reaction tank
olefin
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15280581A
Other languages
Japanese (ja)
Other versions
JPS5853904A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP15280581A priority Critical patent/JPS5853904A/en
Publication of JPS5853904A publication Critical patent/JPS5853904A/en
Publication of JPS6365082B2 publication Critical patent/JPS6365082B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/08Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with moving particles
    • B01J8/10Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with moving particles moved by stirrers or by rotary drums or rotary receptacles or endless belts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔〕 発明の背景 本発明はオレフインのホモ重合および共重合を
実質的にオレフインが気相で存在する状態で重合
体を生成させるための新規なオレフインの気相重
合用横型反応槽に関するものである。 α−オレフインの重合方法については、現在希
釈剤の存在下で重合を行わしめる所謂スラリー重
合法が主流を占めている。かかるスラリー重合で
は希釈剤の回収および精製工程が必要となるが、
オレフインを気相状態で反応させる所謂気相重合
法では、かかる工程が実質的に不要となり、プロ
セスの簡略化およびスチーム、電力等の用役使用
量の減少が可能である。 この気相重合法においては、微細な重合触媒を
そのままか、あるいは少量の分散媒中に分散させ
た状態で、またはシリカ、アルミナ等の微細粉末
担体に担持させて、反応槽中に分散せしめて気相
のオレフインと接触させ、その触媒上に重合体を
成長せしめる。反応槽中には予め入れておいた重
合体粉末か、またはすでに重合によつて生成した
重合体粉末を撹拌状態にしておき、気相オレフイ
ンと触媒との接触はこの重合体粉末の撹拌状態に
よつて大きく影響を受ける。一般にオレフインの
重合時の発熱は10〜20Kcal/モル程度と極めて
大きく、撹拌状態がよくないと局部過熱を生じ、
重合反応遂行上のトラブルおよび生成重合体の品
質劣化を生ずることとなる。また、このように大
量に発生する重合熱を効率よく除去する必要があ
り、除熱が充分でない場合には重合反応の温度制
御上問題を生じ、同様に反応遂行上のトラブルお
よび生成重合体の品質劣化を生ずる。従つて、オ
レフインの気相重合法においては、気相−固相の
接触状態、即ち粉末の流動撹拌状態と共に、この
ような流動床からの均一な熱除去が大きな問題と
なる。 オレフインの気相重合の反応装置としては、例
えば特公昭47−13962号、特公昭52−040350号お
よび特公昭54−139983号各公報に流動床反応器が
提案されている。これらの流動床反応器は希釈剤
の実質的に存在しない気相中にある重合体粒子お
よび触媒粒子の混合という点では優れているが、
一方、次のごとき欠点を有する。 (1) 流動床反応器内で重合体粒子および触媒粒子
の有効な流動状態を作るには大量のガスを反応
器下部から吹込む必要があり、このガスに重合
原料ガスが用いられるとしてもその量は反応量
の数十倍にも達し、このガスは反応器外に取出
され再循環される。この再循環のためにはかな
りの容量の圧縮機を必要とし、このため多大の
電力が消費される。 (2) 流動床反応器内部混合用ガスの上昇速度は、
例えば特公昭52−40350号公報にも示されるご
とく15cm/秒程度であり、この上昇気流に乗つ
て触媒粒子および反応途中にある活性な微粉が
混合用ガス循環系に飛散する。この為に特別の
微粉回収装置を必要とするばかりでなく、場合
によつてはこの触媒および活性な微粉が混合用
ガス循環系の管および機器に付着し、そこで重
合反応が起り、遂には混合用ガス循環系の運転
を困難にしてしまう。これを回避するためには
触媒系についても微粉を生成しない特別の配慮
が必要となり、使用し得る触媒系も限定され
る。 一方、以前より流動床反応器の前記欠点に着目
し、流動床反応器に吹込むガスの流量を減少させ
る方法が提案されている。例えば特公昭41−597
号公報では流動床反応器内に撹拌機を設置する方
法が提案されている。しかしながらこの方法でも
なお5〜15cm/秒のガスを反応器下部より供給し
てやる必要性が記載されている。また特公昭45−
2019号公報では水平中空円筒形反応器の内部に一
軸撹拌機を設置した装置により気相重合を実施す
る方法が提案されている。この装置による気相重
合では、重合熱をイソブタン、イソペンタンのよ
うな低沸点液体を装置内に噴射させて蒸発潜熱に
より除去し、流動用ガスの吹込み量を減少させる
方法がとられる。しかしこうした方法においても
次の如き欠点を有している。 (1) 反応器内側表面に反応生成物が蓄積するので
蓄積物除去の為にパージガスの吹込みが必要で
ある。 (2) 低沸点液体の回収、循環のための多くの設備
が必要であり、電力、スチーム等も多く消費さ
れる。 以上述べたように、従来提案されている装置お
よび方法は、反応器および反応系の安定運転なら
びに用役原単位の低下という点で十分に満足でき
るものとはいえない。 特開昭55−157605号公報には反応槽の下部に水
平に設けられた複数の平行撹拌軸により反応系の
均一混合を達成し、従つて反応熱の均一化を可能
とする横型反応器が提案されている。この反応器
は、従つて、反応器の安定運転という点において
は優れているが、重合熱を効率よく除去し、ガス
循環系の負荷を少なくすることによつて循環系に
おける設備費および用役使用量を軽減する点に関
してはなお不充分である。 本発明者等は、この特開昭55−157606号公報に
提案されている横型反応器について更に検討を進
め、この反応器の有する重合反応の安定性を損う
ことなく、内部冷却器によつて重合熱を効率よく
除去することにより、上記の欠点をほぼ完全に解
決し得ることを見出した。 〔〕 発明の要約 本発明はα−オレフインのホモ重合および共重
合を、少なくとも1種のα−オレフインの実質的
に気相状態において行なう気相重合用横型反応槽
において、該反応槽の下部に、水平方向に、か
つ、並行して対になつた撹拌軸が設けられてお
り、各撹拌軸には回転によつて反応槽内の粉末状
オレフイン重合体を上方へかきあげ得る撹拌翼が
取付けられており、反応槽の底部が各撹拌軸上の
撹拌翼の先端が回転によつて画く軌道に沿つた部
分円筒で構成されており、撹拌によつて生ずる流
動層内に重合熱除去用冷却管が設けられているオ
レフインの気相重合用装置において、重合熱除去
用冷却管は水平に多数本設けられ、各冷却管相互
の間隔が、粉末状オレフイン重合体の流動の上昇
部では粗に、下降部では密に設けられていること
を特徴とする、オレフインの気相重合用装置であ
つて、具体的には、隣接する冷却管の中心距離を
冷却管径で除したピツチが、粗の部分で3.5〜5.0
であり、密の部分で1.5〜3.5であることが好まし
く、更に、対になつた撹拌軸の回転が、両回転軸
の中間で粉末状オレフイン重合体をかきあげる方
向である場合に特に有効である。 本発明の装置によりα−オレフインのホモ重合
および共重合を、少なくとも1種のα−オレフイ
ンが実質的に気相状態で実施すると次のような利
点を有する。 まず第1に、内部冷却手段を取付けても、反応
器内の流動状態は実質的に変らず、反応器の重合
安定性は損われないことである。即ち、対になつ
た回転軸に配列された撹拌翼の相互作用により、
従来の流動床反応器と同程度の流動状態を内容物
に実質的に機械的撹拌のみで与えることができ、
しかも反応器内部の温度分布は±2℃程度とな
り、温度の不均一性に帰因すると思われる塊状物
等の生成もなく、長時間順調に操業し得る。 特に、冷却管は水平に設けられているので、上
下に流動する粉末ポリマーとの接触が良好で、冷
却効率がよく、また、粉末ポリマーの流動の上昇
部では冷却管の配列を粗にしてあるので、撹拌翼
による粉末ポリマーの上昇運動を阻害することが
少なく、かつ、粉末ポリマーの重力による下降部
分には冷却管を密に配列してあるので、冷却効果
は損われない。 従つて、該反応器内の内部冷却手段によりほぼ
100%の重合熱が除去される為、ガスの吹込み量
は実質的には重合体生成量と同程度の量ですます
ことができ、過剰ガスの循環系が不必要か、また
は循環系を設ける場合でも小規模のものですます
ことができ、循環系での設備投資および用役使用
量を大巾に軽減できる。また、循環系への微粉ポ
リマーおよび活性な微粉ポリマーの混入による管
および機器への付着トラブルが実質的に存在しな
い。 〔〕 発明の具体的説明 本発明の重合用装置では、反応槽の下部に撹拌
軸が2本並べられる。これらの撹拌軸は水平、か
つ、平行に設けられる。 平行に並べられた2軸の撹拌軸の間隔は、軸上
に取付けられた撹拌翼が画く2つの回転円が接す
るか、あるいは重なる程度が好ましい。2つの回
転円が離れていてもよいが、その離れが大きくな
るにつれて双方の撹拌翼の相互作用が減少する。 撹拌翼の形状については特に限定はないが、反
応槽内の粉体を上方にかき上げる為には、一般に
はパドル羽根を有するものが用いられる。上方へ
のかき上げ効果のためにはパドル羽根を撹拌軸に
平行とするのがよいが、反応槽内全体に緩かな循
環流をも生じさせるためにパドル羽根を傾斜させ
たり、または水平羽根と傾斜羽根もしくはヘリカ
ルリボン翼の一部とを組合わせる等の型式が採用
される。 撹拌翼は撹拌軸上に複数個対称に取付けられ
る。3枚羽根や4枚羽根も採用し得るが、通常は
180゜の間隔での2枚羽根で充分である。軸方向で
の撹拌翼の間隔も任意であるが、撹拌効果の点か
らは近接していることが好ましく、通常、羽根巾
の1.5乃至3倍の間隔で取付けられる。2軸間の
撹拌翼の相対位置は双方の翼が回転によつて接触
の起らないよう取付けられる。 撹拌軸の回転方向、即ち撹拌翼の回転方向は任
意でよい。即ち、2軸の撹拌軸を軸方向から見た
場合に、右軸が右回り(時計方向)で左軸が左回
り(反時計方向)の場合(外回り)、右軸が左回
りで左軸が右回りの場合(内回り)および両軸が
同方向に回る場合(同方向回り)がある。撹拌の
均一性の面からみて外回り、または内回りが好ま
しい。 但し、内回り回転の場合、粉体のかき上げ作用
が外回り回転の場合に比べて低下するので、冷却
管による除熱効果が若干低下し、また同方向回り
の場合には、粉体粒子の停滞部が生じ易いので、
外回り回転を採用するが最も好ましい。 撹拌翼の回転速度は、反応槽の大きさ、翼の大
きさ、数等によつて定められる。十分な撹拌効果
が得られるためには、一般に反応槽内における粉
体のはね上げ高さが、翼の上端よりの高さで撹拌
翼の回転直径の0.5〜2.5程度となるような回転速
度が採用される。このような回転速度は翼の形状
などによつて変化するが、一般に1〜7m/秒程
度の線速度となるような回転数であろう。 重合反応槽の底部は、各撹拌軸の撹拌翼が画く
軌道に沿つた部分円筒で構成されるが、この部分
円筒の限度は1/2円周までである。即ち、両軸の
回転円が離れている場合は、その中間部分の反応
槽底部は粉体の滞留の生じないよう山形の接続部
を設ける。反応槽底部と撹拌翼先端とのクリアラ
ンスは粉体の滞留を防ぐため小さい程好ましく、
一般には10mm以下が望ましい。 重合反応槽の高さは撹拌され浮上つた粉体の高
さより大であることが望ましく、従つて撹拌翼の
画く最大回転円の直径(D)の1.2倍以上、好ましく
は1.5〜5倍で、更に好ましくは1.5〜4.0倍であ
る。また槽の軸方向の長さは任意であるが、通常
回転円の直径(D)の1〜6倍、好ましくは2〜3倍
前後が適当である。 重合反応槽内の粉体量は充分な撹拌効果が得ら
れる限り任意の量であるが、通常は撹拌翼が停止
した状態で、撹拌翼の画く最高点附近の位置以下
の量であることが撹拌効果上好ましい。 重合熱除去用の冷却管は、重合熱を効率よく除
去すると共に、重合安定性を損わないことが必要
である。即ち、撹拌翼による粉末状ポリマーのか
き上げによつて生ずる流動状態を阻害せず、か
つ、伝熱面積を大きく、伝熱係数を高くすること
が必要である。 このためには、本発明の装置における冷却管
は、撹拌によつて生ずる粉末状ポリマーの流動層
の上部表面より下の流動層内に設けられる。ま
た、冷却管は細管を用い、水平に設置され(以
後、これを水平管と呼ぶ)、通常撹拌軸に平行に
用いられる。撹拌軸に実質的に上下方向に、垂直
に(以後、垂直管と呼ぶ)、および撹拌軸に配列
された撹拌翼の間隙をぬつて(以後、羽根間隙挿
入管と呼ぶ)冷却管を設置することも併用し得る
が、一般に、垂直管は水平管に比べて伝熱係数が
低く、また、羽根間隙挿入管はそれ自体では伝熱
面積が小さい。 本発明の装置において、水平管の配列は、流動
床内の上昇流部は粗に、また下降流部は密に設置
される。即ち、2つの撹拌軸についてそれぞれ仮
想的垂直面を立てて、流動層を3つの区間に区分
すると、それぞれの空間において、粉末ポリマー
の流動が上昇方向であるか、または下降方向であ
るかに区分される。例えば2つの撹拌軸の回転
が、流動層として最も好ましい外回り回転である
場合、両回転軸に挾まれた空間区分においては粉
末ポリマーの流動は上昇方向であり、各軸と側壁
との間の2つの空間では粉末ポリマーの流動は下
降流である。 水平管の配列は、任意の配列をとり得るが、一
般に四角配列または三角配列が採用される。配列
の粗密は、隣接する水平管の中心間距離を水平管
の管径で除したピツチによつてあらわすことがで
きる。上記の如く、撹拌軸の回転が外回りである
場合、2つの撹拌軸面に挾まれた上昇流動層内で
は水平管のピツチは3.5〜5.0が好ましく、各軸面
と側壁との間の下降流動空間ではピツチを1.5〜
3.5、好ましくは1.5〜3.0となるように水平管が設
置される。 冷却管の伝熱面積を大きくするためには、水平
管のピツチを小さくすればよいことは当然である
が、例えばピツチを2.4として流動層内全体に水
平管を設置した場合、粉末状ポリマーの流動状態
は、冷却管を全く設置しないときに比して大きく
変化し、撹拌軸を外回り回転とした場合には、第
4図に示すように、側壁部の盛上つた流動表面と
なる。このような流動状態では、水平管全体が有
効に伝熱に寄与せず、伝熱面積が減少するのみな
らず、粉体粒子の停滞および偏圧がおこり易く、
特に第4図中に斜線で示すような両撹拌軸に挾ま
れた空間部位に塊状物が生成し易くなる。 また、ピツチを3.5以上で全体に一様に水平管
を配置した場合には、第5図に示すように流動状
態は反応槽内で一様であり、上記の問題はなくな
り、重合安定性は損わないが、一方、伝熱面積が
充分でなく、重合熱除去の点で生産能力が充分発
揮されないおそれがある。 本発明の装置においては、流動層内の粉体の上
昇部には水平管の配列を粗に、下降部では密にす
ることにより、この問題を解決したものであつ
て、前記したように、流動層のうち、粉体が撹拌
翼によつてはね上げられる上昇部では、水平管の
配列のピツチは3.5以上にして、水平管による流
動状態への影響を防いでいる。但し、ピツチが
5.0以上になると伝熱面積が小さくなるので好ま
しくない。また、はね上げられた粉体が重力で下
降する部分では、水平管のピツチを3.5以下、好
ましくは3.0以下にして伝熱面積を大きくとり、
充分な冷却が行われるようにしてある。但しピツ
チが1.5以下になると、水平管の間を下降する粉
体の動きが抑制され、停滞部を生じ易く、従つて
塊状物を生成し易くなるので好ましくない。 本発明の装置においては、撹拌翼による激しい
かき上げ、乃至ははね上げ効果によつて生ずる流
動層内に、このような冷却管を設置することによ
つて冷却管全体に粉体が激しく衝突し、冷却管の
伝熱面の更新がよく、境界面を乱すことにより伝
熱係数を増大させることができ、有効な重合熱除
去を行うことが可能となつたものである。 従来の縦型の撹拌槽にあつては反応器内容物に
動きを与えるために、比較的大きな撹拌翼が設置
されるので、内部冷却器は設置しにくく、たとえ
設置しても内容物の動きが本発明の反応槽のよう
な激しいものではないので、冷却管附近に停滞を
生じ、塊状物の生成等のトラブルを生じ易い。 以下、図面に示す実施例によつて本発明を具体
的に説明する。 第1図は本発明の装置の回転軸に対し垂直な断
面の端面附近を示し、冷却管以外の配管について
は省略してある。第2図は第1図のA−A線に沿
つた、回転軸に平行な断面図である。 反応槽の下部には2本の回転軸2および3が平
行に、両端を反応槽の外殼1に軸受9および10
で支持されており、各回転軸上には支持体4とパ
ドル羽根5とからなる撹拌翼が取付けられてい
る。撹拌翼は、例えば第2図に示す如く、撹拌軸
に対して対称に取付けられた2本の支持体4とそ
の先端にそれぞれ取付けられたパドル羽根5をも
つて1つの撹拌翼ユニツト6とし、各撹拌軸に等
間隔に数ユニツトが取付けられている。 本実施例では両撹拌軸2および3での撹拌翼の
取付け位置は同じであり、かつ、両軸の撹拌翼の
回転軌道は第1図に示す如く重なつている。従つ
て両軸の撹拌翼が接触しないように、それぞれの
支持体4の取付けを90゜だけ互いにずらしてあり、
両撹拌軸は駆動装置11によつて等速度で回転さ
れる。 撹拌軸2と撹拌軸3とは回転方向が反対になつ
ており、第1図に矢印で示す如く外回りの形式を
とつている。第3図に示す撹拌翼ユニツト6では
パドル羽根5は撹拌軸2に平行な水平パドルから
なつており、撹拌軸2の回転により重合反応槽内
の粉体は上下に激しく撹拌される。 反応槽の底部は、撹拌翼の最外回転軌道に沿つ
た部分円筒形をしており、その1部に重合体排出
口12が設けられている。 第1図では、反応槽1内の撹拌翼の上部空間
に、数本の水平冷却管7が撹拌軸と平行に三角配
列で設置されている。その配列は、撹拌軸2およ
び撹拌軸3に対してそれぞれ立てた仮想垂直面
V2およびV3に挾まれた流動空間ではピツチが4.0
であり、仮想垂直面V2およびV3と側壁との間で
はピツチが2.4である。これらの水平冷却管の最
上部のものは、撹拌翼の回転によつて生じる流動
層の表面8の近くまで設置される。 本発明の装置によるα−オレフインの重合方法
を第2図によつて例示する。 α−オレフインは配管13より、反応槽1の頂
部附近に設置された供給口14に供給される。重
合体分子量調節剤としては一般に水素が使用さ
れ、配管15を経て供給口16より供給される。
共重合を行う場合には、他のα−オレフインは配
管17を経て供給口18より供給される。触媒ま
たは他の反応器で前もつて予備的に重合された触
媒的に活性な重合体は配管19を用いて供給口2
0より反応器に導入される。重合熱は冷却管7よ
り除去されるが、重合体生産量の調整は通常冷却
管に通す冷却剤の流量および入口温度、出口温度
の監視により調整される。重合体は未反応のガス
を同伴し、排出口12より実質的に反応器内容物
の層高さが一定になるように、かつ、反応器内に
圧力変動を起させないような方法で抜き出され
る。重合体に同伴した未反応ガスは適当な分離器
により重合体から分離され、反応器に循環され
る。未反応ガスを分離された重合体はそのまま粉
末状の製品となる。場合によつては造粒して製品
としてもよい。 一般に本発明では触媒として触媒活性が充分に
高い、所謂高活性触媒が用いられる。触媒活性が
充分に高くないと生成オレフイン重合体中に触媒
残渣が多くなり、触媒分解および精製工程が必要
となるからである。このグループに含まれるのは
周期律表〜族の遷移金属化合物に基づく触媒
と周期律表〜族の金属の有機金属化合物との
組合せからなる触媒が代表的である。遷移金属触
媒はチタン化合物、バナジウム化合物、酸化クロ
ム、酸化モリブデン等の金属の化合物でよく、又
マグネシウムベース担体またはアルミナ、シリ
カ、シリカ・アルミナ等の担体上に担持されたこ
れら触媒の一つでもよい。 有機金属化合物としては有機アルミニウム化合
物が好ましく、特に一般式AlRnX3-n(Rは水素
または炭素数1〜10の炭化水素残基、Xはハロゲ
ンまたは炭素数1〜12のアルコキシ基であつて、
1m3である)のものが用いられる。 1例をあげるとエチレンおよびプロピレンの重
合に好ましい触媒はチタン化合物をハロゲン化マ
グネシウム等のマグネシウムベース担体に担持さ
たものであり、更に第3成分として各種の電子供
与性化合物を上記2成分に添加したものは特に好
ましい。 なお本発明の装置で使用できる触媒は、本発明
の装置により最善に実施されるものであればよ
く、以上にあげられた触媒に限定されるものでは
ない。 重合反応に使用されるα−オレフインとしては
炭素数12程度までのα−オレフインが一般的であ
るが、特にエチレン、プロピレン、ブテン−1、
イソブテン−1、ペンテン−1、ヘキセン−1、
3−メチルブテン−1および4−メチルペンテン
−1のようなものが好ましい。これらのα−オレ
フインはホモ重合してもよく、2種以上のα−オ
レフインの共重合をしてもよい。代表的な共重合
はエチレンとプロピレン、ブテン−1、ヘキセン
−1または4−メチルペンテン−1との共重合お
よびプロピレンとエチレン、ブテン−1、ヘキセ
ン−1または4−メチルペンテン−1との共重合
である。α−オレフイン以外の重合性モノマー、
例えばジオレフイン類との共重合も可能であり、
具体的には1,4ブタジエン、イソプレン、1,
4−ヘキサジエン、4−メチル−1,4−ヘキサ
ジエンがあげられる。コモノマーの含量としては
生成共重合体中の0.5〜40重量%、好ましくは0.5
〜30重量%とするのがよい。 本発明の装置における反応条件としては重合さ
れるα−オレフインのうち少なくとも1種のα−
オレフインが実質的に気相で存在する温度、圧力
条件および得られた重合体の軟化点以下の温度が
選ばれる。一般的には、温度は常温〜110℃、圧
力は常圧〜45Kg/cm2であり、好ましくは温度が20
〜100℃、圧力が2〜40Kg/cm2の範囲である。 本発明の装置は通常連続式反応器として使用さ
れるが、回分式反応器として使用してもよい。更
に2つ以上の本装置を並列または直列に配置する
ことにより各々の装置内の重合条件を変化させて
運転することもできる。 以下に本発明の装置によるα−オレフイン重合
体の製造例を示す。 製造例 1 第1図および第2図に示される如き形状を有
し、高さ1000mm、巾476mm、長さ560mm、内容積約
270のSUS304製反応器を使用した。反応器内
には内部冷却器として1インチ直径SUS304製チ
ユーブを使用し、第1図および第2図に示される
如く、撹拌軸に平行に三角配列した。冷却管の相
互間隔は両軸にはさまれた空間では100mm(ピツ
チ4.0)とし、高さ方向に4段、各軸と側壁との
間の空間には相互間隔を60mm(2.4)とし高さ方
向に6段設置した。一番上の水平管の高さは反応
槽底部から約600mmである。このように設置した
水平管の本数は30本で、伝熱面積は1.34m2であつ
た。この水平管の中に温度調節された水を冷却剤
として通した。撹拌翼は第3図に示される如きも
のであり、翼の一方の先端からこれと180度隔て
たもう一方の翼の先端までの長さは280mmである。
撹拌翼は第3図に示されたものを1組とした場
合、1本の回転軸上に等間隔で4組配列した。本
装置に予め90℃で4時間窒素気流中で乾燥したポ
リエチレン粉末を軸高さまで投入した。回転軸の
回転数を350r.p.m.とし、回転方向は第1図と同
じく回転軸間にある内容物を上方にかき上げる方
向とした。次に塩化マグネシウム、メタクリル酸
メチル、三塩化チタン(TiCl3・1/3AlCl3)を含
有する触媒(チタン含有率は2.1重量%)とトリ
エチルアルミニウムを、固体触媒濃度を2.0g/
、トリエチルアルミニウム濃度を6.0g/に
なるようにイソペンタン中に懸濁し、500ml/時
の速度で供給した。圧力は20気圧になるようにエ
チレンと連鎖移動剤としての水素を連続的に導入
した。H2/C2H4モル比を0.35とした。エチレン
の供給速度は10.3Kg/時であつた。温度は85℃を
維持するように冷却管中に通す水量および水温を
調節した。重合体は10.0Kg/時の速度、10000
g/触媒1g、476000g/g−Tiの収率で生成
された。運転を10時間継続したが、全く順調に行
われた。運転終了後に槽内を点検したところ、冷
却管および槽壁には重合体の付着および塊状物は
認められなかつた。得られた重合体の特性は以下
に示すとおりであつた。 重合体の特性 メルトインデツクス
3.5g/10分、(2Kg/cm2荷重) 密 度 0.963g/cm3 平均粒度 570μ かさ密度 0.396g/cm3 比較例 1 第4図に示す如く、水平冷却管の相互間隔を60
mm(ピツチ2.4)とし、撹拌翼上部空間に三角配
列で高さ方向に6段設置した。水平管の本数は45
本で、伝熱面積は2.01m2であつた。製造例1と全
く同じ重合条件で重合を行なつたが、重合開始後
約1時間ぐらいから撹拌不良を起し、排出も困難
になつた。重合を停止し槽内を点検したところ塊
状物が両軸の間に多数認められた。 比較例 2 第5図に示す如く、水平冷却管の相互間隔を
100mm(ピツチ4.0)とし、撹拌翼上部空間に三角
配列で高さ方向に4段設置した。水平管の本数は
18で、伝熱面積は0.80m2であつた。製造例1と全
く同じ重合条件で重合を行なつたが、重合熱除去
がうまく行れず、反応槽内温度が100℃近くまで
上り、重合を停止した。槽内を点検したとところ
多数の塊状物が認められた。 比較例 3 比較例2の冷却管の設置で、触媒供給速度を
300ml/時にエチレンの供給速度を6.2Kg/時に変
更する以外は製造例1と全く同じ重合条件で重合
を行つた。重合体は6.0Kg/時の速度で排出され、
10時間順調に行なえた。しかし、製造例1に比較
して重合体生成速度が約60%に減少した。 製造例 2 最初に投入する粉末をポリプロピレン粉末と
し、触媒として塩化マグネシウム、安息香酸エチ
ル、四塩化チタンを含有する触媒(チタン含有率
は1.2重量%)とトリエチルアルミニウムを使用
し、触媒供給速度を1013ml/時とし、温度を65℃
とする以外は製造例1と同じ装置でプロピレンの
重合を行つた。分子量調節剤としての水素はプロ
ピレンに対してモル比で0.010の割合で供給した。
重合体は15.2Kg/時の速度、7500g−PP/g−
触媒、628000g−PP/g−Tiの収率で生成され
た。運転を10時間継続したが全く順調で、運転終
了後、反応槽を開放し、槽内を点検したところ、
重合体の付着は認められなかつた。重合体の特性
は以下に示すとおりであつた。 重合体の特性 メルトインデツクス 1.5g/10分 アイソタクテイシテイ(I.I.) 92.0% 平均粒度 380μ かさ密度 0.413g/cm3 製造例 3〜6 製造例1と同一の装置および触媒を使用し、エ
チレンと他のα−オレフインの共重合を行つた。
採用した反応条件および重合結果を表1に示す。
重合は全く順調に行われた。表2には得られた重
合体の特性値を示す。
[] Background of the Invention The present invention relates to a novel horizontal reactor for gas phase polymerization of olefins for homopolymerization and copolymerization of olefins to produce polymers in a state in which olefins are substantially present in the gas phase. . Currently, the mainstream method for polymerizing α-olefins is the so-called slurry polymerization method in which polymerization is carried out in the presence of a diluent. Such slurry polymerization requires diluent recovery and purification steps;
In the so-called gas phase polymerization method in which olefins are reacted in a gas phase, such a step is substantially unnecessary, and the process can be simplified and the amount of utilities such as steam and electricity can be reduced. In this gas phase polymerization method, a fine polymerization catalyst is dispersed in a reaction tank either as it is, dispersed in a small amount of dispersion medium, or supported on a fine powder carrier such as silica or alumina. A polymer is grown on the catalyst by contacting it with a gaseous olefin. The polymer powder that has been placed in advance in the reaction tank or the polymer powder that has already been produced by polymerization is kept in a stirred state, and the contact between the gas phase olefin and the catalyst is made while the polymer powder is in the stirred state. Therefore, it is greatly affected. Generally, the heat generated during polymerization of olefins is extremely large, about 10 to 20 Kcal/mol, and if stirring conditions are not good, local overheating may occur.
This will cause problems in carrying out the polymerization reaction and deterioration in the quality of the produced polymer. In addition, it is necessary to efficiently remove the heat of polymerization that is generated in large quantities, and if the heat removal is not sufficient, problems will occur in controlling the temperature of the polymerization reaction, as well as troubles in carrying out the reaction and problems in the production of polymers. This causes quality deterioration. Therefore, in the gas phase polymerization of olefins, uniform heat removal from such a fluidized bed is a major problem as well as the contact state between the gas phase and the solid phase, that is, the fluidized and agitated state of the powder. As a reaction apparatus for gas phase polymerization of olefins, a fluidized bed reactor is proposed, for example, in Japanese Patent Publications No. 47-13962, Japanese Patent Publication No. 52-040350, and Japanese Patent Publication No. 54-139983. Although these fluidized bed reactors are superior in that they mix polymer particles and catalyst particles in a gas phase substantially free of diluent,
On the other hand, it has the following drawbacks. (1) In order to create an effective fluidized state of polymer particles and catalyst particles in a fluidized bed reactor, it is necessary to blow a large amount of gas from the bottom of the reactor, and even if polymerization raw material gas is used as this gas, The amount of gas is several tens of times greater than the reaction amount, and this gas is taken out of the reactor and recycled. This recirculation requires a compressor of considerable capacity, which consumes a large amount of power. (2) The rising rate of the gas for mixing inside the fluidized bed reactor is:
For example, as shown in Japanese Patent Publication No. 52-40350, the rate is about 15 cm/sec, and the catalyst particles and active fine powder in the middle of the reaction are scattered into the mixing gas circulation system on this rising air current. Not only does this require special fines collection equipment, but in some cases the catalyst and active fines also get deposited on the pipes and equipment of the mixing gas circulation system, where polymerization reactions take place and eventually the mixing This makes operation of the gas circulation system difficult. In order to avoid this, special consideration must be given to the catalyst system so as not to generate fine powder, and the catalyst systems that can be used are also limited. On the other hand, attention has been paid to the above-mentioned drawbacks of the fluidized bed reactor, and a method of reducing the flow rate of gas blown into the fluidized bed reactor has been proposed. For example, the Special Public Interest Publication 41-597
The publication proposes a method in which a stirrer is installed in a fluidized bed reactor. However, even with this method, it is described that it is still necessary to supply gas at a rate of 5 to 15 cm/sec from the bottom of the reactor. Also, special public service in 1977-
Publication No. 2019 proposes a method of carrying out gas phase polymerization using an apparatus in which a uniaxial stirrer is installed inside a horizontal hollow cylindrical reactor. In gas phase polymerization using this apparatus, a method is used in which the heat of polymerization is removed by latent heat of vaporization by injecting a low boiling point liquid such as isobutane or isopentane into the apparatus, thereby reducing the amount of flow gas blown into the apparatus. However, even this method has the following drawbacks. (1) Since reaction products accumulate on the inner surface of the reactor, it is necessary to blow purge gas to remove the accumulated substances. (2) A large amount of equipment is required to recover and circulate the low-boiling point liquid, and a large amount of electricity, steam, etc. is also consumed. As described above, the devices and methods proposed so far cannot be said to be fully satisfactory in terms of stable operation of the reactor and reaction system and reduction in utility consumption. JP-A No. 55-157605 discloses a horizontal reactor that achieves uniform mixing of the reaction system using a plurality of parallel stirring shafts installed horizontally at the bottom of the reaction tank, thereby making it possible to equalize the reaction heat. Proposed. Therefore, this reactor is excellent in terms of stable operation of the reactor, but by efficiently removing polymerization heat and reducing the load on the gas circulation system, the equipment cost and utility in the circulation system are reduced. It is still insufficient in terms of reducing the amount used. The present inventors have further investigated the horizontal reactor proposed in JP-A No. 55-157606, and have developed an internal cooling system without impairing the stability of the polymerization reaction of this reactor. It has been found that the above-mentioned drawbacks can be almost completely overcome by efficiently removing the heat of polymerization. [] Summary of the Invention The present invention provides a horizontal reactor for gas phase polymerization in which homopolymerization and copolymerization of α-olefins is carried out in a substantially gaseous state of at least one α-olefin. A pair of stirring shafts are provided horizontally and in parallel, and each stirring shaft is equipped with a stirring blade that can stir up the powdered olefin polymer in the reaction tank by rotation. The bottom of the reaction tank consists of a partial cylinder that follows the trajectory created by the rotation of the tips of the stirring blades on each stirring shaft, and a cooling pipe for removing polymerization heat is installed in the fluidized bed created by stirring. In an apparatus for gas-phase polymerization of olefin, a large number of cooling pipes for removing polymerization heat are installed horizontally, and the intervals between the cooling pipes are coarse in the ascending part of the flow of the powdered olefin polymer. This is an apparatus for vapor phase polymerization of olefin, which is characterized in that the descending section is densely arranged. 3.5-5.0 in portion
and is preferably 1.5 to 3.5 in the dense part, and is particularly effective when the rotation of the paired stirring shafts is in the direction of stirring up the powdered olefin polymer between the two rotating shafts. . When the homopolymerization and copolymerization of α-olefins is carried out using the apparatus of the present invention in a state in which at least one α-olefin is substantially in the gas phase, the following advantages are obtained. First of all, the installation of internal cooling means does not substantially change the flow conditions within the reactor and does not impair the polymerization stability of the reactor. In other words, due to the interaction of the stirring blades arranged on the paired rotating shafts,
It is possible to provide the contents with the same degree of fluidity as in a conventional fluidized bed reactor, using only mechanical stirring,
Moreover, the temperature distribution inside the reactor is approximately ±2°C, and there is no formation of lumps, etc., which are thought to be caused by temperature non-uniformity, and the reactor can be operated smoothly for a long time. In particular, since the cooling pipes are installed horizontally, they have good contact with the powder polymer flowing up and down, resulting in good cooling efficiency.In addition, the cooling pipes are arranged sparsely in the rising part of the powder polymer flow. Therefore, the upward motion of the powdered polymer by the stirring blades is less obstructed, and the cooling effect is not impaired because the cooling pipes are densely arranged in the part where the powdered polymer descends due to gravity. Therefore, due to the internal cooling means within the reactor, approximately
Since 100% of the heat of polymerization is removed, the amount of gas blown can be essentially the same as the amount of polymer produced, eliminating the need for a circulation system for excess gas or eliminating the need for a circulation system. Even if it is installed, it can be done on a small scale, and the capital investment and utility usage in the circulation system can be greatly reduced. Furthermore, there is virtually no problem of adhesion to pipes and equipment due to the contamination of finely divided polymers and active finely divided polymers into the circulation system. [] Detailed Description of the Invention In the polymerization apparatus of the present invention, two stirring shafts are arranged in the lower part of the reaction tank. These stirring shafts are provided horizontally and in parallel. The spacing between the two stirring shafts arranged in parallel is preferably such that the two rotation circles drawn by the stirring blades attached to the shafts touch or overlap. The two rotation circles may be separated, but as the separation increases, the interaction between both stirring blades decreases. Although there are no particular limitations on the shape of the stirring blades, those having paddle blades are generally used in order to stir up the powder in the reaction tank upwards. For an upward scraping effect, it is best to place the paddle blades parallel to the stirring shaft, but to create a gentle circulation flow throughout the reaction tank, the paddle blades may be tilted or horizontally placed. Types such as a combination of inclined blades or a part of helical ribbon blades are adopted. A plurality of stirring blades are mounted symmetrically on the stirring shaft. Three blades or four blades can also be used, but usually
Two blades with a spacing of 180° are sufficient. The spacing between the stirring blades in the axial direction is arbitrary, but from the standpoint of stirring effectiveness, it is preferable that they be close to each other, and they are usually installed at intervals of 1.5 to 3 times the width of the blades. The relative positions of the stirring blades between the two shafts are such that both blades do not come into contact with each other due to rotation. The rotational direction of the stirring shaft, that is, the rotational direction of the stirring blades may be arbitrary. In other words, when looking at two stirring shafts from the axial direction, if the right shaft rotates clockwise (clockwise) and the left shaft rotates counterclockwise (outward rotation), then the right shaft rotates counterclockwise and the left shaft rotates counterclockwise. There are cases where the axis rotates clockwise (inward rotation) and cases where both axes rotate in the same direction (same direction rotation). From the viewpoint of uniformity of stirring, outer rotation or inner rotation is preferable. However, in the case of inner rotation, the scraping effect of the powder is lower than in the case of outer rotation, so the heat removal effect by the cooling pipe is slightly reduced, and if the rotation is in the same direction, powder particles may stagnate. Because parts tend to occur,
It is most preferable to use external rotation. The rotational speed of the stirring blade is determined by the size of the reaction tank, the size and number of blades, etc. In order to obtain a sufficient stirring effect, the rotation speed is generally set so that the height of the powder in the reaction tank is approximately 0.5 to 2.5 of the rotational diameter of the stirring blade at a height above the top of the blade. be done. Although such a rotational speed varies depending on the shape of the blade, etc., it will generally be a rotational speed that provides a linear speed of about 1 to 7 m/sec. The bottom of the polymerization reaction tank is composed of a partial cylinder along the trajectory drawn by the stirring blades of each stirring shaft, but the limit of this partial cylinder is up to 1/2 the circumference. That is, when the rotation circles of both axes are separated from each other, a chevron-shaped connection part is provided at the bottom of the reaction tank in the middle part to prevent powder from stagnation. It is preferable that the clearance between the bottom of the reaction tank and the tip of the stirring blade be as small as possible to prevent the accumulation of powder.
Generally, 10mm or less is desirable. The height of the polymerization reaction tank is desirably greater than the height of the agitated and floated powder, and therefore is at least 1.2 times, preferably 1.5 to 5 times, the diameter (D) of the maximum rotation circle defined by the stirring blade. More preferably, it is 1.5 to 4.0 times. The length of the tank in the axial direction is arbitrary, but it is usually 1 to 6 times, preferably 2 to 3 times the diameter (D) of the rotating circle. The amount of powder in the polymerization reaction tank can be any amount as long as a sufficient stirring effect can be obtained, but normally the amount should be below the position near the highest point of the stirring blade when the stirring blade is stopped. Preferable for stirring effect. The cooling pipe for removing polymerization heat must be able to efficiently remove polymerization heat and not impair polymerization stability. That is, it is necessary to increase the heat transfer area and the heat transfer coefficient without disturbing the fluid state caused by stirring up the powdered polymer by the stirring blade. For this purpose, the cooling tubes in the device of the invention are placed in the fluidized bed below the upper surface of the fluidized bed of powdered polymer produced by stirring. Further, the cooling pipe is a thin pipe, installed horizontally (hereinafter referred to as a horizontal pipe), and is usually used parallel to the stirring shaft. A cooling pipe is installed substantially vertically and perpendicularly to the stirring shaft (hereinafter referred to as a vertical pipe), and through the gap between the stirring blades arranged on the stirring shaft (hereinafter referred to as a blade gap insertion pipe). However, in general, a vertical pipe has a lower heat transfer coefficient than a horizontal pipe, and a blade gap insertion pipe itself has a small heat transfer area. In the apparatus of the present invention, the horizontal pipes are arranged sparsely in the upward flow section and densely arranged in the downward flow section within the fluidized bed. That is, if the fluidized bed is divided into three sections by erecting virtual vertical planes for the two stirring shafts, it is possible to determine whether the flow of the powdered polymer is in the upward direction or in the downward direction in each space. be done. For example, when the rotation of the two stirring shafts is the most preferable outward rotation for a fluidized bed, the flow of the powdered polymer is in the upward direction in the space section sandwiched between the two rotating shafts, and In one space, the flow of powdered polymer is downward. Although the horizontal tubes can be arranged in any desired arrangement, generally a square arrangement or a triangular arrangement is adopted. The density of the arrangement can be expressed by the pitch, which is the distance between the centers of adjacent horizontal tubes divided by the diameter of the horizontal tubes. As mentioned above, when the stirring shaft rotates outward, the pitch of the horizontal tube is preferably 3.5 to 5.0 in the ascending fluidized bed sandwiched between the two stirring shaft surfaces, and the descending fluid flow between each shaft surface and the side wall. In space, Pituchi is 1.5~
3.5, preferably 1.5 to 3.0, horizontal pipes are installed. It goes without saying that in order to increase the heat transfer area of the cooling tubes, it is sufficient to reduce the pitch of the horizontal tubes, but for example, if the pitch is set to 2.4 and the horizontal tubes are installed throughout the fluidized bed, the The flow state changes greatly compared to when no cooling pipe is installed, and when the stirring shaft is rotated outwardly, the flow surface becomes raised on the side wall as shown in FIG. 4. In such a fluid state, the entire horizontal pipe does not effectively contribute to heat transfer, which not only reduces the heat transfer area, but also tends to cause stagnation and uneven pressure of powder particles.
Particularly, lumps are likely to form in the space sandwiched between both stirring shafts as shown by diagonal lines in FIG. In addition, if the pitch is 3.5 or more and the horizontal pipes are uniformly arranged throughout the reactor, the flow state will be uniform within the reaction tank as shown in Figure 5, the above problem will disappear, and the polymerization stability will be reduced. However, on the other hand, there is a possibility that the heat transfer area is insufficient and the production capacity will not be fully utilized in terms of removing polymerization heat. In the apparatus of the present invention, this problem is solved by arranging the horizontal tubes sparsely in the ascending part of the powder in the fluidized bed and densely in the descending part. In the rising part of the fluidized bed where the powder is thrown up by the stirring blades, the pitch of the horizontal pipe arrangement is set to 3.5 or more to prevent the influence of the horizontal pipes on the flow state. However, Pituchi
If it exceeds 5.0, the heat transfer area becomes small, which is not preferable. In addition, in the part where the sputtered powder descends due to gravity, the pitch of the horizontal pipe is set to 3.5 or less, preferably 3.0 or less to increase the heat transfer area.
Sufficient cooling is ensured. However, if the pitch is less than 1.5, the movement of the powder descending between the horizontal pipes will be suppressed, and stagnation will likely occur, which is undesirable, as it will tend to generate lumps. In the apparatus of the present invention, by installing such a cooling pipe in the fluidized bed created by the violent stirring or splashing effect by the stirring blades, the powder violently collides with the entire cooling pipe. The heat transfer surface of the cooling tube can be updated, the heat transfer coefficient can be increased by disturbing the boundary surface, and it has become possible to effectively remove polymerization heat. In conventional vertical stirring tanks, relatively large stirring blades are installed to give movement to the contents of the reactor, so it is difficult to install an internal cooler, and even if installed, the movement of the contents is Since the reaction is not as severe as in the reaction tank of the present invention, stagnation occurs near the cooling pipe, which tends to cause problems such as the formation of lumps. Hereinafter, the present invention will be specifically explained with reference to embodiments shown in the drawings. FIG. 1 shows the vicinity of the end face of a cross section perpendicular to the rotational axis of the apparatus of the present invention, and piping other than the cooling pipe is omitted. FIG. 2 is a sectional view taken along line A--A in FIG. 1 and parallel to the rotation axis. Two rotating shafts 2 and 3 are parallel to each other at the bottom of the reaction tank, and bearings 9 and 10 are attached to the outer shell 1 of the reaction tank at both ends.
A stirring blade consisting of a support body 4 and a paddle blade 5 is attached on each rotating shaft. For example, as shown in FIG. 2, the stirring blade has two supports 4 attached symmetrically to the stirring shaft and paddle blades 5 attached to their tips, forming one stirring blade unit 6. Several units are attached to each stirring shaft at equal intervals. In this embodiment, the mounting positions of the stirring blades on both stirring shafts 2 and 3 are the same, and the rotating orbits of the stirring blades on both shafts overlap as shown in FIG. Therefore, in order to prevent the stirring blades on both shafts from coming into contact with each other, the attachments of the respective supports 4 are offset from each other by 90°.
Both stirring shafts are rotated at the same speed by a drive device 11. The stirring shaft 2 and the stirring shaft 3 have opposite rotation directions, and are of an outer rotation type as shown by the arrows in FIG. In the stirring blade unit 6 shown in FIG. 3, the paddle blades 5 consist of horizontal paddles parallel to the stirring shaft 2, and the rotation of the stirring shaft 2 violently stirs the powder in the polymerization reaction tank up and down. The bottom of the reaction tank has a partially cylindrical shape along the outermost rotational orbit of the stirring blade, and a polymer discharge port 12 is provided in a part of the bottom. In FIG. 1, several horizontal cooling pipes 7 are installed in a triangular arrangement parallel to the stirring axis in the space above the stirring blade in the reaction tank 1. The arrangement is a virtual vertical plane erected to stirring shaft 2 and stirring shaft 3, respectively.
The pitch is 4.0 in the flow space between V 2 and V 3 .
The pitch between the virtual vertical planes V 2 and V 3 and the side wall is 2.4. The uppermost ones of these horizontal cooling pipes are installed close to the surface 8 of the fluidized bed created by the rotation of the stirring blades. The method for polymerizing α-olefin using the apparatus of the present invention is illustrated in FIG. α-olefin is supplied from a pipe 13 to a supply port 14 installed near the top of the reaction tank 1 . Hydrogen is generally used as the polymer molecular weight regulator, and is supplied from a supply port 16 via a pipe 15.
When performing copolymerization, other α-olefins are supplied from the supply port 18 via the pipe 17. The catalytically active polymer, previously prepolymerized in a catalyst or other reactor, is fed via line 19 to feed port 2.
0 into the reactor. The heat of polymerization is removed through the cooling pipe 7, and the amount of polymer produced is usually adjusted by monitoring the flow rate of the coolant passed through the cooling pipe and the inlet and outlet temperatures. The polymer, accompanied by unreacted gas, is extracted from the outlet 12 in such a way that the height of the layer of the contents of the reactor is substantially constant, and in a manner that does not cause pressure fluctuations within the reactor. It will be done. Unreacted gas entrained in the polymer is separated from the polymer by a suitable separator and recycled to the reactor. The polymer from which unreacted gas has been separated becomes a powdered product. In some cases, it may be granulated to produce a product. Generally, in the present invention, a so-called high-activity catalyst, which has a sufficiently high catalytic activity, is used as the catalyst. This is because if the catalyst activity is not sufficiently high, there will be a large amount of catalyst residue in the produced olefin polymer, making catalyst decomposition and purification steps necessary. Catalysts included in this group are typically comprised of a combination of a catalyst based on a transition metal compound of groups 1 to 1 of the periodic table and an organometallic compound of a metal of group 1 of the periodic table. The transition metal catalyst may be a compound of a metal such as a titanium compound, a vanadium compound, chromium oxide, molybdenum oxide, or one of these catalysts supported on a magnesium-based support or a support such as alumina, silica, silica-alumina, etc. . As the organometallic compound, an organoaluminum compound is preferable, and in particular, those having the general formula AlR n X 3-n (R is hydrogen or a hydrocarbon residue having 1 to 10 carbon atoms, and hand,
1 m3) is used. For example, a preferred catalyst for the polymerization of ethylene and propylene is one in which a titanium compound is supported on a magnesium-based carrier such as magnesium halide, and various electron-donating compounds are added as a third component to the above two components. Particularly preferred are the Note that the catalyst that can be used in the apparatus of the present invention is not limited to the catalysts listed above, as long as it can be best implemented by the apparatus of the present invention. α-olefins used in polymerization reactions are generally α-olefins having up to about 12 carbon atoms, but especially ethylene, propylene, butene-1,
Isobutene-1, Pentene-1, Hexene-1,
Those such as 3-methylbutene-1 and 4-methylpentene-1 are preferred. These α-olefins may be homopolymerized, or two or more types of α-olefins may be copolymerized. Typical copolymers are those of ethylene with propylene, butene-1, hexene-1 or 4-methylpentene-1, and propylene with ethylene, butene-1, hexene-1 or 4-methylpentene-1. It is polymerization. Polymerizable monomers other than α-olefin,
For example, copolymerization with diolefins is also possible,
Specifically, 1,4 butadiene, isoprene, 1,
Examples include 4-hexadiene and 4-methyl-1,4-hexadiene. The content of the comonomer is 0.5 to 40% by weight in the resulting copolymer, preferably 0.5%.
The content is preferably ~30% by weight. The reaction conditions in the apparatus of the present invention include at least one α-olefin among the α-olefins to be polymerized.
The temperature and pressure conditions at which the olefin exists substantially in the gas phase and the temperature below the softening point of the resulting polymer are selected. Generally, the temperature is normal temperature to 110℃, the pressure is normal pressure to 45Kg/ cm2 , and preferably the temperature is 20℃.
-100°C and pressure ranges from 2 to 40 Kg/ cm2 . Although the apparatus of the present invention is usually used as a continuous reactor, it may also be used as a batch reactor. Furthermore, by arranging two or more of the apparatuses in parallel or in series, the polymerization conditions within each apparatus can be changed for operation. An example of producing an α-olefin polymer using the apparatus of the present invention will be shown below. Manufacturing example 1 Shape as shown in Figures 1 and 2, height 1000mm, width 476mm, length 560mm, internal volume approx.
A 270 SUS304 reactor was used. Inside the reactor, 1-inch diameter SUS304 tubes were used as internal coolers, and were arranged in a triangular configuration parallel to the stirring shaft as shown in FIGS. 1 and 2. The mutual spacing between the cooling pipes is 100 mm (pitch 4.0) in the space between both shafts, and there are 4 stages in the height direction, and the mutual spacing is 60 mm (2.4) in the space between each shaft and the side wall. Six stages were installed in the direction. The height of the top horizontal tube is approximately 600 mm from the bottom of the reaction vessel. The number of horizontal pipes installed in this way was 30, and the heat transfer area was 1.34 m2 . Temperature-controlled water was passed through this horizontal tube as a coolant. The stirring blade is as shown in FIG. 3, and the length from one tip of the blade to the tip of the other blade 180 degrees apart is 280 mm.
When one set of stirring blades is shown in FIG. 3, four sets of stirring blades are arranged at equal intervals on one rotating shaft. Polyethylene powder, which had been previously dried at 90°C in a nitrogen stream for 4 hours, was charged into the apparatus up to the height of the shaft. The rotational speed of the rotating shaft was 350 rpm, and the direction of rotation was the same as in FIG. 1, in which the contents between the rotating shafts were scraped upward. Next, a catalyst containing magnesium chloride, methyl methacrylate, and titanium trichloride (TiCl 3 1/3 AlCl 3 ) (titanium content: 2.1% by weight) and triethylaluminum were added at a solid catalyst concentration of 2.0 g/
, triethylaluminum was suspended in isopentane at a concentration of 6.0 g/hr and fed at a rate of 500 ml/hr. Ethylene and hydrogen as a chain transfer agent were continuously introduced so that the pressure was 20 atm. The H 2 /C 2 H 4 molar ratio was set to 0.35. The ethylene feed rate was 10.3 Kg/hour. The amount of water passed through the cooling pipe and the water temperature were adjusted so as to maintain the temperature at 85°C. Polymer speed of 10.0Kg/hour, 10000
g/g of catalyst, with a yield of 476,000 g/g-Ti. The operation lasted 10 hours and was completely uneventful. When the inside of the tank was inspected after the completion of operation, no polymer adhesion or lumps were found on the cooling pipes or tank walls. The properties of the obtained polymer were as shown below. Polymer properties melt index
3.5g/10 minutes, (2Kg/cm 2 load) Density 0.963g/cm 3 Average particle size 570μ Bulk density 0.396g/cm 3 Comparative example 1 As shown in Figure 4, the mutual spacing of the horizontal cooling pipes was set to 60
mm (pitch 2.4), and six stages were installed in the height direction in a triangular arrangement in the space above the stirring blades. The number of horizontal pipes is 45
In this case, the heat transfer area was 2.01 m2 . Polymerization was carried out under exactly the same polymerization conditions as in Production Example 1, but poor stirring occurred about 1 hour after the start of polymerization, and it became difficult to discharge. When polymerization was stopped and the inside of the tank was inspected, many lumps were found between both shafts. Comparative Example 2 As shown in Figure 5, the mutual spacing of horizontal cooling pipes is
The diameter was 100 mm (pitch 4.0), and four stages were installed in the height direction in a triangular arrangement in the space above the stirring blades. The number of horizontal pipes is
18, the heat transfer area was 0.80 m2 . Polymerization was carried out under exactly the same polymerization conditions as in Production Example 1, but the heat of polymerization could not be removed successfully, the temperature inside the reaction tank rose to nearly 100°C, and the polymerization was stopped. When the inside of the tank was inspected, many lumps were found. Comparative Example 3 By installing the cooling pipe in Comparative Example 2, the catalyst supply rate could be increased.
Polymerization was carried out under exactly the same polymerization conditions as in Production Example 1, except that the ethylene supply rate was changed to 6.2 kg/hour to 300 ml/hour. The polymer is discharged at a rate of 6.0Kg/hour,
It went smoothly for 10 hours. However, compared to Production Example 1, the polymer production rate was reduced to about 60%. Production example 2 The first powder to be introduced is polypropylene powder, a catalyst containing magnesium chloride, ethyl benzoate, titanium tetrachloride (titanium content is 1.2% by weight) and triethylaluminum is used, and the catalyst feeding rate is 1013ml. /hour and temperature 65℃
Polymerization of propylene was carried out using the same equipment as in Production Example 1 except for the following. Hydrogen as a molecular weight regulator was supplied at a molar ratio of 0.010 to propylene.
Polymer speed: 15.2Kg/hour, 7500g-PP/g-
The catalyst was produced in a yield of 628,000 g-PP/g-Ti. The operation continued for 10 hours, but everything went smoothly.After the operation was completed, the reaction tank was opened and the inside of the tank was inspected.
No polymer adhesion was observed. The properties of the polymer were as shown below. Characteristics of the polymer Melt index 1.5 g/10 min Isotacticity (II) 92.0% Average particle size 380 μ Bulk density 0.413 g/cm 3 Production Examples 3 to 6 Using the same equipment and catalyst as Production Example 1, ethylene and Copolymerization of other α-olefins was carried out.
Table 1 shows the reaction conditions and polymerization results employed.
The polymerization was carried out completely smoothly. Table 2 shows the characteristic values of the obtained polymer.

【表】 *…モル比
[Table] *…Molar ratio

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の装置の撹拌軸に垂直な断面の
端面附近の概念図、第2図は第1図のA−A断面
に相当する概念図、第3図は撹拌翼ユニツトの1
例である。第4図および第5図は水平冷却管の配
列を変えた比較例を示す。図示された要部と符号
との対応は次のとおりである。 1……反応槽外殼、2,3……撹拌軸、4……
支持体、5……パドル羽根、6……撹拌翼ユニツ
ト、7……冷却管、8……流動層上部表面、9,
10……軸受、11……駆動装置、12……排出
口、13,15……α−オレフイン配管、19…
…触媒配管、14,16,18,20……供給
口。
Fig. 1 is a conceptual diagram of the vicinity of the end face of a cross section perpendicular to the stirring shaft of the device of the present invention, Fig. 2 is a conceptual diagram corresponding to the A-A cross section of Fig. 1, and Fig. 3 is a conceptual diagram of one part of the stirring blade unit.
This is an example. FIGS. 4 and 5 show comparative examples in which the arrangement of horizontal cooling pipes is changed. The correspondence between the main parts illustrated and the symbols is as follows. 1... Reaction tank outer shell, 2, 3... Stirring shaft, 4...
Support, 5... Paddle blade, 6... Stirring blade unit, 7... Cooling tube, 8... Upper surface of fluidized bed, 9,
10...bearing, 11...drive device, 12...discharge port, 13, 15...α-olefin piping, 19...
...Catalyst piping, 14, 16, 18, 20... Supply port.

Claims (1)

【特許請求の範囲】 1 α−オレフインのホモ重合および共重合を、
少なくとも1種のα−オレフインの実質的に気相
状態において行う気相重合用横型反応槽におい
て、該反応槽の下部に、水平方向に、かつ、並行
して対になつた撹拌軸2および3が設けられてお
り、各撹拌軸には回転によつて反応槽内の粉末状
オレフイン重合体を上方へかきあげ得る撹拌翼6
が取付けられており、反応槽の底部が各撹拌軸上
の撹拌翼6の先端が回転によつて画く軌道に沿つ
た部分円筒で構成されており、撹拌によつて生ず
る流動層内に重合熱除去用冷却管7が設けられて
いるオレフインの気相重合用装置において、重合
熱除去用冷却管7は水平に多数本設けられ、各冷
却管相互の間隔が、粉末状オレフイン重合体の流
動の上昇部では粗に、下降部では密に設けられて
いることを特徴とする、オレフインの気相重合用
装置。 2 隣接する冷却管7の中心距離を冷却管径で除
したピツチが、粗の部分で3.5〜5.0であり、密の
部分で1.5〜3.5である、特許請求の範囲第1項に
記載の装置。 3 対になつた撹拌軸の回転が、両回転軸の中間
で粉末状オレフイン重合体をかきあげる方向であ
り、かつ、1対の撹拌軸面間の冷却管が粗であ
り、撹拌軸外方が密である、特許請求の範囲第1
項または第2項に記載の装置。
[Claims] 1 Homopolymerization and copolymerization of α-olefin,
In a horizontal reaction tank for gas phase polymerization of at least one α-olefin in a substantially gas phase state, a pair of stirring shafts 2 and 3 are provided horizontally and in parallel at the bottom of the reaction tank. Each stirring shaft is provided with stirring blades 6 that can stir up the powdered olefin polymer in the reaction tank by rotation.
The bottom of the reaction tank is made up of a partial cylinder that follows the trajectory drawn by the rotation of the tips of the stirring blades 6 on each stirring shaft, and the polymerization heat is absorbed into the fluidized bed created by stirring. In an apparatus for gas phase polymerization of olefin, which is provided with cooling pipes 7 for removal, a large number of cooling pipes 7 for removing polymerization heat are provided horizontally, and the intervals between the cooling pipes are set so as to maintain the flow of the powdered olefin polymer. An apparatus for vapor phase polymerization of olefin, characterized in that the arrangement is coarse in the ascending part and dense in the descending part. 2. The device according to claim 1, wherein the pitch obtained by dividing the center distance between adjacent cooling pipes 7 by the cooling pipe diameter is 3.5 to 5.0 in the coarse portion and 1.5 to 3.5 in the dense portion. . 3. The rotation of the pair of stirring shafts is in the direction of scraping up the powdered olefin polymer between the two rotating shafts, and the cooling pipe between the surfaces of the pair of stirring shafts is rough, and the outer side of the stirring shaft is Claim 1 that is dense
The device according to paragraph 1 or 2.
JP15280581A 1981-09-26 1981-09-26 Vapor-phase polymerization apparatus for olefin Granted JPS5853904A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15280581A JPS5853904A (en) 1981-09-26 1981-09-26 Vapor-phase polymerization apparatus for olefin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15280581A JPS5853904A (en) 1981-09-26 1981-09-26 Vapor-phase polymerization apparatus for olefin

Publications (2)

Publication Number Publication Date
JPS5853904A JPS5853904A (en) 1983-03-30
JPS6365082B2 true JPS6365082B2 (en) 1988-12-14

Family

ID=15548534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15280581A Granted JPS5853904A (en) 1981-09-26 1981-09-26 Vapor-phase polymerization apparatus for olefin

Country Status (1)

Country Link
JP (1) JPS5853904A (en)

Also Published As

Publication number Publication date
JPS5853904A (en) 1983-03-30

Similar Documents

Publication Publication Date Title
EP0886655B1 (en) A process and an apparatus for polymerization of olefin monomers
JP4987722B2 (en) Method for vapor phase polymerization of olefins
KR101426308B1 (en) Gas-phase process and apparatus for the polymerization of olefins
EP0700936B1 (en) A process for producing a solid catalyst component for olefin polymerization and a process for producing an olefin polymer
JP4960858B2 (en) Method for controlling the flow rate of a polymer in a polymerization process
JPH09501733A (en) Vapor phase polymerization of α-olefins
ZA200506453B (en) Segmented agitator reactor
EP0059080B1 (en) Process and apparatus for gas phase polymerization of olefins
JP2009509017A (en) Method for vapor phase polymerization of olefins
EP1613668B1 (en) Gas-phase olefin polymerization process
JPS6365082B2 (en)
EP1112121A1 (en) Continuous process for gas phase coating of polymerisation catalyst
WO2012005519A2 (en) Method for polymerizing alpha-olefins with utilizing three-phase system, using three-phase fluidized-bed reactor
JP2005002194A (en) Reactor, apparatus for olefin polymerization including it and manufacturing process for olefin polymer using the polymerization apparatus
JPS6138721B2 (en)
JP4336597B2 (en) Method for producing polymer by solid phase polymerization
US11471847B2 (en) Process for providing a homogenous slurry containing particles
JP2005060492A (en) Manufacturing process of alpha olefin polymer
CA2250264C (en) A process and an apparatus for polymerization of olefin monomers
JP5092260B2 (en) Process for producing olefin polymer
JPH029047B2 (en)
JPH0346482B2 (en)
JPS5993702A (en) Vapor-phase polymerization reactor
JPS5945314A (en) Apparatus for vapor-phase polymerization
JPH08127616A (en) Production of olefin polymer